Block Low-Rank multifrontal solvers: complexity, performance, and scalability

Théo Mary
Université de Toulouse
Ph.D. defense, 24 November 2017

Context

Linear system $A x=b$
Often a keystone in scientific computing applications (discretization of PDEs, step of an optimization method, ...)

Matrix sparsity
A sparse matrix is "any matrix with enough zeros that it pays to take advantage of them" (Wilkinson)

Large-scale systems
Increasingly large numbers of cores available, need to efficiently make use of them

Iterative vs direct methods

Iterative methods

Build sequence x_{k} converging towards x
(). Computational cost: $\mathcal{O}(n)$ operations/iteration and memory
(+) Convergence is application-dependent

Direct methods

Factorize $A=L U$ and solve $L U x=b$
© Numerically reliable
© Computational cost: $\mathcal{O}\left(n^{2}\right)$ operations, $\mathcal{O}\left(n^{4 / 3}\right)$ memory Practical example on a 1000^{3} 27-point Helmholtz problem: 15 ExaFlops and 209 TeraBytes for factors!

Iterative vs direct methods

\square
Build sequence x_{k} converging towards x
Compulalional cost: $O(n)$ operalions/ileration and memory
Convergence is application-dependent

Direct methods

Factorize $A=L U$ and solve $L U x=b$
© Numerically reliable
() Computational cost: $\mathcal{O}\left(n^{2}\right)$ operations, $\mathcal{O}\left(n^{4 / 3}\right)$ memory Practical example on a 1000^{3} 27-point Helmholtz problem: 15 ExaFlops and 209 TeraBytes for factors!

Objective of the thesis:

reduce the cost of sparse direct solvers ...
...while maintaining their numerical reliability

Main contributions

Principle: build approximated factorization $A_{\varepsilon}=L_{\varepsilon} U_{\varepsilon}$ at given accuracy ε

Contribution: design of novel algorithms with two fundamental properties

1st contribution: asymptotic complexity reduction

Theoretical proof and experimental validation that:

- Memory: $\mathcal{O}\left(n^{4 / 3}\right) \rightarrow \mathcal{O}(n \log n)$
- Operations: $\mathcal{O}\left(n^{2}\right) \rightarrow \mathcal{O}\left(n^{5 / 3}\right) \rightarrow \mathcal{O}\left(n^{4 / 3}\right)$

2nd contribution: efficient and scalable algorithms
Designed algorithms to efficiently translate the theoretical complexity reduction into actual performance and memory gains for large-scale computers and applications

Impact on industrial applications

Structural mechanics Matrix of order 8M Required accuracy: 10^{-9}

Seismic imaging Matrix of order 17M Required accuracy: 10^{-3}

Electromagnetism Matrix of order 21M Required accuracy: 10^{-7}

Results on 900 cores:

	factorization time (s)			memory/proc (GB)			
application	MUMPS	BLR	ratio	MUMPS	BLR	gain	
structural	289.3	104.9	2.5	7.9	5.9	25%	
seismic	617.0	123.4	4.9	13.3	10.4	22%	
electromag.	1307.4	233.8	5.3	20.6	14.4	30%	

Introduction

Multifrontal Factorization with Nested Dissection

3D problem complexity
\rightarrow Flops: $\mathcal{O}\left(n^{2}\right)$, mem: $\mathcal{O}\left(n^{4 / 3}\right)$

- George. Nested dissection of a regular finite element mesh, SIAM J. Numer. Anal., 1973.

Low-rank matrices

Take a dense matrix B of size $b \times b$ and compute its SVD $B=X S Y$:

Low-rank matrices

Take a dense matrix B of size $b \times b$ and compute its SVD $B=X S Y$:

$B=X_{1} S_{1} Y_{1}+X_{2} S_{2} Y_{2} \quad$ with $\quad S_{1}(k, k)=\sigma_{k}>\varepsilon, S_{2}(1,1)=\sigma_{k+1} \leq \varepsilon$

Low-rank matrices

Take a dense matrix B of size $b \times b$ and compute its SVD $B=X S Y$:

$B=X_{1} S_{1} Y_{1}+X_{2} S_{2} Y_{2} \quad$ with $\quad S_{1}(k, k)=\sigma_{k}>\varepsilon, S_{2}(1,1)=\sigma_{k+1} \leq \varepsilon$ If $\tilde{B}=X_{1} S_{1} Y_{1}$ then $\|B-\tilde{B}\|_{2}=\left\|X_{2} S_{2} Y_{2}\right\|_{2}=\sigma_{k+1} \leq \varepsilon$

Low-rank matrices

Take a dense matrix B of size $b \times b$ and compute its SVD $B=X S Y$:

$B=X_{1} S_{1} Y_{1}+X_{2} S_{2} Y_{2} \quad$ with $\quad S_{1}(k, k)=\sigma_{k}>\varepsilon, S_{2}(1,1)=\sigma_{k+1} \leq \varepsilon$ If $\tilde{B}=X_{1} S_{1} Y_{1}$ then $\|B-\tilde{B}\|_{2}=\left\|X_{2} S_{2} Y_{2}\right\|_{2}=\sigma_{k+1} \leq \varepsilon$

If the singular values of B decay very fast (e.g. exponentially) then $k \ll b$ even for very small ε (e.g. 10^{-14}) \Rightarrow memory and CPU consumption can be reduced considerably with a controlled loss of accuracy $(\leq \varepsilon)$ if \tilde{B} is used instead of B

Low-rank sub-blocks

Frontal matrices are not low-rank but in some applications they exhibit low-rank blocks

A block B represents the interaction between two subdomains σ and τ. If they have a small diameter and are far away their interaction is weak \Rightarrow rank is low.

The block-admissibility condition formalizes this intuition: $\sigma \times \tau$ is admissible $\Leftrightarrow \max (\operatorname{diam}(\sigma), \operatorname{diam}(\tau)) \leq \eta \operatorname{dist}(\sigma, \tau)$

Low-rank sub-blocks

Frontal matrices are not low-rank but in some applications they exhibit low-rank blocks

> A block B represents the interaction between two subdomains σ and τ. If they have a small diameter and are far away their interaction is weak \Rightarrow rank is low.

The block-admissibility condition formalizes this intuition: $\sigma \times \tau$ is admissible $\Leftrightarrow \max (\operatorname{diam}(\sigma), \operatorname{diam}(\tau)) \leq \eta \operatorname{dist}(\sigma, \tau)$

Low-rank sub-blocks

Frontal matrices are not low-rank but in some applications they exhibit low-rank blocks

> A block B represents the interaction between two subdomains σ and τ. If they have a small diameter and are far away their interaction is weak \Rightarrow rank is low.

The block-admissibility condition formalizes this intuition: $\sigma \times \tau$ is admissible $\Leftrightarrow \max (\operatorname{diam}(\sigma), \operatorname{diam}(\tau)) \leq \eta \operatorname{dist}(\sigma, \tau)$

Low-rank sub-blocks

Frontal matrices are not low-rank but in some applications they exhibit low-rank blocks

> A block B represents the interaction between two subdomains σ and τ. If they have a small diameter and are far away their interaction is weak \Rightarrow rank is low.

The block-admissibility condition formalizes this intuition: $\sigma \times \tau$ is admissible $\Leftrightarrow \max (\operatorname{diam}(\sigma), \operatorname{diam}(\tau)) \leq \eta \operatorname{dist}(\sigma, \tau)$

Low-rank sub-blocks

Frontal matrices are not low-rank but in some applications they exhibit low-rank blocks

> A block B represents the interaction between two subdomains σ and τ. If they have a small diameter and are far away their interaction is weak \Rightarrow rank is low.

The block-admissibility condition formalizes this intuition: $\sigma \times \tau$ is admissible $\Leftrightarrow \max (\operatorname{diam}(\sigma), \operatorname{diam}(\tau)) \leq \eta \operatorname{dist}(\sigma, \tau)$

Low-rank sub-blocks

Frontal matrices are not low-rank but in some applications they exhibit low-rank blocks

> A block B represents the interaction between two subdomains σ and τ. If they have a small diameter and are far away their interaction is weak \Rightarrow rank is low.

The block-admissibility condition formalizes this intuition: $\sigma \times \tau$ is admissible $\Leftrightarrow \max (\operatorname{diam}(\sigma), \operatorname{diam}(\tau)) \leq \eta \operatorname{dist}(\sigma, \tau)$

Low-rank sub-blocks

Frontal matrices are not low-rank but in some applications they exhibit low-rank blocks

> A block B represents the interaction between two subdomains σ and τ. If they have a small diameter and are far away their interaction is weak \Rightarrow rank is low.

The block-admissibility condition formalizes this intuition: $\sigma \times \tau$ is admissible $\Leftrightarrow \max (\operatorname{diam}(\sigma), \operatorname{diam}(\tau)) \leq \eta \operatorname{dist}(\sigma, \tau)$

Low-rank sub-blocks

Frontal matrices are not low-rank but in some applications they exhibit low-rank blocks

> A block B represents the interaction between two subdomains σ and τ. If they have a small diameter and are far away their interaction is weak \Rightarrow rank is low.

The block-admissibility condition formalizes this intuition: $\sigma \times \tau$ is admissible $\Leftrightarrow \max (\operatorname{diam}(\sigma), \operatorname{diam}(\tau)) \leq \eta \operatorname{dist}(\sigma, \tau)$

Geometric
© Produces very regular subdomains
(2) Not always available

Algebraic
© Produces more irregular subdomains
(-) Always available (matrix graph)

\mathcal{H} and BLR matrices

\mathcal{H}-matrix

BLR matrix

\mathcal{H} and BLR matrices

\mathcal{H}-matrix

- Theoretical complexity can be as low as $\mathcal{O}(n)$
- Complex, hierarchical structure

BLR matrix

- Theoretical complexity?
- Simple structure

\mathcal{H} and BLR matrices

\mathcal{H}-matrix

- Theoretical complexity can be as low as $\mathcal{O}(n)$
- Complex, hierarchical structure

BLR matrix

- Theoretical complexity?
- Simple structure

Find a good comprise between complexity and performance

Standard BLR factorization: FSCU

- FSCU

Standard BLR factorization: FSCU

- FSCU (Factor,
- Easy to handle numerical pivoting, a critical feature often lacking in other low-rank solvers

Standard BLR factorization: FSCU

- FSCU (Factor, Solve,
- Easy to handle numerical pivoting, a critical feature often lacking in other low-rank solvers

Standard BLR factorization: FSCU

- FSCU (Factor, Solve, Compress,
- Easy to handle numerical pivoting, a critical feature often lacking in other low-rank solvers

Standard BLR factorization: FSCU

- FSCU (Factor, Solve, Compress, Update)
- Easy to handle numerical pivoting, a critical feature often lacking in other low-rank solvers

Standard BLR factorization: FSCU

- FSCU (Factor, Solve, Compress, Update)
- Easy to handle numerical pivoting, a critical feature often lacking in other low-rank solvers

Standard BLR factorization: FSCU

- FSCU (Factor, Solve, Compress, Update)
- Easy to handle numerical pivoting, a critical feature often lacking in other low-rank solvers

Standard BLR factorization: FSCU

- FSCU (Factor, Solve, Compress, Update)
- Easy to handle numerical pivoting, a critical feature often lacking in other low-rank solvers

Standard BLR factorization: FSCU

- FSCU (Factor, Solve, Compress, Update)
- Easy to handle numerical pivoting, a critical feature often lacking in other low-rank solvers

Standard BLR factorization: FSCU

- FSCU (Factor, Solve, Compress, Update)
- Easy to handle numerical pivoting, a critical feature often lacking in other low-rank solvers

Standard BLR factorization: FSCU

- FSCU (Factor, Solve, Compress, Update)
- Easy to handle numerical pivoting, a critical feature often lacking in other low-rank solvers

Standard BLR factorization: FSCU

- FSCU (Factor, Solve, Compress, Update)
- Easy to handle numerical pivoting, a critical feature often lacking in other low-rank solvers

Standard BLR factorization: FSCU

\square
\square

- FSCU (Factor, Solve, Compress, Update)
- Easy to handle numerical pivoting, a critical feature often lacking in other low-rank solvers

Standard BLR factorization: FSCU

- FSCU (Factor, Solve, Compress, Update)
- Easy to handle numerical pivoting, a critical feature often lacking in other low-rank solvers

Standard BLR factorization: FSCU

- FSCU (Factor, Solve, Compress, Update)
- Easy to handle numerical pivoting, a critical feature often lacking in other low-rank solvers

Standard BLR factorization: FSCU

- FSCU (Factor, Solve, Compress, Update)
- Easy to handle numerical pivoting, a critical feature often lacking in other low-rank solvers

Standard BLR factorization: FSCU

- FSCU (Factor, Solve, Compress, Update)
- Easy to handle numerical pivoting, a critical feature often lacking in other low-rank solvers

Standard BLR factorization: FSCU

- FSCU (Factor, Solve, Compress, Update)
- Easy to handle numerical pivoting, a critical feature often lacking in other low-rank solvers
- Potential of this variant was studied in
- Amestoy, Ashcraft, Boiteau, Buttari, L'Excellent, and Weisbecker. Improving Multifrontal Methods by Means of Block Low-Rank Representations, SIAM J. Sci. Comput., 2015.

Standard BLR factorization: FSCU

- FSCU (Factor, Solve, Compress, Update)
- Easy to handle numerical pivoting, a critical feature often lacking in other low-rank solvers
- Potential of this variant was studied in
- Amestoy, Ashcraft, Boiteau, Buttari, L'Excellent, and Weisbecker. Improving Multifrontal Methods by Means of Block Low-Rank Representations, SIAM J. Sci. Comput., 2015.
...but many open questions remain

Open questions

- What is the theoretical complexity of the BLR factorization? Does it hold in the algebraic case?
- How can we get actual performance gains out of the complexity reduction of the BLR factorization?
- Can we design novel variants of the BLR factorization to improve its complexity and performance? Can we do that without sacrificing numerical pivoting?
- How well does the distributed-memory BLR factorization scale and how can we improve its scalability?
- What is the theoretical complexity of the BLR factorization? Does it hold in the algebraic case?
- How can we get actual performance gains out of the complexity reduction of the BLR factorization?
- Can we design novel variants of the BLR factorization to improve its complexity and performance? Can we do that without sacrificing numerical pivoting?
- How well does the distributed-memory BLR factorization scale and how can we improve its scalability?

Open questions

- What is the theoretical complexity of the BLR factorization? Does it hold in the algebraic case?
- How can we get actual performance gains out of the complexity reduction of the BLR factorization?
- Can we design novel variants of the BLR factorization to improve its complexity and performance? Can we do that without sacrificing numerical pivoting?
- How well does the distributed-memory BLR factorization scale and how can we improve its scalability?

Open questions

- What is the theoretical complexity of the BLR factorization? Does it hold in the algebraic case?
- How can we get actual performance gains out of the complexity reduction of the BLR factorization?
- Can we design novel variants of the BLR factorization to improve its complexity and performance? Can we do that without sacrificing numerical pivoting?
- How well does the distributed-memory BLR factorization scale and how can we improve its scalability?

Open questions (outline)

Outline of the rest of the presentation:

1. What is the theoretical Complexity of the BLR factorization Does it hold in the algebraic case?
2. How can we get actual Performance gains out of the
complexity reduction of the BLR factorization?
3. Can we design novel Variants of the BLR factorization without sacrificing numerical pivoting?
4. How well does the Distributed-memory BLR factorization
and how can we improve its scalability?

Complexity of the BLR factorization

\mathcal{H}-admissibility and sparsity constant

\mathcal{H}-admissibility condition

A partition \mathcal{P} is admissible iff
$\forall \sigma \times \tau \in \mathcal{P}, \quad \sigma \times \tau$ is admissible or $\min (\# \sigma, \# \tau) \leq c_{\text {min }}$

\mathcal{H}-admissibility and sparsity constant

$c_{s p}$ is the maximal number of blocks of the same size on the same row/column (here, $c_{s p}=6$)

\mathcal{H}-admissibility condition

A partition \mathcal{P} is admissible iff
$\forall \sigma \times \tau \in \mathcal{P}, \quad \sigma \times \tau$ is admissible or $\min (\# \sigma, \# \tau) \leq c_{\text {min }}$
The so-called sparsity constant $c_{s p}$ is defined by:

$$
c_{s p}=\max \left(\max _{\sigma} \#\{\tau ; \sigma \times \tau \in P\}, \max _{\tau} \#\{\sigma ; \sigma \times \tau \in P\}\right)
$$

\mathcal{H} vs. BLR complexity

Dense factorization complexity
Complexity: $\mathcal{C}_{\text {facto }}=\mathcal{O}\left(c_{s p}^{2} r_{\text {max }}^{2} m \log ^{2} m\right)$
m matrix size
$c_{s p} \quad$ sparsity constant
$r_{\max }$ bound on the maximal rank of all blocks

\mathcal{H} vs. BLR complexity

Dense factorization complexity
Complexity: $\mathcal{C}_{\text {facto }}=\mathcal{O}\left(c_{s p}^{2} r_{\text {max }}^{2} m \log ^{2} m\right)$
m matrix size
$c_{s p} \quad$ sparsity constant
$r_{\text {max }}$ bound on the maximal rank of all blocks

	\mathcal{H}	BLR
$c_{\text {sp }}$		
$r_{\text {max }}$		
$\mathcal{C}_{\text {facto }}$		

\mathcal{H} vs. BLR complexity

Dense factorization complexity
Complexity: $\mathcal{C}_{\text {facto }}=\mathcal{O}\left(c_{s p}^{2} r_{\text {max }}^{2} m \log ^{2} m\right)$
m matrix size
$c_{s p} \quad$ sparsity constant
$r_{\text {max }}$ bound on the maximal rank of all blocks

	\mathcal{H}	BLR
$c_{s p}$	$\mathcal{O}(1)^{*}$	
$r_{\text {max }}$		
$\mathcal{C}_{\text {facto }}$		

\mathcal{H} vs. BLR complexity

Dense factorization complexity
Complexity: $\mathcal{C}_{\text {facto }}=\mathcal{O}\left(c_{s p}^{2} r_{\text {max }}^{2} m \log ^{2} m\right)$
m matrix size
$c_{s p} \quad$ sparsity constant
$r_{\max }$ bound on the maximal rank of all blocks

	\mathcal{H}	BLR
$C_{\text {sp }}$	$\mathcal{O}(1)^{*}$	
$r_{\text {max }}$ $\mathcal{C}_{\text {facto }}$	small**	

\mathcal{H} vs. BLR complexity

Dense factorization complexity
Complexity: $\mathcal{C}_{\text {facto }}=\mathcal{O}\left(c_{s p}^{2} r_{\text {max }}^{2} m \log ^{2} m\right)$
m matrix size
$c_{s p} \quad$ sparsity constant
$r_{\max }$ bound on the maximal rank of all blocks

	\mathcal{H}	BLR
$c_{\text {sp }}$	$\mathcal{O}(1)^{*}$	
$r_{\text {max }}$	small**	
$\mathcal{C}_{\text {facto }}$	$\mathcal{O}\left(r_{\text {max }}^{2} m \log ^{2} m\right)$	
${ }^{*}$ Grasedyck \& Hackbusch, 2003		
	${ }^{* *}$ Bebendorf \& Hackbusch, 2003	

\mathcal{H} vs. BLR complexity

Dense factorization complexity
Complexity: $\mathcal{C}_{\text {facto }}=\mathcal{O}\left(c_{s p}^{2} r_{\text {max }}^{2} m \log ^{2} m\right)$
m matrix size
$c_{s p} \quad$ sparsity constant
$r_{\max }$ bound on the maximal rank of all blocks

	\mathcal{H}	BLR
$c_{\text {sp }}$	$\mathcal{O}(1)^{*}$	$\mathrm{~m} / \mathrm{b}$
$r_{\text {max }}$	small**	
$\mathcal{C}_{\text {facto }}$	$\mathcal{O}\left(r_{\text {max }}^{2} m \log ^{2} \mathrm{~m}\right)$	
${ }^{*}$ Grasedyck \& Hackbusch, 2003		
	${ }^{* *}$ Bebendorf \& Hackbusch, 2003	

\mathcal{H} vs. BLR complexity

Dense factorization complexity
Complexity: $\mathcal{C}_{\text {facto }}=\mathcal{O}\left(c_{s p}^{2} r_{\text {max }}^{2} m \log ^{2} m\right)$
m matrix size
$c_{s p} \quad$ sparsity constant
$r_{\max }$ bound on the maximal rank of all blocks

	\mathcal{H}	BLR
$c_{\text {sp }}$	$\mathcal{O}(1)^{*}$	$\mathrm{~m} / \mathrm{b}$
$r_{\text {max }}$	small**	b
$\mathcal{C}_{\text {facto }}$	$\mathcal{O}\left(r_{\text {max }}^{2} m \log ^{2} \mathrm{~m}\right)$	
${ }^{*}$ Grasedyck \& Hackbusch, 2003		
	${ }^{* *}$ Bebendorf \& Hackbusch, 2003	

\mathcal{H} vs. BLR complexity

Dense factorization complexity
Complexity: $\mathcal{C}_{\text {facto }}=\mathcal{O}\left(c_{s p}^{2} r_{\text {max }}^{2} m \log ^{2} m\right)$
m matrix size
$c_{s p} \quad$ sparsity constant
$r_{\max }$ bound on the maximal rank of all blocks

	\mathcal{H}	BLR
$c_{\text {sp }}$	$\mathcal{O}(1)^{*}$	$\mathrm{~m} / \mathrm{b}$
$r_{\text {max }}$	small	b
$\mathcal{C}_{\text {facto }}$	$\mathcal{O}\left(r_{\text {max }}^{2} m \log ^{2} \mathrm{~m}\right)$	$\mathcal{O}\left(\mathrm{m}^{3} \log ^{2} \mathrm{~m}\right)$
${ }^{*}$ Grasedyck \& Hackbusch, 2003		
	${ }^{* *}$ Bebendorf \& Hackbusch, 2003	

\mathcal{H} vs. BLR complexity

Dense factorization complexity

Complexity: $\mathcal{C}_{\text {facto }}=\mathcal{O}\left(c_{s p}^{2} r_{\text {max }}^{2} m \log ^{2} m\right)$
m matrix size
$C_{s p} \quad$ sparsity constant
$r_{\max }$ bound on the maximal rank of all blocks

	\mathcal{H}	BLR
$c_{\text {sp }}$	$\mathcal{O}(1)^{*}$	$\mathrm{~m} / \mathrm{b}$
$r_{\text {max }}$	small $^{* *}$	b
$\mathcal{C}_{\text {facto }}$	$\mathcal{O}\left(r_{\text {max }}^{2} m\right.$ log $\left.^{2} m\right)$	$\mathcal{O}\left(\mathrm{m}^{3} \mathrm{log}^{2} \mathrm{~m}\right)$
${ }^{*}$ Grasedyck \& Hackbusch, 2003		
	${ }^{* *}$ Bebendorf \& Hackbusch, 2003	

BLR: a particular case of \mathcal{H} ?
Problem: in \mathcal{H} formalism, the maximal rank of the blocks of a BLR matrix is $r_{\max }=b$ (due to the non-admissible blocks) Solution: bound the rank of the admissible blocks only, and make sure the non-admissible blocks are in small number

BLR admissibility condition

BLR-admissibility condition of a partition \mathcal{P}

\mathcal{P} is admissible $\Leftrightarrow \begin{cases}\#\{\sigma, & \sigma \times \tau \in \mathcal{P} \text { is not admissible }\} \leq q \\ \#\{\tau, & \sigma \times \tau \in \mathcal{P} \text { is not admissible }\} \leq q\end{cases}$

Non-Admissible

Admissible

BLR-admissibility condition of a partition \mathcal{P}

$$
\mathcal{P} \text { is admissible } \Leftrightarrow \begin{cases}\#\{\sigma, & \sigma \times \tau \in \mathcal{P} \text { is not admissible }\} \leq \mathrm{q} \\ \#\{\tau, & \sigma \times \tau \in \mathcal{P} \text { is not admissible }\} \leq \mathrm{q}\end{cases}
$$

Non-Admissible

Admissible

Main result

For any matrix, we can build an admissible \mathcal{P} for $q=\mathcal{O}(1)$, s.t. the maximal rank of the admissible blocks of A is $r=\mathcal{O}\left(r_{\max }^{\mathcal{H}}\right)$

- Amestoy, Buttari, L'Excellent, and Mary. On the Complexity of the Block Low-Rank Multifrontal Factorization, SIAM J. Sci. Comput., 2017.

Algebraic clusterings are admissible

Root separator of a 128^{3} Poisson problem clustered with SCOTCH via k-means

- Weisbecker. Improving multifrontal solvers by means of algebraic Block Low-Rank representations, PhD thesis.

The BLR-admissibility condition provides a theoretical justification of the intuitive choice to use k-means as clustering

Complexity of the BLR factorization

Complexity of the BLR factorization

$$
\mathcal{C}_{\text {facto }}=\mathcal{O}\left(r m^{3} / b+m^{2} b\right)=\mathcal{O}\left(r^{1 / 2} m^{5 / 2}\right) \quad(\text { for } b=\mathcal{O}(\sqrt{r m}))
$$

Complexity of the

BLR factorization

In the 3D case (similar analysis possible for 2D):

	operations (OPC)	factor size (NNZ)
FR	$\mathcal{O}\left(n^{2}\right)$	$\mathcal{O}\left(n^{4 / 3}\right)$
BLR	$\mathcal{O}\left(n^{5 / 3} r^{1 / 2}\right)$	$\mathcal{O}\left(n \max \left(r^{1 / 2}, \log n\right)\right)$

- Asymptotic complexity reduction...
- ...but still quite far from the $\mathcal{O}(n) \mathcal{H}$-complexity

1. Poisson: N^{3} grid with a 7 -point stencil with $u=1$ on the boundary $\partial \Omega$

$$
\Delta u=f
$$

2. Helmholtz: N^{3} grid with a 27-point stencil, ω is the angular frequency, $v(x)$ is the seismic velocity field, and $u(x, \omega)$ is the time-harmonic wavefield solution to the forcing term $s(x, \omega)$.

$$
\left(-\Delta-\frac{\omega^{2}}{v(x)^{2}}\right) u(x, \omega)=s(x, \omega)
$$

ω is fixed and equal to 4 Hz .

Experimental MF flop complexity: Poisson $\left(\varepsilon=10^{-10}\right)$

Nested Dissection
 ordering (geometric)

- good agreement with theoretical complexity

Experimental MF flop complexity: Poisson $\left(\varepsilon=10^{-10}\right)$

Nested Dissection ordering (geometric)

METIS ordering (purely algebraic)

- good agreement with theoretical complexity
- METIS algebraic complexity remains close to geometric ND

Experimental MF flop complexity: Helmholtz $\left(\varepsilon=10^{-4}\right)$

Nested Dissection ordering (geometric)

METIS ordering (purely algebraic)

- good agreement with theoretical complexity, under the strong assumption $r=\mathcal{O}(N)$
- METIS algebraic complexity remains close to geometric ND

Experimental MF complexity: factor size

NNZ
(Poisson)

NNZ

(Helmholtz)

- good agreement with theoretical complexity
- METIS algebraic complexity remains close to geometric ND (not shown)

Performance of the BLR factorization

Shared-memory experimental setting

application	matrix	arith.	fact.	n	nnz	flops	factor size
seismic	5 Hz	c	LU	2.9 M	70M	69.5 TF	61.4 GB
imaging	7 Hz	c	LU	7.2 M	177M	471.1 TF	219.6 GB
(SEISCOPE)	10 Hz	c	LU	17.2M	446M	2.7 PF	728.1 GB
electromag. modeling (EMGS)	H3	z	$L D L^{\top}$	2.9 M	37M	57.9 TF	77.5 GB
	H17	z	$L D L^{\top}$	17.4 M	226M	2.2 PF	891.1 GB
	S3	z	$L D L^{\top}$	3.3 M	43M	78.0 TF	94.6 GB
	S21	z	$L D L^{\top}$	20.6M	266M	3.2 PF	1.1 TB
structural mechanics (EDF)	p8d	d	$L D L^{\top}$	1.9 M	81M	101.0 TF	52.6 GB
	p8ar	d	$L D L^{\top}$	3.9 M	159M	377.5 TF	129.8 GB
	p8cr	d	$L D L^{\top}$	7.9 M	321M	1.6 PF	341.1 GB
	p9ar	d	$L D L^{\top}$	5.4 M	209M	23.6 TF	40.5 GB

Experiments were performed on brunch (LIP-ENS Lyon):

- Four Intel(r) 24-cores Broadwell @ 2.2 GHz
- Peak per core is 35.2 GF/s
- Total memory is 1.5 TB

Shared-memory performance analysis (matrix S3)

Normalized Flops

7.7 gain

Normalized Time (1 thread)
3.7 gain

Normalized Time (24 threads)
1.7 gain
7.7 gain in flops only translated to a 1.7 gain in time: why?

- the higher relative weight of the FR parts (Factor+Solve and LAI parts) limits the global gain
- the Update and Compress steps have a lower speed because of their low granularity and memory-boundedness

Exploiting tree-based multithreading in MF solvers

- Node parallelism approach based on OpenMP loops

Exploiting tree-based multithreading in MF solvers

- Node parallelism approach based on OpenMP loops

Exploiting tree-based multithreading in MF solvers

- Node parallelism approach based on OpenMP loops
- Node+tree parallelism approach based on Sid-Lakhdar's PhD
- L'Excellent and Sid-Lakhdar. A study of shared-memory parallelism in a multifrontal solver, Parallel Computing.

Exploiting tree-based multithreading in MF solvers

- Node parallelism approach based on OpenMP loops
- Node+tree parallelism approach based on Sid-Lakhdar's PhD
- L'Excellent and Sid-Lakhdar. A study of shared-memory parallelism in a multifrontal solver, Parallel Computing.
- In FR, top of the tree is dominant \Rightarrow tree MT brings little gain

Exploiting tree-based multithreading in MF solvers

- Node parallelism approach based on OpenMP loops
- Node+tree parallelism approach based on Sid-Lakhdar's PhD
- L'Excellent and Sid-Lakhdar. A study of shared-memory parallelism in a multifrontal solver, Parallel Computing.
- In FR, top of the tree is dominant \Rightarrow tree MT brings little gain
- In BLR, bottom of the tree compresses less, becomes important

- Node parallelism approach based on OpenMP loops
- Node+tree parallelism approach based on Sid-Lakhdar's PhD
- L'Excellent and Sid-Lakhdar. A study of shared-memory parallelism in a multifrontal solver, Parallel Computing.
- In FR, top of the tree is dominant \Rightarrow tree MT brings little gain
- In BLR, bottom of the tree compresses less, becomes important
$\Rightarrow 1.7$ gain becomes 1.9 thanks to tree-based multithreading

Right-looking Vs. Left-looking analysis (24 threads)

	FR time		BLR time	
	$R L$	$L L$	$R L$	$L L$
Update	338	336	110	67
Total	424	421	221	175

Right-looking Vs. Left-looking analysis (24 threads)

	FR time		BLR time	
	RL	$L L$	RL	LL
Update	338	336	110	67
Total	424	421	221	175

RL factorization

LL factorization

Right-looking Vs. Left-looking analysis (24 threads)

	FR time		BLR time	
	RL	$L L$	$R L$	$L L$
Update	338	336	110	67
Total	424	421	221	175

RL factorization

LL factorization
\Rightarrow Lower volume of memory transfers in LL (more critical in MT)

Right-looking Vs. Left-looking analysis (24 threads)

	FR time		BLR time	
	RL	$L L$	$R L$	$L L$
Update	338	336	110	67
Total	424	421	221	175

RL factorization

LL factorization
\Rightarrow Lower volume of memory transfers in LL (more critical in MT) Update is now less memory-bound: 1.9 gain becomes 2.4 in LL

Variants of the BLR factorization

LUAR variant: accumulation and recompression

- FSCU (Factor, Solve, Compress, Update)
- FSCU+LUAR

LUAR variant: accumulation and recompression

- FSCU (Factor, Solve, Compress, Update)
- FSCU+LUAR
- Better granularity in Update operations

LUAR variant: accumulation and recompression

- FSCU (Factor, Solve, Compress, Update)
- FSCU+LUAR
- Better granularity in Update operations
- Potential recompression

LUAR variant: accumulation and recompression

- FSCU (Factor, Solve, Compress, Update)
- FSCU+LUAR
- Better granularity in Update operations
- Potential recompression

LUAR variant: accumulation and recompression

- FSCU (Factor, Solve, Compress, Update)
- FSCU+LUAR
- Better granularity in Update operations
- Potential recompression

Outer Product benchmark

Outer Product benchmark

LL LUA

average size of Outer Product	16.5	61.0	
	Outer Product	3.8	3.8
	Total	10.2	10.2
time (s)	Outer Product	21	14
	Total	175	167

Outer Product benchmark

		LL	LUA	LUAR*
average size of Outer Product	16.5	61.0	32.8	
	Outer Product	3.8	3.8	1.6
	Total	10.2	10.2	8.1
time (s)	Outer Product	21	14	6
	Total	175	167	160

* All metrics include the Recompression overhead

Outer Product benchmark

		LL	LUA	LUAR *
average size of Outer Product	16.5	61.0	32.8	
	Outer Product	3.8	3.8	1.6
	Total	10.2	10.2	8.1
time (s)	Outer Product	21	14	6
	Total	175	167	160

* All metrics include the Recompression overhead

Higher granularity and lower flops in Update:
$\Rightarrow 2.4$ gain becomes 2.6

FCSU variant: compress before solve

- FSCU (Factor, Solve, Compress, Update)
- FSCU+LUAR
- $\operatorname{FCSU}(+L \cup A R)$

FCSU variant: compress before solve

- FSCU (Factor, Solve, Compress, Update)
- FSCU+LUAR
- FCSU(+LUAR)
- Restricted pivoting

FCSU variant: compress before solve

- FSCU (Factor, Solve, Compress, Update)
- FSCU+LUAR
- $\operatorname{FCSU}(+L U A R)$
- Restricted pivoting

- FSCU (Factor, Solve, Compress, Update)
- FSCU+LUAR
- $\operatorname{FCSU}(+L U A R)$
- Restricted pivoting
- Low-rank Solve \Rightarrow flop reduction

- FSCU (Factor, Solve, Compress, Update)
- FSCU+LUAR
- $\operatorname{FCSU}(+L U A R)$
- Restricted pivoting
- Low-rank Solve \Rightarrow flop reduction

On matrix S3,
2.6 gain becomes 3.7

Variants improve asymptotic complexity

We have theoretically proven that:

	FSCU	\rightarrow FSCU+LUAR	\rightarrow FCSU+LUAR
dense	$\mathcal{O}\left(m^{5 / 2} r^{1 / 2}\right)$	$\rightarrow \mathcal{O}\left(m^{7 / 3} r^{2 / 3}\right)$	$\rightarrow \mathcal{O}\left(m^{2} r\right)$
sparse (3D)	$\mathcal{O}\left(n^{5 / 3} r^{1 / 2}\right)$	$\rightarrow \mathcal{O}\left(n^{14 / 9} r^{2 / 3}\right)$	$\rightarrow \mathcal{O}\left(n^{4 / 3} r\right)$

- Amestoy, Buttari, L'Excellent, and Mary. On the Complexity of the Block Low-Rank Multifrontal Factorization, SIAM J. Sci. Comput., 2017.

Variants improve asymptotic complexity

We have theoretically proven that:

	FSCU	\rightarrow FSCU+LUAR	\rightarrow FCSU+LUAR
dense	$\mathcal{O}\left(m^{5 / 2} r^{1 / 2}\right)$	$\rightarrow \mathcal{O}\left(m^{7 / 3} r^{2 / 3}\right)$	$\rightarrow \mathcal{O}\left(m^{2} r\right)$
sparse (3D)	$\mathcal{O}\left(n^{5 / 3} r^{1 / 2}\right)$	$\rightarrow \mathcal{O}\left(n^{14 / 9} r^{2 / 3}\right)$	$\rightarrow \mathcal{O}\left(n^{4 / 3} r\right)$

- Amestoy, Buttari, L'Excellent, and Mary. On the Complexity of the Block Low-Rank Multifrontal Factorization, SIAM J. Sci. Comput., 2017.

Ph.D. defense, 24 November 2017

Multicore performance results (24 threads)

- "BLR": FSCU, right-looking, node only multithreading
- "BLR+": FCSU+LUAR, left-looking, node+tree multithreading
- Amestoy, Buttari, L'Excellent, and Mary. Performance and Scalability of the Block Low-Rank Multifrontal Factorization on Multicore Architectures, submitted to ACM

The problem with FCSU

- FSCU (Factor, Solve, Compress, Update)
- FSCU+LUAR
- $\operatorname{FCSU}(+L U A R)$
- Restricted pivoting
- Low-rank Solve \Rightarrow flop reduction

The problem with FCSU

- FSCU (Factor, Solve, Compress, Update)
- FSCU+LUAR
- $\operatorname{FCSU}(+L U A R)$
- Restricted pivoting \Rightarrow not acceptable in many applications
- Low-rank Solve \Rightarrow flop reduction

Compress before Solve + pivoting: CFSU variant

| FSCU | FCSU | CFSU |
| :---: | :---: | :---: | :---: |
| Standard pivoting | Restricted pivoting | Standard pivoting |
| Compress after Solve | C) Compress before Solve | Compress before Solve |

Compress before Solve + pivoting: CFSU variant

FSCU
() Standard pivoting
(ㄷ) Compress after Solve

FCSU
(2) Restricted pivoting
() Compress before Solve

CFSU
(-) Standard pivoting
(:) Compress before Solve

How to assess the quality of pivot k ? We need to estimate $\left\|\widetilde{B}_{:, k}\right\|_{\text {max }}$: $\left\|\widetilde{B}_{:, k}\right\|_{\max } \leq\left\|\widetilde{B}_{:, k}\right\|_{2}=\left\|X Y_{k,,}^{T} \cdot\right\|_{2}=\left\|Y_{k,:}^{\top}\right\|_{2}$, assuming X is orthonormal (e.g. RRQR, SVD)

() Standard pivoting
(2) Compress after Solve

(2) Restricted pivoting
(:) Compress before Solve

CFSU
(-) Standard pivoting
(:) Compress before Solve

How to assess the quality of pivot k ? We need to estimate $\left\|\widetilde{B}_{:, k}\right\|_{\text {max }}$: $\left\|\widetilde{B}_{:, k}\right\|_{\max } \leq\left\|\widetilde{B}_{:, k}\right\|_{2}=\left\|X Y_{k,:}^{\top} \cdot\right\|_{2}=\left\|Y_{k,:}^{\top}\right\|_{2}$, assuming X is orthonormal (e.g. RRQR, SVD)

Distributed-memory
BLR factorization

Strong scalability analysis (matrix 10Hz)

Experiments performed on the eos supercomputer (credits: CALMIP):

- Two Intel(r) 10-cores Ivy Bridge @ 2.8 GHz
- Peak per core is 22.4 GF/s
- 64 GB memory per node
- Infiniband FDR interconnect

How to improve the scalability of the BLR factorization?

Strong scalability analysis (matrix 10Hz)

Experiments performed on the eos supercomputer (credits: CALMIP):

- Two Intel(r) 10-cores Ivy Bridge @ 2.8 GHz
- Peak per core is 22.4 GF/s
- 64 GB memory per node
- Infiniband FDR interconnect

How to improve the scalability of the BLR factorization?

- Load imbalance (ratio between most and less loaded processes) increases from 1.3 (FR) to 2.6 (BLR)
\Rightarrow we devised some heuristics showing promising gains

Strong scalability analysis (matrix 10Hz)

Experiments performed on the eos supercomputer (credits: CALMIP):

- Two Intel(r) 10-cores Ivy Bridge a 2.8 GHz
- Peak per core is 22.4 GF/s
- 64 GB memory per node
- Infiniband FDR interconnect

How to improve the scalability of the BLR factorization?

- Load imbalance (ratio between most and less loaded processes) increases from 1.3 (FR) to 2.6 (BLR)
\Rightarrow we devised some heuristics showing promising gains
- Flops reduced by 12.8 but volume of communications only by $2.2 \Rightarrow$ higher relative weight of communications

Type of messages

Type of messages

LU messages

- Volume of LU messages is reduced by compressing the factors
© Reduces operation count, communications, and memory consumption

Type of messages

$L U$ messages

- Volume of $L U$ messages is reduced by compressing the factors
© Reduces operation count, communications, and memory consumption
- Volume of CB messages can be reduced by compressing the CB
© Reduces communications and memory consumption
(3) Increases operation count unless assembly is done in LR

Communication analysis

- FR case: LU messages dominate

Theoretical communication bounds

	$\mathcal{W}_{\text {LU }}$	$\mathcal{W}_{C B}$	$\mathcal{W}_{\text {tot }}$
FR	$\mathcal{O}\left(n^{4 / 3} p\right)$	$\mathcal{O}\left(n^{4 / 3}\right)$	$\mathcal{O}\left(n^{4 / 3} p\right)$

Communication analysis

- FR case: $L U$ messages dominate
- BLR case: CB messages dominate \Rightarrow underwhelming reduction of communications

Theoretical communication bounds

	$\mathcal{W}_{L U}$	$\mathcal{W}_{C B}$	$\mathcal{W}_{\text {tot }}$
FR	$\mathcal{O}\left(n^{4 / 3} p\right)$	$\mathcal{O}\left(n^{4 / 3}\right)$	$\mathcal{O}\left(n^{4 / 3} p\right)$
BLR (CB	FR $)$	$\mathcal{O}\left(n r^{1 / 2} p\right)$	$\mathcal{O}\left(n^{4 / 3}\right)$
			$\mathcal{O}\left(n r^{1 / 2} p+n^{4 / 3}\right)$

Communication analysis

- FR case: LU messages dominate
- BLR case: CB messages dominate \Rightarrow underwhelming reduction of communications
\Rightarrow CB compression allows for truly reducing the communications

Theoretical communication bounds

	$\mathcal{W}_{L U}$	$\mathcal{W}_{C B}$	$\mathcal{W}_{\text {tot }}$
FR	$\mathcal{O}\left(n^{4 / 3} p\right)$	$\mathcal{O}\left(n^{4 / 3}\right)$	$\mathcal{O}\left(n^{4 / 3} p\right)$
BLR (CB	FR $)$	$\mathcal{O}\left(n r^{1 / 2} p\right)$	$\mathcal{O}\left(n^{4 / 3}\right)$
$\mathcal{O}\left(n r^{1 / 2} p+n^{4 / 3}\right)$			
BLR (CB $\left.\mathrm{CB}_{L R}\right)$	$\mathcal{O}\left(n r^{1 / 2} p\right)$	$\mathcal{O}\left(n r^{1 / 2}\right)$	$\mathcal{O}\left(n r^{1 / 2} p\right)$

Results on very large problems (1/2)

Performance impact of the CB compression: illustration on very large problems from SEISCOPE (Helmholtz equation, unsymmetric complex):

matrix order cores computer	$\begin{aligned} & 10 \mathrm{~Hz} \\ & 17 \mathrm{M} \\ & 900 \text { Ivy Bridge } \\ & \text { eos (CALMIP) } \end{aligned}$	$\begin{aligned} & 15 \mathrm{~Hz} \\ & 58 \mathrm{M} \\ & 900 \text { Ivy Bridge } \\ & \text { eos (CALMIP) } \end{aligned}$	$\begin{aligned} & 20 \mathrm{~Hz} \\ & 130 \mathrm{M} \\ & 2,400 \text { Haswell } \\ & \text { occigen (CINES) } \end{aligned}$
factor flops (FR)	2.6 PF	29.6 PF	150.0 PF
$\Rightarrow \mathrm{BLR}\left(\mathrm{CB}_{\text {FR }}\right)$	0.1 PF (5.3\%)	1.0 PF (3.3\%)	3.6 PF (2.4\%)
			3.9 PF (2.6\%)
factor time (FR)	601	5,206	n/a
$\Rightarrow \mathrm{BLR}\left(\mathrm{CB}_{\text {FR }}\right)$	123 (4.9)	838 (6.2)	1,665
			2,641
		29.6 TB	n/a
comm. volume (CBFr)	1.7 TB (3.2)	13.3 TB (2.2)	
comm. volume ($C B_{L R}$)	0.6 TB (9.1)	1.2 TB (23.2)	

Results on very large problems (1/2)

Performance impact of the CB compression: illustration on very large problems from SEISCOPE (Helmholtz equation, unsymmetric complex):

matrix order cores computer	$\begin{aligned} & 10 \mathrm{~Hz} \\ & 17 \mathrm{M} \\ & 900 \text { Ivy Bridge } \\ & \text { eos (CALMIP) } \end{aligned}$	$\begin{aligned} & 15 \mathrm{~Hz} \\ & 58 \mathrm{M} \\ & 900 \text { Ivy Bridge } \\ & \text { eos (CALMIP) } \end{aligned}$	$\begin{aligned} & 20 \mathrm{~Hz} \\ & 130 \mathrm{M} \\ & 2,400 \text { Haswell } \\ & \text { occigen (CINES) } \end{aligned}$
factor flops (FR)	2.6 PF	29.6 PF	150.0 PF
$\Rightarrow \operatorname{BLR}\left(\mathrm{CB}_{F R}\right)$	0.1 PF (5.3\%)	1.0 PF (3.3\%)	3.6 PF (2.4\%)
$\Rightarrow \operatorname{BLR}\left(\mathrm{CB}_{L R}\right)$	0.2 PF (6.1\%)	1.1 PF (3.7\%)	3.9 PF (2.6\%)
factor time (FR)	601	5,206	n/a
$\Rightarrow \operatorname{BLR}\left(\mathrm{CB}_{F R}\right)$	123 (4.9)	838 (6.2)	1,665
$\Rightarrow \operatorname{BLR}\left(\mathrm{CB}_{L R}\right)$	213 (2.8)	856 (6.1)	2,641
$\mathrm{CB}_{L R}$ time impact	+73\%	+2\%	+58\%
comm. volume (FR)	5.3 TB	29.6 TB	n/a
comm. volume ($\mathrm{CB}_{F R}$)	1.7 TB (3.2)	13.3 TB (2.2)	79.8 TB
comm. volume ($\mathrm{CB}_{L R}$)	0.6 TB (9.1)	1.2 TB (23.2)	8.6 TB

Results on very large problems (1/2)

Performance impact of the CB compression: illustration on very large problems from SEISCOPE (Helmholtz equation, unsymmetric complex):

matrix	10 Hz	15 Hz	20 Hz
order	17 M	58 M	130 M
cores	900 Ivy Bridge	900 lvy Bridge	2,400 Haswell
computer	eos (CALMIP)	eos (CALMIP)	occigen (CINES)
factor flops (FR)	2.6 PF	29.6 PF	150.0 PF
\Rightarrow BLR (CBFR)	$0.1 \mathrm{PF}(5.3 \%)$	$1.0 \mathrm{PF}(3.3 \%)$	$3.6 \mathrm{PF}(2.4 \%)$
\Rightarrow BLR (CBLR)	$0.2 \mathrm{PF}(6.1 \%)$	$1.1 \mathrm{PF}(3.7 \%)$	$3.9 \mathrm{PF}(2.6 \%)$
factor time (FR)	601	5,206	n / a
\Rightarrow BLR (CBFR)	$123(4.9)$	$838(6.2)$	1,665
\Rightarrow BLR (CBLR)	$213(2.8)$	$856(6.1)$	2,641
CB $_{\text {LR }}$ time impact	$+73 \%$	$+2 \%$	$+58 \%$
comm. volume (FR)	5.3 TB	29.6 TB	n / a
comm. volume (CBFR)	$1.7 \mathrm{~TB}(3.2)$	$13.3 \mathrm{~TB}(2.2)$	79.8 TB
comm. volume (CBLR)	$0.6 \mathrm{~TB}(9.1)$	$1.2 \mathrm{~TB}(23.2)$	8.6 TB

\Rightarrow CB compression becomes increasingly critical?

Results on very large problems $(2 / 2)$

Memory consumption on matrix 15 Hz : factors + active memory
(CB + active front)

90 processors
91 GB

Results on very large problems $(2 / 2)$

Memory consumption on matrix 15 Hz : factors + active memory
(CB + active front)

- Factors compression (19\% of FR) leads to important gains, but the BLR solver inherits the poor scalability of the active memory

Results on very large problems $(2 / 2)$

Memory consumption on matrix 15 Hz : factors + active memory
(CB + active front)

- Factors compression (19% of $F R$) leads to important gains, but the BLR solver inherits the poor scalability of the active memory
- CB compression (7\% of FR) slightly attenuates this issue

Results on very large problems $(2 / 2)$

Memory consumption on matrix 15 Hz : factors + active memory
(CB + active front)

- Factors compression (19% of $F R$) leads to important gains, but the BLR solver inherits the poor scalability of the active memory
- CB compression (7\% of FR) slightly attenuates this issue

Results on very large problems $(2 / 2)$

Memory consumption on matrix 15 Hz : factors + active memory
(CB + active front)

- Factors compression (19% of $F R$) leads to important gains, but the BLR solver inherits the poor scalability of the active memory
- CB compression (7\% of FR) slightly attenuates this issue
- Storage for the active front becomes critical

Conclusion

Summary of the work presented in this talk

Asymptotic complexity reduction (Chap. 4)

Theoretical proof of the asymptotic complexity reduction: $\mathcal{O}(n \log n)$ memory and $\mathcal{O}\left(n^{5 / 3}\right)$ operations for standard BLR variant

Efficient and scalable algorithms (Chap. 5 and 6)

Efficient and scalable BLR factorization algorithms for shared- and distributed-memory systems, to achieve actual performance gains

Novel variants (Chap. 2)

Novel variants to improve complexity (down to $\mathcal{O}\left(n^{4 / 3}\right)$ operations) and performance of the BLR factorization, without sacrificing numerical pivoting

Summary of the work not presented in this talk

Recompression strategies (Chap. 3)

Analysis and comparison of several strategies to add and recompress low-rank updates, showing there is a trade-off between achieved rank and recompression overhead (with asymptotic difference between strategies)

Applicative case-studies (Chap. 7)

Two case-studies from industrial applications (FWI and CSEM) based on frequency-domain inversion, showing that BLR direct solver is competitive with iterative or time-domain approaches

Comparison with the HSS solver STRUMPACK (Chap. 8)

Comparison on real-life problems suggests that BLR works best as an accurate low-rank direct solver, while HSS favors more aggressive compression to build fast preconditioners

Main perspectives (Chap. 9)

Analysis and solution phases

The other two phases will become of growing importance:

- Analysis time can represent up to 50% of the BLR factorization time
- Solution time is dominant for applications with multiple RHS \Rightarrow how to translate factors size reduction into actual performance gains?

Improving the memory scalability

- Active front becomes dominant and limits memory scalability:
- Switch to fully-structured (matrix-free) implementation?
- Panel by panel allocation and compression
- Memory aware mappings: map critical fronts on more processes to improve memory scalability

References

Publications

On complexity (Chapter 4):

- Amestoy, Buttari, L'Excellent, and Mary. On the Complexity of the Block Low-Rank Multifrontal Factorization, SIAM J. Sci. Comput., 2017.
On multicore performance (Chapter 5):
- Amestoy, Buttari, L'Excellent, and Mary. Performance and Scalability of the Block Low-Rank Multifrontal Factorization on Multicore Architectures, submitted to ACM Trans. Math. Soft., 2017.
On the seismic application (Section 7.1):
- Amestoy, Brossier, Buttari, L'Excellent, Mary, Métivier, Miniussi, and Operto. Fast 3D frequency-domain full waveform inversion with a parallel Block Low-Rank multifrontal direct solver: application to OBC data from the North Sea, Geophysics, 2016.
On the electromagnetic application (Section 7.2):
- Shantsev, Jaysaval, de la Kethulle de Ryhove, Amestoy, Buttari, L'Excellent, and Mary. Large-scale 3D EM modeling with a Block Low-Rank multifrontal direct solver, Geophysical Journal International, 2017.

Software

- MUMPS 5.1.2

Acknowledgments

Thank you for your attention

Computing centers

We thank our computing centers for providing access to the machines:

- brunch (LIP)
- eos (CALMIP)
- occigen (CINES)

Applicative collaborators

We thank our applicative collaborators for providing access to matrices from:

- seismic imaging (SEISCOPE)
- electromagnetic modeling (EMGS)
- structural mechanics (EDF)

