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Context

→ →

Linear system Ax = b

Often a keystone in scientific computing applications
(discretization of PDEs, step of an optimization method, …)

Matrix sparsity

A sparse matrix is “any matrix with enough zeros that it pays to
take advantage of them” (Wilkinson)

Large-scale systems

Increasingly large numbers of cores available, need to efficiently
make use of them
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Iterative vs direct methods

Iterative methods
Build sequence xk converging towards x

, Computational cost: O (n) operations/iteration and memory

/ Convergence is application-dependent

Direct methods
Factorize A = LU and solve LUx = b

, Numerically reliable

/ Computational cost: O
(
n2
)
operations, O

(
n4/3

)
memory

Practical example on a 10003 27-point Helmholtz problem:
15 ExaFlops and 209 TeraBytes for factors!
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, Computational cost: O (n) operations/iteration and memory

/ Convergence is application-dependent

Direct methods
Factorize A = LU and solve LUx = b

, Numerically reliable

/ Computational cost: O
(
n2
)
operations, O

(
n4/3

)
memory

Practical example on a 10003 27-point Helmholtz problem:
15 ExaFlops and 209 TeraBytes for factors!

Objective of the thesis:
reduce the cost of sparse direct solvers …

…while maintaining their numerical reliability
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Main contributions

Principle: build approximated factorization Aε = LεUε at given
accuracy ε

Contribution: design of novel algorithms with two fundamental
properties

1st contribution: asymptotic complexity reduction

Theoretical proof and experimental validation that:
• Memory: O

(
n4/3

)
→ O (n logn)

• Operations: O
(
n2
)
→ O

(
n5/3

)
→ O

(
n4/3

)
2nd contribution: efficient and scalable algorithms

Designed algorithms to efficiently translate the theoretical
complexity reduction into actual performance and memory gains
for large-scale computers and applications
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Impact on industrial applications
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Structural mechanics
Matrix of order 8M
Required accuracy: 10−9

Seismic imaging
Matrix of order 17M
Required accuracy: 10−3

Electromagnetism
Matrix of order 21M
Required accuracy: 10−7

Results on 900 cores:

factorization time (s) memory/proc (GB)
application MUMPS BLR ratio MUMPS BLR gain

structural 289.3 104.9 2.5 7.9 5.9 25%
seismic 617.0 123.4 4.9 13.3 10.4 22%
electromag. 1307.4 233.8 5.3 20.6 14.4 30%
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Introduction



Multifrontal Factorization with Nested Dissection

N n = Nd

D1

D2

D3

D4

D1

D2

D3

D4

S

3D problem complexity
→ Flops: O

(
n2
)
, mem: O

(
n4/3

)
▶ George. Nested dissection of a regular

finite element mesh, SIAM J. Numer.
Anal., 1973.
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Low-rank matrices

Take a dense matrix B of size b×b and compute its SVD B = XSY:

8/47 Ph.D. defense, 24 November 2017



Low-rank matrices

Take a dense matrix B of size b×b and compute its SVD B = XSY:

B = X1S1Y1 + X2S2Y2 with S1(k, k) = σk > ε, S2(1, 1) = σk+1 ≤ ε

8/47 Ph.D. defense, 24 November 2017



Low-rank matrices

Take a dense matrix B of size b×b and compute its SVD B = XSY:
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Low-rank matrices

Take a dense matrix B of size b×b and compute its SVD B = XSY:

B = X1S1Y1 + X2S2Y2 with S1(k, k) = σk > ε, S2(1, 1) = σk+1 ≤ ε

If B̃ = X1S1Y1 then ∥B− B̃∥2 = ∥X2S2Y2∥2 = σk+1 ≤ ε

If the singular values of B decay very fast (e.g. exponentially) then
k≪ b even for very small ε (e.g. 10−14) ⇒ memory and CPU
consumption can be reduced considerably with a controlled loss
of accuracy (≤ ε) if B̃ is used instead of B

8/47 Ph.D. defense, 24 November 2017



Low-rank sub-blocks
Frontal matrices are not low-rank but in some applications they
exhibit low-rank blocks

σ

τ

A block B represents the interaction
between two subdomains σ and τ .
If they have a small diameter and are far
away their interaction is weak ⇒ rank is low.

The block-admissibility condition formalizes this intuition:
σ × τ is admissible ⇔ max (diam (σ) ,diam (τ)) ≤ η dist (σ, τ)
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Low-rank sub-blocks
Frontal matrices are not low-rank but in some applications they
exhibit low-rank blocks

σ

τ

A block B represents the interaction
between two subdomains σ and τ .
If they have a small diameter and are far
away their interaction is weak ⇒ rank is low.

The block-admissibility condition formalizes this intuition:
σ × τ is admissible ⇔ max (diam (σ) ,diam (τ)) ≤ η dist (σ, τ)

Geometric

, Produces very regular
subdomains

/ Not always available

Algebraic

/ Produces more irregular
subdomains

, Always available (matrix graph)
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H and BLR matrices

H-matrix BLR matrix
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H and BLR matrices

H-matrix BLR matrix

• Theoretical complexity can be
as low as O (n)

• Complex, hierarchical
structure

• Theoretical complexity?

• Simple structure

Find a good comprise between complexity and performance
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Standard BLR factorization: FSCU

++

• FSCU

(Factor,

Solve,

Compress,

Update)

• Easy to handle numerical pivoting, a critical feature often
lacking in other low-rank solvers

• Potential of this variant was studied in
▶ Amestoy, Ashcraft, Boiteau, Buttari, L’Excellent, and Weisbecker. Improving

Multifrontal Methods by Means of Block Low-Rank Representations, SIAM J. Sci.
Comput., 2015.

…but many open questions remain
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Open questions

(outline)

• What is the theoretical complexity of the BLR factorization?
Does it hold in the algebraic case?

• How can we get actual performance gains out of the
complexity reduction of the BLR factorization?

• Can we design novel variants of the BLR factorization to
improve its complexity and performance? Can we do that
without sacrificing numerical pivoting?

• How well does the distributed-memory BLR factorization scale
and how can we improve its scalability?
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Open questions

(outline)

• What is the theoretical complexity of the BLR factorization?
Does it hold in the algebraic case?

• How can we get actual performance gains out of the
complexity reduction of the BLR factorization?

• Can we design novel variants of the BLR factorization to
improve its complexity and performance? Can we do that
without sacrificing numerical pivoting?

• How well does the distributed-memory BLR factorization scale
and how can we improve its scalability?

12/47 Ph.D. defense, 24 November 2017



Open questions

(outline)

• What is the theoretical complexity of the BLR factorization?
Does it hold in the algebraic case?

• How can we get actual performance gains out of the
complexity reduction of the BLR factorization?

• Can we design novel variants of the BLR factorization to
improve its complexity and performance? Can we do that
without sacrificing numerical pivoting?

• How well does the distributed-memory BLR factorization scale
and how can we improve its scalability?

12/47 Ph.D. defense, 24 November 2017



Open questions

(outline)

• What is the theoretical complexity of the BLR factorization?
Does it hold in the algebraic case?

• How can we get actual performance gains out of the
complexity reduction of the BLR factorization?

• Can we design novel variants of the BLR factorization to
improve its complexity and performance? Can we do that
without sacrificing numerical pivoting?

• How well does the distributed-memory BLR factorization scale
and how can we improve its scalability?

12/47 Ph.D. defense, 24 November 2017



Open questions (outline)

Outline of the rest of the presentation:

1. What is the theoretical Complexity of the BLR factorization?
Does it hold in the algebraic case?

2. How can we get actual Performance gains out of the
complexity reduction of the BLR factorization?

3. Can we design novel Variants of the BLR factorization to
improve its complexity and performance? Can we do that
without sacrificing numerical pivoting?

4. How well does the Distributed-memory BLR factorization scale
and how can we improve its scalability?

12/47 Ph.D. defense, 24 November 2017



Complexity of the
BLR factorization



H-admissibility and sparsity constant

cmin

H-admissibility condition

A partition P is admissible iff

∀σ × τ ∈ P, σ × τ is admissible or min(#σ,#τ) ≤ cmin
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H-admissibility and sparsity constant

cmin

csp is the maximal number of
blocks of the same size on the
same row/column (here, csp = 6)

H-admissibility condition

A partition P is admissible iff

∀σ × τ ∈ P, σ × τ is admissible or min(#σ,#τ) ≤ cmin

The so-called sparsity constant csp is defined by:

csp = max(max
σ

#{τ ;σ × τ ∈ P},max
τ

#{σ;σ × τ ∈ P})

14/47 Ph.D. defense, 24 November 2017



H vs. BLR complexity
Dense factorization complexity

Complexity: Cfacto = O
(
c2spr

2
maxm log2m

)
m matrix size
csp sparsity constant
rmax bound on the maximal rank of all blocks

H BLR

csp

O (1)∗ m/b

rmax

small∗∗ b

Cfacto

O
(
r2maxm log2m

)
O

(
m3 log2m

)
∗Grasedyck & Hackbusch, 2003

∗∗Bebendorf & Hackbusch, 2003

BLR: a particular case of H?

Problem: in H formalism, the maximal rank of the blocks of a BLR
matrix is rmax = b (due to the non-admissible blocks)
Solution: bound the rank of the admissible blocks only, and make
sure the non-admissible blocks are in small number
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BLR admissibility condition

BLR-admissibility condition of a partition P

P is admissible ⇔
{

#{σ, σ × τ ∈ P is not admissible} ≤ q
#{τ, σ × τ ∈ P is not admissible} ≤ q

Non-Admissible Admissible

Main result
For any matrix, we can build an admissible P for q = O (1), s.t. the
maximal rank of the admissible blocks of A is r = O

(
rHmax

)
▶ Amestoy, Buttari, L’Excellent, and Mary. On the Complexity of the Block Low-Rank

Multifrontal Factorization, SIAM J. Sci. Comput., 2017.
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Algebraic clusterings are admissible

Root separator of a 1283 Poisson problem
clustered with SCOTCH via k-means

▶ Weisbecker. Improving multifrontal solvers by means of algebraic Block Low-Rank
representations, PhD thesis.

The BLR-admissibility condition provides a theoretical justification
of the intuitive choice to use k-means as clustering

17/47 Ph.D. defense, 24 November 2017



Complexity of the BLR factorization

Complexity of the dense BLR factorization

Cfacto = O
(
rm3/b+m2b

)
= O

(
r1/2m5/2

) (
for b = O

(√
rm

))

Complexity of the sparse multifrontal BLR factorization

In the 3D case (similar analysis possible for 2D):

operations (OPC) factor size (NNZ)

FR O
(
n2
)

O
(
n4/3

)
BLR O

(
n5/3r1/2

)
O
(
nmax

(
r1/2, logn

))
• Asymptotic complexity reduction…
• …but still quite far from the O (n) H-complexity

18/47 Ph.D. defense, 24 November 2017



Experimental Setting: Matrices

1. Poisson: N3 grid with a 7-point stencil with u = 1 on the
boundary ∂Ω

∆u = f

2. Helmholtz: N3 grid with a 27-point stencil, ω is the angular
frequency, v(x) is the seismic velocity field, and u(x, ω) is the
time-harmonic wavefield solution to the forcing term s(x, ω).(

−∆− ω2

v(x)2

)
u(x, ω) = s(x, ω)

ω is fixed and equal to 4Hz.

19/47 Ph.D. defense, 24 November 2017



Experimental MF flop complexity: Poisson (ε = 10−10)

Nested Dissection
ordering (geometric)

Mesh size N

64 96 128 160 192 224256 320

F
lo

p
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o
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n
t
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-t: 5n2:02

BLR (FSCU)
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METIS ordering
(purely algebraic)
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• good agreement with theoretical complexity

• METIS algebraic complexity remains close to geometric ND
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Experimental MF flop complexity: Helmholtz (ε = 10−4)

Nested Dissection
ordering (geometric)

Mesh size N
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METIS ordering
(purely algebraic)
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• good agreement with theoretical complexity, under the strong
assumption r = O (N)

• METIS algebraic complexity remains close to geometric ND
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Experimental MF complexity: factor size

NNZ
(Poisson)

Mesh size N

64 96 128 160 192 224256 320

F
a
c
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• good agreement with theoretical complexity
• METIS algebraic complexity remains close to geometric ND
(not shown)
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Performance of the
BLR factorization



Shared-memory experimental setting

application matrix arith. fact. n nnz flops factor size

seismic
imaging

(SEISCOPE)

5Hz c LU 2.9M 70M 69.5 TF 61.4 GB
7Hz c LU 7.2M 177M 471.1 TF 219.6 GB
10Hz c LU 17.2M 446M 2.7 PF 728.1 GB

electromag.
modeling
(EMGS)

H3 z LDLT 2.9M 37M 57.9 TF 77.5 GB
H17 z LDLT 17.4M 226M 2.2 PF 891.1 GB
S3 z LDLT 3.3M 43M 78.0 TF 94.6 GB
S21 z LDLT 20.6M 266M 3.2 PF 1.1 TB

structural
mechanics

(EDF)

p8d d LDLT 1.9M 81M 101.0 TF 52.6 GB
p8ar d LDLT 3.9M 159M 377.5 TF 129.8 GB
p8cr d LDLT 7.9M 321M 1.6 PF 341.1 GB
p9ar d LDLT 5.4M 209M 23.6 TF 40.5 GB

Experiments were performed on brunch (LIP-ENS Lyon):
• Four Intel(r) 24-cores Broadwell @ 2.2 GHz
• Peak per core is 35.2 GF/s
• Total memory is 1.5 TB

24/47 Ph.D. defense, 24 November 2017



Shared-memory performance analysis (matrix S3)

FR BLR
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Compress
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(24 threads)
1.7 gain

7.7 gain in flops only translated to a 1.7 gain in time: why?
• the higher relative weight of the FR parts (Factor+Solve and LAI
parts) limits the global gain

• the Update and Compress steps have a lower speed because
of their low granularity and memory-boundedness

25/47 Ph.D. defense, 24 November 2017



Exploiting tree-based multithreading in MF solvers

thr0-3 thr0-3 thr0-3 thr0-3

Node
parallelism

L0 layer

thr0-3 thr0-3

thr0-3

• Node parallelism approach based on OpenMP loops

• Node+tree parallelism approach based on Sid-Lakhdar’s PhD
▶ L’Excellent and Sid-Lakhdar. A study of shared-memory parallelism in a

multifrontal solver, Parallel Computing.

• In FR, top of the tree is dominant ⇒ tree MT brings little gain
• In BLR, bottom of the tree compresses less, becomes important

⇒ 1.7 gain becomes 1.9 thanks to tree-based multithreading
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Right-looking Vs. Left-looking analysis (24 threads)

FR time BLR time
RL LL RL LL

Update 338 336 110 67
Total 424 421 221 175

read once

written at each step

RL factorization

read at each step

written once

LL factorization

⇒ Lower volume of memory transfers in LL (more critical in MT)

Update is now less memory-bound: 1.9 gain becomes 2.4 in LL
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Variants of the
BLR factorization



LUAR variant: accumulation and recompression

+

• FSCU (Factor, Solve, Compress, Update)
• FSCU+LUAR

◦ Better granularity in Update operations
◦ Potential recompression
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Performance of Outer Product with LUA(R) (24 threads)

Outer Product benchmark

Size of Outer Product
0 20 40 60 80 100

G
flo

ps
/s

0

10

20

30

40

50

b=256
b=512

LL

LUA LUAR∗

average size of Outer Product 16.5

61.0 32.8

flops (×1012)
Outer Product 3.8

3.8 1.6

Total 10.2

10.2 8.1

time (s)
Outer Product 21

14 6

Total 175

167 160
∗ All metrics include the Recompression overhead

Higher granularity and lower flops in Update:
⇒ 2.4 gain becomes 2.6
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FCSU variant: compress before solve

• FSCU (Factor, Solve, Compress, Update)
• FSCU+LUAR
• FCSU(+LUAR)

◦ Restricted pivoting
◦ Low-rank Solve ⇒ flop reduction

On matrix S3,
2.6 gain becomes 3.7

flops (TF) time (s) residual

FSCU 8.2 160 1.5e-09
FCSU 4.0 111 2.7e-09
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Variants improve asymptotic complexity

We have theoretically proven that:

FSCU → FSCU+LUAR → FCSU+LUAR
dense O

(
m5/2r1/2

)
→ O

(
m7/3r2/3

)
→ O

(
m2r

)
sparse (3D) O

(
n5/3r1/2

)
→ O

(
n14/9r2/3

)
→ O

(
n4/3r

)
▶ Amestoy, Buttari, L’Excellent, and Mary. On the Complexity of the Block Low-Rank

Multifrontal Factorization, SIAM J. Sci. Comput., 2017.
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Multicore performance results (24 threads)

5Hz 7Hz 10Hz E3 E4 S3 S4 p8d p8ar p8cr

N
or

m
al

iz
ed

 ti
m

e 
(F

R
=

1)

0

0.2

0.4

0.6

0.8

1
FR BLR

BLR+

• “BLR”: FSCU, right-looking, node only multithreading
• “BLR+”: FCSU+LUAR, left-looking, node+tree multithreading

▶ Amestoy, Buttari, L’Excellent, and Mary. Performance and Scalability of the Block
Low-Rank Multifrontal Factorization on Multicore Architectures, submitted to ACM
Trans. Math. Soft., 2017.33/47 Ph.D. defense, 24 November 2017



The problem with FCSU

• FSCU (Factor, Solve, Compress, Update)
• FSCU+LUAR
• FCSU(+LUAR)

◦ Restricted pivoting

⇒ not acceptable in many applications

◦ Low-rank Solve ⇒ flop reduction
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Compress before Solve + pivoting: CFSU variant
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Distributed-memory
BLR factorization



Strong scalability analysis (matrix 10Hz)

Number of MPIs x Number of cores
30x10 45x10 60x10 75x10 90x10

T
im

e 
(s

)

250
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1000

2000
FR
BLR Experiments performed on

the eos supercomputer
(credits: CALMIP):
• Two Intel(r) 10-cores Ivy Bridge

@ 2.8 GHz
• Peak per core is 22.4 GF/s
• 64 GB memory per node
• Infiniband FDR interconnect

How to improve the scalability of the BLR factorization?

• Load imbalance (ratio between most and less loaded
processes) increases from 1.3 (FR) to 2.6 (BLR)
⇒ we devised some heuristics showing promising gains

• Flops reduced by 12.8 but volume of communications only by
2.2 ⇒ higher relative weight of communications
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Type of messages
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CB messages

• Volume of LUmessages is reduced by compressing the factors
, Reduces operation count, communications, and memory consumption

• Volume of CB messages can be reduced by compressing the CB
, Reduces communications and memory consumption/ Increases operation count unless assembly is done in LR
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Communication analysis
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Results on very large problems (1/2)

Performance impact of the CB compression:
illustration on very large problems from SEISCOPE

(Helmholtz equation, unsymmetric complex):

matrix 10Hz 15Hz 20Hz
order 17 M 58 M 130 M
cores 900 Ivy Bridge 900 Ivy Bridge 2,400 Haswell
computer eos (CALMIP) eos (CALMIP) occigen (CINES)

factor flops (FR) 2.6 PF 29.6 PF 150.0 PF
⇒ BLR (CBFR) 0.1 PF (5.3%) 1.0 PF (3.3%) 3.6 PF (2.4%)
⇒ BLR (CBLR) 0.2 PF (6.1%) 1.1 PF (3.7%) 3.9 PF (2.6%)

factor time (FR) 601 5,206 n/a
⇒ BLR (CBFR) 123 (4.9) 838 (6.2) 1,665
⇒ BLR (CBLR) 213 (2.8) 856 (6.1) 2,641

CBLR time impact +73% +2% +58%

comm. volume (FR) 5.3 TB 29.6 TB n/a
comm. volume (CBFR) 1.7 TB (3.2) 13.3 TB ( 2.2) 79.8 TB
comm. volume (CBLR) 0.6 TB (9.1) 1.2 TB (23.2) 8.6 TB

⇒ CB compression becomes increasingly critical?
40/47 Ph.D. defense, 24 November 2017
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Results on very large problems (2/2)
Memory consumption on matrix 15Hz: factors + active memory

(CB + active front)

1 processor

4.6 TB

BLR CBFR

1.2 TB

BLR CBLR

1.0 TB

4.8×

90 processors

91 GB

BLR CBFR

66 GB

BLR CBLR

53 GB

1.7×

• Factors compression (19% of FR) leads to important gains, but
the BLR solver inherits the poor scalability of the active memory

• CB compression (7% of FR) slightly attenuates this issue
• Storage for the active front becomes critical

41/47 Ph.D. defense, 24 November 2017
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Conclusion



Summary of the work presented in this talk

Asymptotic complexity reduction (Chap. 4)

Theoretical proof of the asymptotic complexity reduction:
O (n logn) memory and O

(
n5/3

)
operations for standard

BLR variant

Efficient and scalable algorithms (Chap. 5 and 6)

Efficient and scalable BLR factorization algorithms for
shared- and distributed-memory systems, to achieve
actual performance gains

Novel variants (Chap. 2)

Novel variants to improve complexity (down to O
(
n4/3

)
operations) and performance of the BLR factorization,
without sacrificing numerical pivoting
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Summary of the work not presented in this talk

Recompression strategies (Chap. 3)

Analysis and comparison of several strategies to add and
recompress low-rank updates, showing there is a trade-off
between achieved rank and recompression overhead (with
asymptotic difference between strategies)

Applicative case-studies (Chap. 7)

Two case-studies from industrial applications (FWI and CSEM)
based on frequency-domain inversion, showing that BLR direct
solver is competitive with iterative or time-domain approaches

Comparison with the HSS solver STRUMPACK (Chap. 8)

Comparison on real-life problems suggests that BLR works best
as an accurate low-rank direct solver, while HSS favors more
aggressive compression to build fast preconditioners
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Main perspectives (Chap. 9)

Analysis and solution phases

The other two phases will become of growing importance:
• Analysis time can represent up to 50% of the BLR factorization
time

• Solution time is dominant for applications with multiple RHS
⇒ how to translate factors size reduction into actual
performance gains?

Improving the memory scalability

• Active front becomes dominant and limits memory scalability:
◦ Switch to fully-structured (matrix-free) implementation?
◦ Panel by panel allocation and compression

• Memory aware mappings: map critical fronts on more
processes to improve memory scalability
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