Block Low-Rank multifrontal solvers: complexity, performance, and scalability

Théo Mary Université de Toulouse

Ph.D. defense, 24 November 2017

Context

Linear system Ax = b

Often a keystone in scientific computing applications (discretization of PDEs, step of an optimization method, ...)

Matrix sparsity

A sparse matrix is "any matrix with enough zeros that it pays to take advantage of them" (Wilkinson)

Large-scale systems

Increasingly large numbers of cores available, need to efficiently make use of them

Iterative methods

Build sequence x_k converging towards x

- ${}^{\odot}$ Computational cost: ${\cal O}\left(n
 ight)$ operations/iteration and memory
- Convergence is application-dependent

Direct methods

Factorize A = LU and solve LUx = b

- © Numerically reliable
- Computational cost: \$\mathcal{O}(n^2)\$ operations, \$\mathcal{O}(n^{4/3})\$ memory Practical example on a 1000³ 27-point Helmholtz problem: 15 ExaFlops and 209 TeraBytes for factors!

Iterative methods

Build sequence x_k converging towards x

- \odot Computational cost: $\mathcal{O}\left(n
 ight)$ operations/iteration and memory
- Convergence is application-dependent

Direct methods

Factorize A = LU and solve LUx = b

- © Numerically reliable
- Computational cost: O (n²) operations, O (n^{4/3}) memory Practical example on a 1000³ 27-point Helmholtz problem: 15 ExaFlops and 209 TeraBytes for factors!

Objective of the thesis: reduce the cost of sparse direct solverswhile maintaining their numerical reliability Principle: build approximated factorization $A_{\varepsilon} = L_{\varepsilon}U_{\varepsilon}$ at given accuracy ε

Contribution: design of novel algorithms with two fundamental properties

1st contribution: asymptotic complexity reduction

Theoretical proof and experimental validation that:

- Memory: $\mathcal{O}\left(n^{4/3}\right) \rightarrow \mathcal{O}\left(n\log n\right)$
- Operations: $\mathcal{O}\left(n^{2}
 ight)
 ightarrow \mathcal{O}\left(n^{5/3}
 ight)
 ightarrow \mathcal{O}\left(n^{4/3}
 ight)$

2nd contribution: efficient and scalable algorithms

Designed algorithms to efficiently translate the theoretical complexity reduction into actual performance and memory gains for large-scale computers and applications

Impact on industrial applications

Structural mechanics Matrix of order 8M Required accuracy: 10^{-9}

Seismic imaging Matrix of order 17M Required accuracy: 10^{-3}

Electromagnetism Matrix of order 21M Required accuracy: 10^{-7}

Results on 900 cores:

	factorization time (s)			memory/proc (GB)		
application	MUMPS	BLR	ratio	MUMPS	BLR	gain
structural	289.3	104.9	2.5	7.9	5.9	25%
seismic	617.0	123.4	4.9	13.3	10.4	22%
electromag.	1307.4	233.8	5.3	20.6	14.4	30%

Introduction

Multifrontal Factorization with Nested Dissection

3D problem complexity

- ightarrow Flops: $\mathcal{O}\left(n^{2}
 ight)$, mem: $\mathcal{O}\left(n^{4/3}
 ight)$
 - George. Nested dissection of a regular finite element mesh, SIAM J. Numer. Anal., 1973.

Take a dense matrix *B* of size $b \times b$ and compute its SVD B = XSY:

Take a dense matrix *B* of size $b \times b$ and compute its SVD B = XSY:

 $B = X_1 S_1 Y_1 + X_2 S_2 Y_2 \quad \text{with} \quad S_1(k,k) = \sigma_k > \varepsilon, \ S_2(1,1) = \sigma_{k+1} \le \varepsilon$

Take a dense matrix *B* of size $b \times b$ and compute its SVD B = XSY:

 $B = X_1 S_1 Y_1 + X_2 S_2 Y_2 \quad \text{with} \quad S_1(k,k) = \sigma_k > \varepsilon, \ S_2(1,1) = \sigma_{k+1} \le \varepsilon$ If $\tilde{B} = X_1 S_1 Y_1$ then $\|B - \tilde{B}\|_2 = \|X_2 S_2 Y_2\|_2 = \sigma_{k+1} \le \varepsilon$

Take a dense matrix *B* of size $b \times b$ and compute its SVD B = XSY:

 $B = X_1 S_1 Y_1 + X_2 S_2 Y_2 \text{ with } S_1(k,k) = \sigma_k > \varepsilon, \ S_2(1,1) = \sigma_{k+1} \le \varepsilon$

If
$$B = X_1 S_1 Y_1$$
 then $||B - B||_2 = ||X_2 S_2 Y_2||_2 = \sigma_{k+1} \le \varepsilon$

If the singular values of B decay very fast (e.g. exponentially) then $k \ll b$ even for very small ε (e.g. 10^{-14}) \Rightarrow memory and CPU consumption can be reduced considerably with a controlled loss of accuracy ($\leq \varepsilon$) if \tilde{B} is used instead of BPh.D. defense, 24 November 2017

8/47

Frontal matrices are not low-rank but in some applications they exhibit low-rank blocks

A block *B* represents the interaction between two subdomains σ and τ . If they have a small diameter and are far away their interaction is weak \Rightarrow rank is low.

The block-admissibility condition formalizes this intuition:

 $\sigma \times \tau$ is admissible $\Leftrightarrow \max(\operatorname{diam}(\sigma), \operatorname{diam}(\tau)) \leq \eta \operatorname{dist}(\sigma, \tau)$

Frontal matrices are not low-rank but in some applications they exhibit low-rank blocks

A block *B* represents the interaction between two subdomains σ and τ . If they have a small diameter and are far away their interaction is weak \Rightarrow rank is low.

The block-admissibility condition formalizes this intuition:

Frontal matrices are not low-rank but in some applications they exhibit low-rank blocks

A block *B* represents the interaction between two subdomains σ and τ . If they have a small diameter and are far away their interaction is weak \Rightarrow rank is low.

The block-admissibility condition formalizes this intuition:

Frontal matrices are not low-rank but in some applications they exhibit low-rank blocks

A block *B* represents the interaction between two subdomains σ and τ . If they have a small diameter and are far away their interaction is weak \Rightarrow rank is low.

The block-admissibility condition formalizes this intuition:

Frontal matrices are not low-rank but in some applications they exhibit low-rank blocks

A block *B* represents the interaction between two subdomains σ and τ . If they have a small diameter and are far away their interaction is weak \Rightarrow rank is low.

The block-admissibility condition formalizes this intuition:

Frontal matrices are not low-rank but in some applications they exhibit low-rank blocks

A block *B* represents the interaction between two subdomains σ and τ . If they have a small diameter and are far away their interaction is weak \Rightarrow rank is low.

The block-admissibility condition formalizes this intuition:

Frontal matrices are not low-rank but in some applications they exhibit low-rank blocks

A block *B* represents the interaction between two subdomains σ and τ . If they have a small diameter and are far away their interaction is weak \Rightarrow rank is low.

The block-admissibility condition formalizes this intuition:

Frontal matrices are not low-rank but in some applications they exhibit low-rank blocks

A block *B* represents the interaction between two subdomains σ and τ . If they have a small diameter and are far away their interaction is weak \Rightarrow rank is low.

The block-admissibility condition formalizes this intuition:

 $\sigma \times \tau \text{ is admissible } \Leftrightarrow \max\left(\mathsf{diam}\left(\sigma\right),\mathsf{diam}\left(\tau\right)\right) \leq \eta \,\mathsf{dist}\left(\sigma,\tau\right)$

Geometric

- Produces very regular subdomains
- 🗵 Not always available

Algebraic

- Produces more irregular subdomains
- © Always available (matrix graph)

${\cal H}$ and BLR matrices

 $\mathcal H ext{-matrix}$

BLR matrix

${\cal H}$ and BLR matrices

 $\mathcal H\text{-matrix}$

- Theoretical complexity can be as low as $\mathcal{O}\left(n\right)$
- Complex, hierarchical structure

BLR matrix

- Theoretical complexity?
- Simple structure

${\cal H}$ and BLR matrices

 $\mathcal H\text{-matrix}$

- Theoretical complexity can be as low as $\mathcal{O}(n)$
- Complex, hierarchical structure

BLR matrix

- Theoretical complexity?
- Simple structure

Find a good comprise between complexity and performance

• FSCU

- FSCU (Factor,
- Easy to handle numerical pivoting, a critical feature often lacking in other low-rank solvers

- FSCU (Factor, Solve,
- Easy to handle numerical pivoting, a critical feature often lacking in other low-rank solvers

- FSCU (Factor, Solve, Compress,
- Easy to handle numerical pivoting, a critical feature often lacking in other low-rank solvers

- FSCU (Factor, Solve, Compress, Update)
- Easy to handle numerical pivoting, a critical feature often lacking in other low-rank solvers

- FSCU (Factor, Solve, Compress, Update)
- Easy to handle numerical pivoting, a critical feature often lacking in other low-rank solvers

- FSCU (Factor, Solve, Compress, Update)
- Easy to handle numerical pivoting, a critical feature often lacking in other low-rank solvers

- FSCU (Factor, Solve, Compress, Update)
- Easy to handle numerical pivoting, a critical feature often lacking in other low-rank solvers

- FSCU (Factor, Solve, Compress, Update)
- Easy to handle numerical pivoting, a critical feature often lacking in other low-rank solvers

- FSCU (Factor, Solve, Compress, Update)
- Easy to handle numerical pivoting, a critical feature often lacking in other low-rank solvers

- FSCU (Factor, Solve, Compress, Update)
- Easy to handle numerical pivoting, a critical feature often lacking in other low-rank solvers

- FSCU (Factor, Solve, Compress, Update)
- Easy to handle numerical pivoting, a critical feature often lacking in other low-rank solvers

- FSCU (Factor, Solve, Compress, Update)
- Easy to handle numerical pivoting, a critical feature often lacking in other low-rank solvers

- FSCU (Factor, Solve, Compress, Update)
- Easy to handle numerical pivoting, a critical feature often lacking in other low-rank solvers

- FSCU (Factor, Solve, Compress, Update)
- Easy to handle numerical pivoting, a critical feature often lacking in other low-rank solvers

- FSCU (Factor, Solve, Compress, Update)
- Easy to handle numerical pivoting, a critical feature often lacking in other low-rank solvers

- FSCU (Factor, Solve, Compress, Update)
- Easy to handle numerical pivoting, a critical feature often lacking in other low-rank solvers

- FSCU (Factor, Solve, Compress, Update)
- Easy to handle numerical pivoting, a critical feature often lacking in other low-rank solvers
- Potential of this variant was studied in
 - Amestoy, Ashcraft, Boiteau, Buttari, L'Excellent, and Weisbecker. Improving Multifrontal Methods by Means of Block Low-Rank Representations, SIAM J. Sci. Comput., 2015.

- FSCU (Factor, Solve, Compress, Update)
- Easy to handle numerical pivoting, a critical feature often lacking in other low-rank solvers
- Potential of this variant was studied in
 - Amestoy, Ashcraft, Boiteau, Buttari, L'Excellent, and Weisbecker. Improving Multifrontal Methods by Means of Block Low-Rank Representations, SIAM J. Sci. Comput., 2015.

...but many open questions remain

- What is the theoretical complexity of the BLR factorization? Does it hold in the algebraic case?
- How can we get actual performance gains out of the complexity reduction of the BLR factorization?
- Can we design novel variants of the BLR factorization to improve its complexity and performance? Can we do that without sacrificing numerical pivoting?
- How well does the distributed-memory BLR factorization scale and how can we improve its scalability?

- What is the theoretical complexity of the BLR factorization? Does it hold in the algebraic case?
- How can we get actual performance gains out of the complexity reduction of the BLR factorization?
- Can we design novel variants of the BLR factorization to improve its complexity and performance? Can we do that without sacrificing numerical pivoting?
- How well does the distributed-memory BLR factorization scale and how can we improve its scalability?

- What is the theoretical complexity of the BLR factorization? Does it hold in the algebraic case?
- How can we get actual performance gains out of the complexity reduction of the BLR factorization?
- Can we design novel variants of the BLR factorization to improve its complexity and performance? Can we do that without sacrificing numerical pivoting?

• How well does the distributed-memory BLR factorization scale and how can we improve its scalability?

- What is the theoretical complexity of the BLR factorization? Does it hold in the algebraic case?
- How can we get actual performance gains out of the complexity reduction of the BLR factorization?
- Can we design novel variants of the BLR factorization to improve its complexity and performance? Can we do that without sacrificing numerical pivoting?
- How well does the distributed-memory BLR factorization scale and how can we improve its scalability?

Open questions (outline)

Outline of the rest of the presentation:

- 1. What is the theoretical Complexity of the BLR factorization? Does it hold in the algebraic case?
- 2. How can we get actual Performance gains out of the complexity reduction of the BLR factorization?
- 3. Can we design novel Variants of the BLR factorization to improve its complexity and performance? Can we do that without sacrificing numerical pivoting?
- 4. How well does the Distributed-memory BLR factorization scale and how can we improve its scalability?

Complexity of the BLR factorization

$\mathcal H$ -admissibility and sparsity constant

$\mathcal H$ -admissibility condition

A partition ${\mathcal P}$ is admissible iff

 $\forall \sigma \times \tau \in \mathcal{P}, \ \sigma \times \tau \text{ is admissible or } \min(\#\sigma, \#\tau) \leq c_{\min}$

$\mathcal H$ -admissibility and sparsity constant

 c_{sp} is the maximal number of blocks of the same size on the same row/column (here, $c_{sp} = 6$)

\mathcal{H} -admissibility condition

A partition ${\mathcal P}$ is admissible iff

 $\forall \sigma \times \tau \in \mathcal{P}, \ \sigma \times \tau \text{ is admissible or } \min(\#\sigma, \#\tau) \leq c_{\min}$

The so-called sparsity constant c_{sp} is defined by:

$$c_{sp} = \max(\max_{\sigma} \#\{\tau; \sigma \times \tau \in P\}, \max_{\tau} \#\{\sigma; \sigma \times \tau \in P\})$$

Dense factorization complexity

Complexity:
$$C_{facto} = \mathcal{O}\left(c_{sp}^2 r_{max}^2 m \log^2 m\right)$$

m matrix size

c_{sp} sparsity constant

*r*_{max} bound on the maximal rank of all blocks

Dense factorization complexity

Complexity:
$$C_{facto} = \mathcal{O}\left(c_{sp}^2 r_{max}^2 m \log^2 m\right)$$

m matrix size *c_{sp}* sparsity constant

*r*_{max} bound on the maximal rank of all blocks

${\cal H}$	BLR
C _{sp} r _{max}	
\mathcal{C}_{facto}	

Dense factorization complexity

Complexity:
$$C_{facto} = \mathcal{O}\left(c_{sp}^2 r_{max}^2 m \log^2 m\right)$$

m matrix size c_{sp} sparsity constant

*r*_{max} bound on the maximal rank of all blocks

	\mathcal{H}	BLR
c_{sp} r_{max} \mathcal{C}_{facto}	$\mathcal{O}\left(1 ight)^{*}$	

Grasedyck & Hackbusch, 2003

Dense factorization complexity

Complexity:
$$C_{facto} = \mathcal{O}\left(c_{sp}^2 r_{max}^2 m \log^2 m\right)$$

m matrix size c_{sp} sparsity constant

*r*_{max} bound on the maximal rank of all blocks

	${\cal H}$	BLR
c_{sp} r_{max} \mathcal{C}_{facto}	$\mathcal{O}\left(1 ight)^{*}$ small **	
	*Grasedyck & Hackb	usch, 2003

**Bebendorf & Hackbusch, 2003

\mathcal{H} vs. BLR complexity

Dense factorization complexity

Complexity:
$$C_{facto} = \mathcal{O}\left(c_{sp}^2 r_{max}^2 m \log^2 m\right)$$

matrix size m CSD

sparsity constant

bound on the maximal rank of all blocks *r*_{max}

	\mathcal{H}	BLR
${c_{sp}} \ r_{max} \ {{\cal C}_{facto}}$	$\mathcal{O}\left(1 ight)^{*}$ small ** $\mathcal{O}\left(r_{max}^{2}m\log^{2}m ight)$)
	*Grasedyck & Hac	kbusch, 2003
	**Bebendorf & Hac	kbusch, 2003

Dense factorization complexity

Complexity:
$$C_{facto} = \mathcal{O}\left(c_{sp}^2 r_{max}^2 m \log^2 m\right)$$

m matrix size

c_{sp} sparsity constant

*r*_{max} bound on the maximal rank of all blocks

	${\cal H}$	BLR	
C _{sp} r _{max} C _{facto}	$\mathcal{O}\left(1 ight)^{*}$ small ^{**} $\mathcal{O}\left(r_{max}^{2}m\log^{2}m ight)$	m/b	
*Grasedyck & Hackbusch, 2003			

Dense factorization complexity

Complexity:
$$C_{facto} = \mathcal{O}\left(c_{sp}^2 r_{max}^2 m \log^2 m\right)$$

m matrix size

c_{sp} sparsity constant

*r*_{max} bound on the maximal rank of all blocks

	H	BLR
C _{sp}	$\mathcal{O}\left(1 ight)^{*}$	m/b
r _{max}	small**	b
$\mathcal{C}_{\textit{facto}}$	$\mathcal{O}\left(r_{\max}^2 m \log^2 m\right)$	
	*Grasedyck & Hackbu	ısch, 2003
	**	

**Bebendorf & Hackbusch, 2003

Dense factorization complexity

Complexity:
$$C_{facto} = \mathcal{O}\left(c_{sp}^2 r_{max}^2 m \log^2 m\right)$$

m matrix size

c_{sp} sparsity constant

*r*_{max} bound on the maximal rank of all blocks

	\mathcal{H}	BLR		
\mathcal{C}_{sp} r_{max} \mathcal{C}_{facto}	$\mathcal{O}\left(1 ight)^{*}$ small ^{**} $\mathcal{O}\left(r_{max}^{2}m\log^{2}m ight)$	m/b b $\mathcal{O}\left(m^3\log^2 m ight)$		
*Grasedyck & Hackbusch, 2003				
	**			

**Bebendorf & Hackbusch, 2003

Dense factorization complexity

$$\frac{\text{Complexity: } \mathcal{C}_{facto} = \mathcal{O}\left(c_{sp}^2 r_{max}^2 m \log^2 m\right)}{}$$

m matrix size

c_{sp} sparsity constant

*r*_{max} bound on the maximal rank of all blocks

	\mathcal{H}	BLR		
C _{sp}	$\mathcal{O}\left(1 ight)^{*}$	m/b		
r _{max}	small**	b		
$\mathcal{C}_{\textit{facto}}$	$\mathcal{O}\left(r_{\max}^2 m \log^2 m\right)$	$\mathcal{O}\left(m^3\log^2 m ight)$		
*Grasedyck & Hackbusch, 2003				
	** Pabandarf & Hackby	150h 2002		

BLR: a particular case of \mathcal{H} ?

Problem: in \mathcal{H} formalism, the maximal rank of the blocks of a BLR matrix is $r_{max} = b$ (due to the non-admissible blocks) Solution: bound the rank of the admissible blocks only, and make sure the non-admissible blocks are in small number

BLR admissibility condition

BLR-admissibility condition of a partition ${\cal P}$

 $\mathcal{P} \text{ is admissible } \Leftrightarrow \left\{ \begin{array}{l} \#\{\sigma, \ \sigma \times \tau \in \mathcal{P} \text{ is not admissible}\} \leq q \\ \#\{\tau, \ \sigma \times \tau \in \mathcal{P} \text{ is not admissible}\} \leq q \end{array} \right.$

Non-Admissible

Admissible

BLR admissibility condition

BLR-admissibility condition of a partition ${\cal P}$

 $\mathcal{P} \text{ is admissible } \Leftrightarrow \begin{cases} \#\{\sigma, \ \sigma \times \tau \in \mathcal{P} \text{ is not admissible}\} \leq q \\ \#\{\tau, \ \sigma \times \tau \in \mathcal{P} \text{ is not admissible}\} \leq q \end{cases}$

Non-Admissible

Admissible

Main result

For any matrix, we can build an admissible \mathcal{P} for $q = \mathcal{O}(1)$, s.t. the maximal rank of the admissible blocks of A is $r = \mathcal{O}(r_{max}^{\mathcal{H}})$

 Amestoy, Buttari, L'Excellent, and Mary. On the Complexity of the Block Low-Rank Multifrontal Factorization, SIAM J. Sci. Comput., 2017.
 Ph.D. defense, 24 November 2017

Root separator of a 128^3 Poisson problem clustered with SCOTCH via k-means

 Weisbecker. Improving multifrontal solvers by means of algebraic Block Low-Rank representations, PhD thesis.

The BLR-admissibility condition provides a theoretical justification of the intuitive choice to use k-means as clustering

Complexity of the BLR factorization

Complexity of the dense BLR factorization

$$\mathcal{C}_{\text{facto}} = \mathcal{O}\left(rm^3/b + m^2b\right) = \mathcal{O}\left(r^{1/2}m^{5/2}\right) \ (\text{for } b = \mathcal{O}\left(\sqrt{rm}\right))$$

Complexity of the sparse multifrontal BLR factorization

In the 3D case (similar analysis possible for 2D):

	operations (OPC)	factor size (NNZ)
FR BLR	$\mathcal{O}\left(n^{2} ight) \ \mathcal{O}\left(n^{5/3}r^{1/2} ight)$	$\mathcal{O}\left(n^{4/3} ight) \ \mathcal{O}\left(n\max\left(r^{1/2},\log n ight) ight)$

- Asymptotic complexity reduction...
- ...but still quite far from the $\mathcal{O}\left(n
 ight)\mathcal{H} ext{-complexity}$

Experimental Setting: Matrices

1. Poisson: N^3 grid with a 7-point stencil with u=1 on the boundary $\partial\Omega$

 $\Delta u = f$

2. Helmholtz: N^3 grid with a 27-point stencil, ω is the angular frequency, v(x) is the seismic velocity field, and $u(x, \omega)$ is the time-harmonic wavefield solution to the forcing term $s(x, \omega)$.

$$\left(-\Delta - \frac{\omega^2}{\mathsf{v}(\mathsf{x})^2}\right) u(\mathsf{x},\omega) = \mathsf{s}(\mathsf{x},\omega)$$

 ω is fixed and equal to 4Hz.

Experimental MF flop complexity: Poisson ($arepsilon=10^{-10}$)

Nested Dissection ordering (geometric)

good agreement with theoretical complexity

Experimental MF flop complexity: Poisson ($arepsilon=10^{-10}$)

- good agreement with theoretical complexity
- METIS algebraic complexity remains close to geometric ND

Experimental MF flop complexity: Helmholtz ($arepsilon=10^{-4}$)

- good agreement with theoretical complexity, under the strong assumption r = O(N)
- METIS algebraic complexity remains close to geometric ND
 Ph.D. defense, 24 November 2017

Experimental MF complexity: factor size

- good agreement with theoretical complexity
- METIS algebraic complexity remains close to geometric ND (not shown)

Performance of the BLR factorization

Shared-memory experimental setting

application	matrix	arith.	fact.	n	nnz	flops	factor size
seismic imaging (SEISCOPE)	5Hz 7Hz 10Hz	C C C	LU LU LU	2.9M 7.2M 17.2M	70M 177M 446M	69.5 TF 471.1 TF 2.7 PF	61.4 GB 219.6 GB 728.1 GB
electromag. modeling (EMGS)	H3 H17 S3 S21	Z Z Z Z	LDL^{T} LDL^{T} LDL^{T} LDL^{T}	2.9M 17.4M 3.3M 20.6M	37M 226M 43M 266M	57.9 TF 2.2 PF 78.0 TF 3.2 PF	77.5 GB 891.1 GB 94.6 GB 1.1 TB
structural mechanics (EDF)	p8d p8ar p8cr p9ar	d d d	LDL^{T} LDL^{T} LDL^{T} LDL^{T}	1.9M 3.9M 7.9M 5.4M	81M 159M 321M 209M	101.0 TF 377.5 TF 1.6 PF 23.6 TF	52.6 GB 129.8 GB 341.1 GB 40.5 GB

Experiments were performed on brunch (LIP-ENS Lyon):

- Four Intel(r) 24-cores Broadwell @ 2.2 GHz
- Peak per core is 35.2 GF/s
- Total memory is 1.5 TB

Shared-memory performance analysis (matrix S3)

7.7 gain in flops only translated to a 1.7 gain in time: why?

- the higher relative weight of the FR parts (Factor+Solve and LAI parts) limits the global gain
- the Update and Compress steps have a lower speed because of their low granularity and memory-boundedness
 Ph.D. defense, 24 November 2017

Exploiting tree-based multithreading in MF solvers

Node parallelism approach based on OpenMP loops

Node parallelism approach based on OpenMP loops

- Node parallelism approach based on OpenMP loops
- Node+tree parallelism approach based on Sid-Lakhdar's PhD
 - L'Excellent and Sid-Lakhdar. A study of shared-memory parallelism in a multifrontal solver, Parallel Computing.

- Node parallelism approach based on OpenMP loops
- Node+tree parallelism approach based on Sid-Lakhdar's PhD
 - L'Excellent and Sid-Lakhdar. A study of shared-memory parallelism in a multifrontal solver, Parallel Computing.
- In FR, top of the tree is dominant \Rightarrow tree MT brings little gain

- Node parallelism approach based on OpenMP loops
- Node+tree parallelism approach based on Sid-Lakhdar's PhD
 - L'Excellent and Sid-Lakhdar. A study of shared-memory parallelism in a multifrontal solver, Parallel Computing.
- In FR, top of the tree is dominant \Rightarrow tree MT brings little gain
- In BLR, bottom of the tree compresses less, becomes important

- Node parallelism approach based on OpenMP loops
- Node+tree parallelism approach based on Sid-Lakhdar's PhD
 - L'Excellent and Sid-Lakhdar. A study of shared-memory parallelism in a multifrontal solver, Parallel Computing.
- In FR, top of the tree is dominant \Rightarrow tree MT brings little gain
- In BLR, bottom of the tree compresses less, becomes important
- \Rightarrow 1.7 gain becomes 1.9 thanks to tree-based multithreading 26/47

	FR time		BLR time		
	RL	LL	RL	LL	
Update	338	336	110	67	
Total	424	421	221	175	

	FR time		BLR time		
	RL	LL	RL	LL	
Update	338	336	110	67	
Total	424	421	221	175	

	FR time		BLR	BLR time	
	RL	LL	RL	LL	
Update	338	336	110	67	
Total	424	421	221	175	

 \Rightarrow Lower volume of memory transfers in LL (more critical in MT)

	FR time		BLR	time
	RL	LL	RL	LL
Update	338	336	110	67
Total	424	421	221	175

⇒ Lower volume of memory transfers in LL (more critical in MT) Update is now less memory-bound: **1.9** gain becomes **2.4** in LL 27/47 Ph.D. defense, 24 November 2017

Variants of the BLR factorization

- FSCU (Factor, Solve, Compress, Update)
- FSCU+LUAR

- FSCU (Factor, Solve, Compress, Update)
- FSCU+LUAR
 - Better granularity in Update operations

- FSCU (Factor, Solve, Compress, Update)
- FSCU+LUAR
 - Better granularity in Update operations
 - Potential recompression

- FSCU (Factor, Solve, Compress, Update)
- FSCU+LUAR
 - Better granularity in Update operations
 - Potential recompression

- FSCU (Factor, Solve, Compress, Update)
- FSCU+LUAR
 - Better granularity in Update operations
 - Potential recompression

4				100
			Size of Outer Product	-
	average size of	Outer Product	16.5	_
	flops ($\times 10^{12}$)	Outer Product Total	3.8 10.2	_
	time (s)	Outer Product Total	21 175	_

Outer Product benchmark

\checkmark		50 40 30 50 50 50 50 50 50 50 50 50 50 50 50 50	20 40 Size of Outer	0 80 100
		LL	LUA	
average size of	Outer Product	16.5	61.0	
flops ($ imes 10^{12}$)	Outer Product Total	3.8 10.2	3.8 10.2	
time (s)	Outer Product Total	21 175	14 167	

Outer Product benchmark

			40		
¥	1		s 30 Sistor 5 20 10	J. Janon	
_			0 <mark>P</mark> 0	20 40 Size of Outer	60 80 10 Product
			LL	LUA	LUAR*
ā	average size of	Outer Product	16.5	61.0	32.8
f	lops ($ imes 10^{12}$)	Outer Product Total	3.8 10.2	3.8 10.2	1.6 8.1
†	ime (s)	Outer Product Total	21 175	14 167	6 160

Outer Product benchmark

* All metrics include the Recompression overhead

		0 0.00		benefitian
		50 40 30 9 20 52 00 52 00 52 00 52 00 52 00 52 00 52 00 52 00 50 50 50 50 50 50 50 50 50 50 50 50		100 100 100 1 → b-256
		LL	20 40 Size of Outer	60 80 11 Product
average size o	of Outer Product	16.5	61.0	32.8
flops (× 10^{12})	Outer Product Total	3.8 10.2	3.8 10.2	1.6 8.1
time (s)	Outer Product Total	21 175	14 167	6 160

Outer Product benchmark

* All metrics include the Recompression overhead

Higher granularity and lower flops in Update:

 \Rightarrow 2.4 gain becomes 2.6

- FSCU (Factor, Solve, Compress, Update)
- FSCU+LUAR
- FCSU(+LUAR)

- FSCU (Factor, Solve, Compress, Update)
- FSCU+LUAR
- FCSU(+LUAR)
 - Restricted pivoting

- FSCU (Factor, Solve, Compress, Update)
- FSCU+LUAR
- FCSU(+LUAR)
 - Restricted pivoting

- FSCU (Factor, Solve, Compress, Update)
- FSCU+LUAR
- FCSU(+LUAR)
 - Restricted pivoting
 - \circ Low-rank Solve \Rightarrow flop reduction

- FSCU (Factor, Solve, Compress, Update)
- FSCU+LUAR
- FCSU(+LUAR)
 - Restricted pivoting
 - \circ Low-rank Solve \Rightarrow flop reduction

On matrix S3		flops (TF)	time (s)	residual
2.6 gain becomes 3.7	FSCU	8.2	160	1.5e-09
	FCSU	4.0	111	2.7e-09

Variants improve asymptotic complexity

We have theoretically proven that:

$$\begin{array}{ccc} \mathsf{FSCU} & \to \mathsf{FSCU}+\mathsf{LUAR} & \to \mathsf{FCSU}+\mathsf{LUAR} \\ \mathsf{dense} & \mathcal{O}\left(m^{5/2}r^{1/2}\right) & \to \mathcal{O}\left(m^{7/3}r^{2/3}\right) & \to \mathcal{O}\left(m^2r\right) \\ \mathsf{sparse} \ (\mathsf{3D}) & \mathcal{O}\left(n^{5/3}r^{1/2}\right) & \to \mathcal{O}\left(n^{14/9}r^{2/3}\right) & \to \mathcal{O}\left(n^{4/3}r\right) \end{array}$$

Amestoy, Buttari, L'Excellent, and Mary. On the Complexity of the Block Low-Rank Multifrontal Factorization, SIAM J. Sci. Comput., 2017.

Variants improve asymptotic complexity

We have theoretically proven that:

$$\begin{array}{ccc} \mathsf{FSCU} & \to \mathsf{FSCU} + \mathsf{LUAR} & \to \mathsf{FCSU} + \mathsf{LUAR} \\ \mathsf{dense} & \mathcal{O}\left(m^{5/2}r^{1/2}\right) & \to \mathcal{O}\left(m^{7/3}r^{2/3}\right) & \to \mathcal{O}\left(m^2r\right) \\ \mathsf{sparse} \ (\mathsf{3D}) & \mathcal{O}\left(n^{5/3}r^{1/2}\right) & \to \mathcal{O}\left(n^{14/9}r^{2/3}\right) & \to \mathcal{O}\left(n^{4/3}r\right) \end{array}$$

 Amestoy, Buttari, L'Excellent, and Mary. On the Complexity of the Block Low-Rank Multifrontal Factorization, SIAM J. Sci. Comput., 2017.

Multicore performance results (24 threads)

- "BLR": FSCU, right-looking, node only multithreading
- "BLR+": FCSU+LUAR, left-looking, node+tree multithreading
- Amestoy, Buttari, L'Excellent, and Mary. Performance and Scalability of the Block Low-Rank Multifrontal Factorization on Multicore Architectures, submitted to ACM
 33/47 Trans. Math. Soft., 2017.
 Ph.D. defense, 24 November 2017

The problem with FCSU

- FSCU (Factor, Solve, Compress, Update)
- FSCU+LUAR
- FCSU(+LUAR)
 - Restricted pivoting
 - \circ Low-rank Solve \Rightarrow flop reduction

The problem with FCSU

- FSCU (Factor, Solve, Compress, Update)
- FSCU+LUAR
- FCSU(+LUAR)
 - Restricted pivoting \Rightarrow **not acceptable in many applications**
 - \circ Low-rank Solve \Rightarrow flop reduction

Compress before Solve + pivoting: CFSU variant

FSCU

FCSU

CFSU

© Standard pivoting

- Standard pivoting
- © Compress after Solve
- Restricted pivoting Compress before Solve
- © Compress before Solve

Compress before Solve + pivoting: CFSU variant

FSCU

- © Standard pivoting
- © Compress after Solve

FCSU © Restricted pivoting

Compress before Solve

CFSU

© Standard pivoting

© Compress before Solve

How to assess the quality of pivot k? We need to estimate $\|\widetilde{B}_{:,k}\|_{max}$: $\|\widetilde{B}_{:,k}\|_{max} \le \|\widetilde{B}_{:,k}\|_2 = \|XY_{k,:}^T\|_2 = \|Y_{k,:}^T\|_2$, assuming X is orthonormal (e.g. RRQR, SVD)

Compress before Solve + pivoting: CFSU variant

 \odot

R

FSCU

- © Standard pivoting
- © Compress after Solve

FCSU © Restricted pivoting

Compress before Solve

CFSU

© Standard pivoting

© Compress before Solve

 How to assess the quality of pivot k? We need to estimate $\|\widetilde{B}_{:,k}\|_{max}$: $\|\widetilde{B}_{:,k}\|_{max} \leq \|\widetilde{B}_{:,k}\|_2 = \|XY_{k,:}^T\|_2 = \|Y_{k,:}^T\|_2$, assuming X is orthonormal (e.g. RRQR, SVD)

X

Distributed-memory BLR factorization

Strong scalability analysis (matrix 10Hz)

Experiments performed on the eos supercomputer (credits: CALMIP):

- Two Intel(r) 10-cores lvy Bridge
 @ 2.8 GHz
- Peak per core is 22.4 GF/s
- 64 GB memory per node
- Infiniband FDR interconnect

How to improve the scalability of the BLR factorization?

Strong scalability analysis (matrix 10Hz)

Experiments performed on the eos supercomputer (credits: CALMIP):

- Two Intel(r) 10-cores lvy Bridge
 @ 2.8 GHz
- Peak per core is 22.4 GF/s
- 64 GB memory per node
- Infiniband FDR interconnect

How to improve the scalability of the BLR factorization?

Load imbalance (ratio between most and less loaded processes) increases from 1.3 (FR) to 2.6 (BLR)
 ⇒ we devised some heuristics showing promising gains

Strong scalability analysis (matrix 10Hz)

Experiments performed on the eos supercomputer (credits: CALMIP):

- Two Intel(r) 10-cores lvy Bridge
 @ 2.8 GHz
- Peak per core is 22.4 GF/s
- 64 GB memory per node
- Infiniband FDR interconnect

How to improve the scalability of the BLR factorization?

- Load imbalance (ratio between most and less loaded processes) increases from 1.3 (FR) to 2.6 (BLR)
 ⇒ we devised some heuristics showing promising gains
- Flops reduced by 12.8 but volume of communications only by $2.2 \Rightarrow$ higher relative weight of communications
Type of messages

Type of messages

• Volume of *LU* messages is reduced by compressing the factors

 $\ensuremath{\textcircled{}}$ Reduces operation count, communications, and memory consumption

Type of messages

- Volume of LU messages is reduced by compressing the factors
 - $\ensuremath{\textcircled{\circ}}$ Reduces operation count, communications, and memory consumption
- Volume of CB messages can be reduced by compressing the CB
 - © Reduces communications and memory consumption
 - © Increases operation count unless assembly is done in LR

Ph.D. defense, 24 November 2017

Communication analysis

• FR case: LU messages dominate

Theoretical communication bounds

	\mathcal{W}_{LU}	\mathcal{W}_{CB}	\mathcal{W}_{tot}
FR	$\mathcal{O}\left(n^{4/3}p ight)$	$\mathcal{O}\left(n^{4/3} ight)$	$\mathcal{O}\left(n^{4/3} \rho\right)$

Communication analysis

- FR case: LU messages dominate
- BLR case: CB messages dominate ⇒ underwhelming reduction of communications

Theoretical communication bounds

	\mathcal{W}_{LU}	\mathcal{W}_{CB}	\mathcal{W}_{tot}
FR BLR (CB _{FR})	$rac{\mathcal{O}\left(n^{4/3}p ight)}{\mathcal{O}\left(nr^{1/2}p ight)}$	$\mathcal{O}\left(n^{4/3} ight) \ \mathcal{O}\left(n^{4/3} ight)$	$\mathcal{O}\left(n^{4/3}p ight) \\ \mathcal{O}\left(nr^{1/2}p+n^{4/3} ight)$

Communication analysis

- FR case: LU messages dominate
- BLR case: CB messages dominate ⇒ underwhelming reduction of communications
- ⇒ CB compression allows for truly reducing the communications

Theoretical communication bounds

	\mathcal{W}_{LU}	\mathcal{W}_{CB}	\mathcal{W}_{tot}
FR	$\mathcal{O}\left(n^{4/3}p ight)$	$\mathcal{O}\left(n^{4/3} ight)$	$\mathcal{O}\left(n^{4/3}p ight)$
BLR (CB _{FR})	$\mathcal{O}\left(nr^{1/2}p ight)$	$\mathcal{O}\left(n^{4/3}\right)$	$O(nr^{1/2}p + n^{4/3})$
BLR (CB _{LR})	$\mathcal{O}\left(nr^{1/2}p ight)$	$\mathcal{O}\left(nr^{1/2} ight)$	$\mathcal{O}\left(nr^{1/2}p ight)$

Performance impact of the CB compression: illustration on very large problems from SEISCOPE (Helmholtz equation, unsymmetric complex):

matrix	10Hz	15Hz	20Hz
order	17 M	58 M	130 M
cores	900 Ivy Bridge	900 Ivy Bridge	2,400 Haswell
computer	eos (CALMIP)	eos (CALMIP)	occigen (CINES)
factor flops (FR)	2.6 PF	29.6 PF	150.0 PF
\Rightarrow BLR (CB _{FR})	0.1 PF (5.3%)	1.0 PF (3.3%)	3.6 PF (2.4%)
\Rightarrow BLR (CB _{LR})	0.2 PF (6.1%)	1.1 PF (3.7%)	3.9 PF (2.6%)
factor time (FR)	601	5,206	n/a
\Rightarrow BLR (CB _{FR})	123 (4.9)	838 (6.2)	1,665
\Rightarrow BLR (CB _{LR})	213 (2.8)	856 (6.1)	2,641
CB _{LR} time impact	+73%	+2%	+58%
comm. volume (FR)	5.3 TB	29.6 TB	n/a
comm. volume (CB _{FR})	1.7 TB (3.2)	13.3 TB (2.2)	79.8 TB
comm. volume (CB _{LR})	0.6 TB (9.1)	1.2 TB (23.2)	8.6 TB

CB compression becomes increasingly critical?

Ph.D. defense, 24 November 2017

Performance impact of the CB compression: illustration on very large problems from SEISCOPE (Helmholtz equation, unsymmetric complex):

matrix	10Hz	15Hz	20Hz
order	17 M	58 M	130 M
cores	900 Ivy Bridge	900 Ivy Bridge	2,400 Haswell
computer	eos (CALMIP)	eos (CALMIP)	occigen (CINES)
factor flops (FR)	2.6 PF	29.6 PF	150.0 PF
\Rightarrow BLR (CB _{FR})	0.1 PF (5.3%)	1.0 PF (3.3%)	3.6 PF (2.4%)
\Rightarrow BLR (CB _{LR})	0.2 PF (6.1%)	1.1 PF (3.7%)	3.9 PF (2.6%)
factor time (FR)	601	5,206	n/a
\Rightarrow BLR (CB _{FR})	123 (4.9)	838 (6.2)	1,665
\Rightarrow BLR (CB _{LR})	213 (2.8)	856 (6.1)	2,641
CB _{LR} time impact	+73%	+2%	+58%
comm. volume (FR)	5.3 TB	29.6 TB	n/a
comm. volume (CB _{FR})	1.7 TB (3.2)	13.3 TB (2.2)	79.8 TB
comm. volume (CB _{LR})	0.6 TB (9.1)	1.2 TB (23.2)	8.6 TB

CB compression becomes increasingly critical?

Ph.D. defense, 24 November 2017

Performance impact of the CB compression: illustration on very large problems from SEISCOPE (Helmholtz equation, unsymmetric complex):

matrix	10Hz	15Hz	20Hz
order	17 M	58 M	130 M
cores	900 Ivy Bridge	900 Ivy Bridge	2,400 Haswell
computer	eos (CALMIP)	eos (CALMIP)	occigen (CINES)
factor flops (FR)	2.6 PF	29.6 PF	150.0 PF
\Rightarrow BLR (CB _{FR})	0.1 PF (5.3%)	1.0 PF (3.3%)	3.6 PF (2.4%)
\Rightarrow BLR (CB _{LR})	0.2 PF (6.1%)	1.1 PF (3.7%)	3.9 PF (2.6%)
factor time (FR)	601	5,206	n/a
\Rightarrow BLR (CB _{FR})	123 (4.9)	838 (6.2)	1,665
\Rightarrow BLR (CB _{LR})	213 (2.8)	856 (6.1)	2,641
CB _{LR} time impact	+73%	+2%	+58%
comm. volume (FR)	5.3 TB	29.6 TB	n/a
comm. volume (CB _{FR})	1.7 TB (3.2)	13.3 TB (2.2)	79.8 TB
comm. volume (CB _{LR})	0.6 TB (9.1)	1.2 TB (23.2)	8.6 TB

 \Rightarrow CB compression becomes increasingly critical?

Memory consumption on matrix 15Hz: **factors + active memory** (**CB + active front**)

• Factors compression (19% of FR) leads to important gains, but the BLR solver inherits the poor scalability of the active memory

- Factors compression (19% of FR) leads to important gains, but the BLR solver inherits the poor scalability of the active memory
- CB compression (7% of FR) slightly attenuates this issue

- Factors compression (19% of FR) leads to important gains, but the BLR solver inherits the poor scalability of the active memory
- CB compression (7% of FR) slightly attenuates this issue

- Factors compression (19% of FR) leads to important gains, but the BLR solver inherits the poor scalability of the active memory
- CB compression (7% of FR) slightly attenuates this issue
- Storage for the active front becomes critical 41/47 Ph.D. defense, 24 November 2017

Conclusion

Asymptotic complexity reduction (Chap. 4)

Theoretical proof of the asymptotic complexity reduction: $\mathcal{O}(n \log n)$ memory and $\mathcal{O}(n^{5/3})$ operations for standard BLR variant

Efficient and scalable algorithms (Chap. 5 and 6)

Efficient and scalable BLR factorization algorithms for shared- and distributed-memory systems, to achieve actual performance gains

Novel variants (Chap. 2)

Novel variants to improve complexity (down to $O(n^{4/3})$ operations) and performance of the BLR factorization, without sacrificing numerical pivoting

Recompression strategies (Chap. 3)

Analysis and comparison of several strategies to add and recompress low-rank updates, showing there is a trade-off between achieved rank and recompression overhead (with asymptotic difference between strategies)

Applicative case-studies (Chap. 7)

Two case-studies from industrial applications (FWI and CSEM) based on frequency-domain inversion, showing that BLR direct solver is competitive with iterative or time-domain approaches

Comparison with the HSS solver STRUMPACK (Chap. 8)

Comparison on real-life problems suggests that BLR works best as an accurate low-rank direct solver, while HSS favors more aggressive compression to build fast preconditioners

Analysis and solution phases

The other two phases will become of growing importance:

- Analysis time can represent up to 50% of the BLR factorization time
- Solution time is dominant for applications with multiple RHS
 ⇒ how to translate factors size reduction into actual
 performance gains?

Improving the memory scalability

- Active front becomes dominant and limits memory scalability:
 - Switch to fully-structured (matrix-free) implementation?
 - Panel by panel allocation and compression
- Memory aware mappings: map critical fronts on more processes to improve memory scalability

References

Publications

On complexity (Chapter 4):

Amestoy, Buttari, L'Excellent, and Mary. On the Complexity of the Block Low-Rank Multifrontal Factorization, SIAM J. Sci. Comput., 2017.

On multicore performance (Chapter 5):

Amestoy, Buttari, L'Excellent, and Mary. Performance and Scalability of the Block Low-Rank Multifrontal Factorization on Multicore Architectures, submitted to ACM Trans. Math. Soft., 2017.

On the seismic application (Section 7.1):

Amestoy, Brossier, Buttari, L'Excellent, Mary, Métivier, Miniussi, and Operto. Fast 3D frequency-domain full waveform inversion with a parallel Block Low-Rank multifrontal direct solver: application to OBC data from the North Sea, Geophysics, 2016.

On the electromagnetic application (Section 7.2):

Shantsev, Jaysaval, de la Kethulle de Ryhove, Amestoy, Buttari, L'Excellent, and Mary. Large-scale 3D EM modeling with a Block Low-Rank multifrontal direct solver, Geophysical Journal International, 2017.

Software

• MUMPS 5.1.2

Acknowledgments

Thank you for your attention

Computing centers

We thank our computing centers for providing access to the machines:

- brunch (LIP)
- eos (CALMIP)
- occigen (CINES)

Applicative collaborators

We thank our applicative collaborators for providing access to matrices from:

- seismic imaging (SEISCOPE)
- electromagnetic modeling (EMGS)
- structural mechanics (EDF)