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Abstract. Stochastic rounding rounds a real number to the next larger or smaller floating-point
number with probabilities 1 minus the relative distances to those numbers. It is gaining attention
in deep learning because it can increase the success of low precision computations. We compare
basic properties of stochastic rounding with those for round to nearest, finding properties in common
as well as significant differences. We prove that for stochastic rounding the rounding errors are
mean independent random variables with zero mean. We derive a new version of our probabilistic
error analysis theorem from [SIAM J. Sci. Comput., 41 (2019), pp. A2815–A2835], weakening the
assumption of independence of the random variables to mean independence. These results imply
that for a wide range of linear algebra computations the backward error for stochastic rounding is
unconditionally bounded by a multiple of

√
nu to first order, with a certain probability, where n

is the problem size and u is the unit roundoff. This is the first scenario where the rule of thumb
that one can replace nu by

√
nu in a rounding error bound has been shown to hold without any

additional assumptions on the rounding errors. We also explain how stochastic rounding avoids the
phenomenon of stagnation in sums, whereby small addends are obliterated by round to nearest when
they are too small relative to the sum.
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1. Introduction. The results of most elementary floating-point operations can
not themselves be represented as floating-point numbers. This simple fact leads to
one of the defining features of floating-point arithmetic: rounding error. To define a
floating-point arithmetic we must prescribe how to round the result of an operation
to a nearby floating-point number. The IEEE standard 754 for binary floating-point
arithmetic [21] defines four rounding modes.

• Round to nearest. The default, where we round towards even (least significant
bit 0) to break ties.

• Round towards 0.
• Round towards +∞.
• Round towards −∞.

The latter three modes are called directed rounding modes. Here, we consider two
stochastic rounding modes. Let F ⊆ R denote the floating-point number system. In
the first mode, we round x ∈ R with x /∈ F to the next larger or next smaller floating-
point number with a probability that is 1 minus the relative distance of x to each of
those numbers. In the second mode, we round up or down with equal probability. For
x ∈ R, define

bxc = max{ y ∈ F : y ≤ x }, dxe = min{ y ∈ F : y ≥ x },

so that bxc ≤ x ≤ dxe, with equality throughout if x ∈ F . For x /∈ F , bxc and dxe are
adjacent floating-point numbers. For x ∈ R with x /∈ F the two stochastic rounding
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‡Sorbonne Université, CNRS, LIP6, Paris, F-75005, France (theo.mary@lip6.fr).

1

mailto:michael.connolly-3@manchester.ac.uk
mailto:nick.higham@manchester.ac.uk
mailto:theo.mary@lip6.fr


modes are

mode 1: f l(x) =

{
dxe with probability p = (x− bxc)/(dxe − bxc),
bxc with probability 1− p,

(1.1)

mode 2: f l(x) =

{
dxe with probability 1/2,

bxc with probability 1/2.
(1.2)

Stochastic rounding is an old idea, proposed in the 1950s and 1960s by Barnes,
Cooke-Yarborough, and Thomas [2], Forysthe [9], [10] and Hull and Swenson [20]. It is
attracting renewed interest in deep learning, especially where low precision arithmetic
is used. It is shown in [14], in the context of neural network training, that using a 16-
bit fixed-point representation with mode 1 stochastic rounding can be as effective as
using 32-bit floating-point numbers with round to nearest. Stochastic rounding solves
the problem of the obliteration of small parameter updates in the neural network,
which is an instance of what we call stagnation. If a parameter φ is updated by a
quantity h that is less than half the spacing of the floating-point numbers (or fixed-
point numbers) around φ then fl(φ+h) = φ with round to nearest, so the information
in h is lost. Stochastic rounding helps to preserve this information. Much recent
work applies stochastic rounding in neural network training and inference; see, for
example, [6], [8], [26], [29], [30], [38], [41], [42], [46], and the references therein.

Another application where mode 1 stochastic rounding has been shown to improve
accuracy with fixed-point arithmetic is the numerical solution of neural ODEs [19].

Much work on stochastic rounding with floating-point arithmetic has focused on
using it to validate numerical methods through an empirical approach. The CESTAC
method [5], [39] and its implementation CADNA [25], [34] use mode 2 stochastic
rounding, termed “stochastic arithmetic”, to detect instabilities in numerical routines
and to provide estimates of the accuracy of the computed results. Further references
on this topic include [12], [13], [40].

Parker’s Monte Carlo arithmetic [31], [32] is more general than stochastic round-
ing, not least because as well as randomly rounding it can randomly perturb the input
to a floating-point operation and the output of it.

We are not aware of any analysis of stochastic rounding or any work on rounding
error analysis for stochastic rounding. The purpose of this paper is to fill this gap in
the literature. We make the following contributions.

• We analyze the properties of stochastic rounding in floating-point arithmetic
vis-à-vis the properties of round to nearest, finding both common properties
and significant differences.

• We show that the recent probabilistic backward error analysis of Higham
and Mary [16], which assumes that rounding errors are independent random
variables with zero mean, holds with the weaker assumption of mean inde-
pendence. We also show that mode 1 stochastic rounding produces rounding
errors that are mean independent random variables with zero mean. We
conclude that the long-standing rule of thumb that one can replace a worst-
case error bound nu by a more realistic (probabilistic) error bound

√
nu [43,

p. 318], [44, p. 26] holds unconditionally for stochastic rounding.
• We show that the expected value of a computed result from mode 1 stochas-

tic rounding is the true value for summation, inner products, matrix–vector
and matrix–matrix products, and the solution of triangular systems, and we
explain why this property does not extend to matrix factorizations.
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• We prove that mode 1 stochastic rounding avoids stagnation in summation
and thereby can lead to more accurate results than round to nearest.

We begin, in section 2, by recalling some basic properties of floating-point arith-
metic. In section 3 we investigate properties of stochastic rounding and compare them
with key properties of round to nearest. In section 4 we generalize the probabilistic
backward error analysis of Higham and Mary [16], showing that the assumption that
rounding errors are independent random variables can be relaxed to them being mean
independent random variables. Then, in section 5, we show that this strengthened
analysis applies to mode 1 stochastic rounding, which therefore enjoys unconditional√
nu error bounds in place of the worst-case nu bounds. In section 6 we analyze

the expected value of computations under mode 1 stochastic rounding. We illustrate
the benefits of the

√
nu error bounds for mode 1 stochastic rounding in section 7

with numerical experiments on sums and inner products. Finally, we give concluding
remarks in section 8.

2. Floating-point arithmetic. We recall some basic properties of floating-
point arithmetic. For more details, see [11], [15, Chap. 2], [28]. A number y in
the floating-point number system F has the form

(2.1) y = ±m× βe−t,

which involves four integers:
• β is the base, which is 2 throughout this paper,
• t is the precision,
• e is the exponent, which satisfies emin ≤ e ≤ emax, and
• m is the significand, which satisfies 0 ≤ m ≤ βt − 1.

Normalized numbers are those for which m ≥ βt−1. The machine epsilon ε is the
distance from 1 to the next larger floating-point number and is given by ε = β1−t.
The spacing of floating-point numbers increases by a factor β at each power of β. For
β = 2 the spacing in the interval (1/2, 1] is ε/2 = u = 2−t, the unit roundoff. With
round to nearest it can be shown that [15, Thm. 2.2]

(2.2) f l(x) = x(1 + δ), |δ| ≤ u.

The standard model of floating-point arithmetic assumes that the elementary oper-
ations and the square root are correctly rounded (as indeed is the case for IEEE
standard arithmetic [21]), so that with round to nearest they satisfy

(2.3) f l(x op y) = (x op y)(1 + δ), |δ| ≤ u, op ∈ {+,−, ∗, /,√}.

Under stochastic rounding we define the elementary floating-point operations
+,−, ∗, /,√ to be the stochastically rounded exact ones. Therefore for stochastic

rounding, equations (2.2) and (2.3) hold with u replaced by 2u:

f l(x) = x(1 + δ), |δ| ≤ 2u,(2.4a)

f l(x op y) = (x op y)(1 + δ), |δ| ≤ 2u, op ∈ {+,−, ∗, /,√}.(2.4b)

We make reference throughout to various floating-point systems, the parameters
of which are shown in Table 2.1. All those beginning with “fp” are from the IEEE
standard. Bfloat16 [22] is a half precision format supported by the Google Tensor
Processing Unit1 (TPU), the NVIDIA A100 GPU, the Intel Cooper Lake processor,
and the Armv8-A architecture [1].

1https://cloud.google.com/tpu/
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Table 2.1: Parameters of floating-point systems. (sig., exp.) denotes number of bits in significand
(including implicit most significant bit) and exponent, u is the unit roundoff, xmin is the smallest
normalized positive number, and xmax is the largest finite number.

(sig., exp.) u xmin xmax

bfloat16 (8, 8) 3.91× 10−3 1.18× 10−38 3.39× 1038

fp16 (11, 5) 4.88× 10−4 6.10× 10−5 6.55× 104

fp32 (24, 8) 5.96× 10−8 1.18× 10−38 3.40× 1038

fp64 (53, 11) 1.11× 10−16 2.22× 10−308 1.80× 10308

3. Properties of stochastic rounding. In this section, stochastic rounding
refers to either mode 1 or mode 2, defined by (1.1) and (1.2), and all the results are
valid for both. We compare stochastic rounding with round to nearest, identifying
properties in common as well as significant differences that should be borne in mind
when stochastic rounding is used.

3.1. Properties that continue to hold. We begin by identifying properties of
round to nearest that continue to hold under stochastic rounding. First, we note that
f l(f l(x)) = fl(x) with stochastic rounding, that is, rounding a floating-point number
leaves it unchanged.

Sterbenz’s lemma [15, Thm. 2.5], [37] is a property of floating-point numbers that
is independent of the rounding mode, so it certainly holds for stochastic rounding.

Lemma 3.1 (Sterbenz). If x and y are floating-point numbers with y/2 ≤ x ≤ 2y
then f l(x−y) = x−y under stochastic rounding (assuming x−y does not underflow).

Under round to nearest we have (in base 2, but not for all bases [15, Probs. 2.7,
2.8]) that for floating-point numbers x and y with x ≤ y

(3.1) x ≤ f l((x+ y)/2) ≤ y.

These inequalities are an immediate consequence of the monotonicity of round to
nearest, where monotonicity of rounding is the property that for x ∈ R and y ∈ R, the
inequality x ≤ y implies f l(x) ≤ f l(y). We show that they remain true for stochastic
rounding, even though it is not monotonic (as shown in the next section). Since
division by 2 is exact in base 2 arithmetic, we need to show that 2x ≤ f l(x+ y) ≤ 2y.
For the case x = y, the inequalities trivially hold. We thus consider x < y. Let
y = x + δ, where δ > 0. Then x + y = 2y − δ < 2y, so f l(x + y) ≤ 2y. Furthermore,
x+ y = 2y − δ ≥ 2y − 2δ = 2(y − δ) = 2x, so f l(x+ y) ≥ 2x.

3.2. Properties that no longer hold. Some properties that are trivial under
round to nearest do not hold under stochastic rounding. Since rounding is probabilis-
tic, two different evaluations of f l(x) can give different results. Similarly, in general
we have

fl(|x|) 6= | f l(x)|,
f l(−x) 6= − f l(x),

f l(2px) 6= 2p f l(x), p an integer,

but in each case the two possible values of the left-hand side are equal to the two
possible values of the right-hand side (in the third case this follows from d2pxe = 2pdxe
and b2pxc = 2pbxc).
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Round to nearest is monotonic but stochastic rounding is not: if we have two
adjacent floating-point numbers a < b, then for a < x ≤ y < b, f l(x) > f l(y) is
possible under stochastic rounding.

In [7], [15, Prob. 2.12] it is shown that for x satisfying 1 ≤ x < 2, f l(x ∗ (1/x))
is either 1 or 1 − ε/2 with round to nearest, where ε is the machine epsilon. Under
stochastic rounding we have two more possibilities for the result.

Theorem 3.2. For 1 ≤ x < 2, f l(x ∗ (1/x)) ∈ {1 − ε, 1 − ε/2, 1, 1 + ε} under
stochastic rounding.

Proof. The spacing of the floating-point numbers in the interval (1/2, 1] is ε/2.
This means that under stochastic rounding we have∣∣∣∣ 1x − f l

( 1

x

)∣∣∣∣ < ε

2

=⇒
∣∣∣∣1− x f l

( 1

x

)∣∣∣∣ < xε

2
< ε

=⇒ 1− ε < x f l
( 1

x

)
< 1 + ε.(3.2)

The floating-point numbers in the interval [1− ε, 1 + ε] are {1− ε, 1− ε/2, 1, 1 + ε}.
We therefore have fl(x ∗ f l(1/x)) ∈ {1− ε, 1− ε/2, 1, 1 + ε}.

Consider the computation of f l(n ∗ f l(m/n)), where m and n are integers. If m/n
is a floating-point number then fl(n ∗ f l(m/n)) = fl(n ∗ (m/n)) = fl(m) = m for any
rounding scheme, as no rounding takes place. For round to nearest, Kahan proved
that the same identity holds for many other choices of m and n [11, Thm. 7]. Recall
that a floating-point number has precision t and that we are assuming base 2.

Theorem 3.3 (Kahan). Let m and n be integers such that |m| < 2t−1 and
n = 2i + 2j for some i and j. Then f l(n ∗ f l(m/n)) = m with round to nearest.

The sequence of allowable n begins 2, 3, 4, 5, 6, 8, 9, 10, 12, 16, 17, 18, 20 (and is
A048645 in the On-Line Encyclopedia of Integer Sequences [36]), so Kahan’s the-
orem covers many common cases. As an example of where the result is useful, if we
partition [0, 1] into n intervals of length h = 1/n, we may want, for consistency in
a computation, that f l(nh) = 1. Kahan’s result shows that n does not need to be a
power of 2 for this condition to hold.

Theorem 3.3 does not hold for stochastic rounding because there are three possi-
bilities for the computed result, as the next result shows.

Theorem 3.4. Let m and n be integers such that |m| < 2t−1 and n = 2i + 2j for
some i and j. Under stochastic rounding, f l(n∗ f l(m/n)) is either m, the next smaller
floating-point number, or the next larger floating-point number.

Proof. The proof is a modification of the proof of [11, Thm. 7]. Without loss of
generality we can assume that m > 0. It is harmless to scale n and m by powers of
2, since it changes only the exponents. Scale n so that 2t−1 ≤ n < 2t and scale m
so that 1/2 ≤ q = m/n < 1. We then have 2t−2 ≤ m < 2t. Since the original m
has been reduced by at most a factor 2, m now has at most 1 bit to the right of the
binary point. We will show that q = fl(m/n) = fl(q) satisfies

(3.3) |nq −m| ≤ 1

4
.
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Since m has at most 1 bit to the right of the binary point, if (3.3) is satisfied then under
stochastic rounding fl(nq̄) will equal either m or one of the two adjacent floating-point
numbers. (It would, in fact, be enough to prove (3.3) with 1/2 on the right-hand side.)

We now seek to bound |nq − m|. Write q = .q1q2 . . . and let q̂ = .q1q2 . . . qt1.
From the proof of [11, Thm. 7] we have |q̂ − q| ≥ 1/(n× 2t+1−r), where n must have
the form n = 2t−1 + 2r and r ≤ t− 2. Assume q < q̂. The proof for q > q̂ is similar.
We now have two cases.

Case 1: For q < q̂, with round to nearest we would necessarily round down and
so q = q̂ − 2−t−1 =: qd. This is one possibility with stochastic rounding. In this case
we have nqd < nq = m and so

|m− nqd| = m− nqd = n(q − qd)
= n(q − q̂ + 2−t−1)

≤ n
(

2−t−1 − 1

n× 2t+1−r

)
=

1

4
.

Case 2: With stochastic rounding we have another possibility. As qd < q, the
other value we can compute for q must be qu = qd+2−t. We then have qu = q̂+2−t−1.
Following a similar procedure as before we can show |m−nqu| ≤ 1/4, concluding the
proof.

With round to nearest (and specifically for base 2), we have that fl(
√
x2) = |x|

for x a floating-point number [15, Prob. 2.20]. We show that this identity can fail

under stochastic rounding, and fl(
√
x2) can be one of three values.

Theorem 3.5. For a floating-point number x ∈ (1, 2), f l(
√
x2) ∈ {|x|−ε, |x|, |x|+

ε} under stochastic rounding.

Proof. By (2.4b), we have
√

f l(x2) =
√
x2(1 + δ) = |x|(1 + δ)1/2, |δ| ≤ 2u, and

|x|(1 + δ)1/2 = |x|
(

1 +
δ√

1 + δ + 1

)
=: |x|+ θ.

To maximise |θ|, take δ = −2u and x = 2 − 2u, which is the largest floating point
number that lies in (1, 2). Then

|θ| ≤ (2− 2u)2u√
1− 2u+ 1

.

For u ≤ 1/2, we have |θ| ≤ 2u = ε. Since the spacing of the floating-point numbers
on (1, 2) is ε, it follows that f l(

√
f l(x2)) can round to any of {|x| − ε, |x|, |x|+ ε}.

We have verified by numerical experiments in MATLAB that each of the cases
for the computed results in Theorems 3.2, 3.4, and 3.5 is attainable in bfloat16, fp16,
and fp32 arithmetic for some choices of the data.

Theorem 3.5 implies that the inequality f l(x/
√
x2 + y2) ≤ 1 (which always holds

under round to nearest [15, Prob. 2.21]) can fail under stochastic rounding. This

means that the formula acos(x/
√
x2 + y2) for one of the angles in a right-angled

triangle with sides of length x and y can fail. Indeed, take y to be zero, or so small
that f l(x2 + y2) = fl(x2) holds with high probability. For x > 0, Theorem 3.5 shows

that f l(
√
x2) = x− ε is possible, in which case

x

f l(
√
x2)

=
x

x− ε
> 1,
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and it follows that under stochastic rounding the result can exceed 1.
Stochastic rounding has two drawbacks in common with a fused multiply-add

operation [15, sect. 2.6]. First, if we compute the modulus squared of a complex
number from the formula

(x+ iy)∗(x+ iy) = x2 + y2 + i(xy − yx),

the result may be non-real, since f l(xy) 6= fl(yx) is possible. Second, in evaluating a
discriminant b2−ac, even if b2 ≥ ac the discriminant can evaluate as negative because
of the non-monotonicity of stochastic rounding, which is problematic if

√
b2 − ac must

be computed.
Under round to nearest (in base 2) we have for floating-point numbers x and y

that err(x, y) = x+y− f l(x+y) satisfies |err(x, y)| ≤ min(|x|, |y|) [15, Prob. 4.6], [35].
We show this to be false under stochastic rounding by counterexample. For x = 4 and
y = ε we have fl(x+y) ∈ {4, 4+4ε} as the spacing of the floating-point numbers in the
interval [4, 8] is 4ε. The bound is satisfied for f l(x+ y) = 4 but for f l(x+ y) = 4 + 4ε,
|err(x, y)| = |4 + ε− (4 + 4ε)| = 3ε > min(|x|, |y|).

Vital to compensated summation algorithms is the fact that for floating-point
numbers a and b, if s = fl(a + b) with round to nearest then t = a + b − s is a
floating-point number, which can be computed by the following algorithm.

Algorithm 3.1 (FastTwoSum) Given floating-point numbers a, b such that |a| ≥ |b|,
compute (with round to nearest) s and t such that s = fl(a + b) and s + t = a + b
exactly.

1: s← a+ b
2: z ← s− a
3: t← b− z

Under stochastic rounding, the computed t̂ from Algorithm 3.1 is not exact, but we
can bound the error. From [12, Prop. 4.3], we have

(3.4) |t̂− t| ≤ 2u|t|

if each arithmetic operation is performed with a directed rounding mode and hence
also for stochastic rounding. Based on this argument, error bounds are provided
in [12], [13] for compensated summation algorithms under directed rounding schemes,
and these bounds therefore hold under stochastic rounding. We note that while the
computation of t is no longer exact, compensated summation algorithms still prove
accurate under stochastic rounding.

While the collection of properties analyzed above is by no means exhaustive,
it demonstrates that it would be dangerous to simply replace round to nearest by
stochastic rounding in a given computation. One should carefully consider whether
the computation is dependent on properties of round to nearest beyond the model
(2.3) and, if they are, check whether they remain true for stochastic rounding.

4. Probabilistic backward error analysis. We wish to exploit the properties
of stochastic rounding in backward error analysis. Standard backward error analysis
based on the model (2.3) remains valid with u ← 2u by (2.4b), but we wish to
take advantage of the statistical properties of stochastic rounding. In this section we
develop probabilistic backward error bounds, which we apply to stochastic rounding
in the next section.
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4.1. Summary of probabilistic backward error bounds under indepen-
dence. It is standard practice to express backward error results in terms of the
constant γn = nu/(1 − nu). This constant arises when rounding error terms 1 + δi
with |δi| ≤ u are collected in a product and the distance of the product from 1 is
bounded using the following lemma [15, Lem 3.1].

Lemma 4.1. If |δi| ≤ u and ρi = ±1 for i = 1 : n, and nu < 1, then

(4.1)

n∏
i=1

(1 + δi)
ρi = 1 + θn, |θn| ≤ γn.

The inequality |θn| ≤ γn is a worst-case bound that is often pessimistic in practice
and so it can fail to provide a good indication of the size of the error of a typical
computation. This weakness is especially relevant in the context of large scale and/or
low precision computations, since for large values of n or u, γn can exceed 1, in which
case the worst-case bound is not able to guarantee even a single correct digit.2 For
example, with the half precision arithmetics fp16 and bfloat16, nu > 1 for n > 2048
and n > 256, respectively.

These observations have generated a renewed interest in analyzing rounding errors
from a probabilistic point of view. In particular, a systematic backward error analy-
sis based on a probabilistic model that assumes rounding errors to be independent
random variables of mean zero has recently been developed by Higham and Mary [16].

We state the following result, which is a minor rewriting of [16, Thm. 2.4] with
the change of variable λ← λ/(1− u). Define

(4.2) γ̃n(λ) = exp

(
λ
√
nu+ nu2

1− u

)
− 1 = λ

√
nu+O(u2).

Lemma 4.2. Let δ1, δ2, . . . , δn be independent random variables of mean zero such
that |δi| ≤ u for all i, and let ρi = ±1, i = 1: n. Then for any constant λ > 0,

n∏
i=1

(1 + δi)
ρi = 1 + θn, |θn| ≤ γ̃n(λ)

holds with probability at least P (λ) = 1− 2 exp(−λ2/2).

The significance of the lemma is that it shows that if the rounding errors are
assumed to be independent random variables of mean zero then γn = nu+O(u2) can
be replaced by the relaxed constant γ̃n(λ) = λ

√
nu+O(u2) with a probability that is

high even for modest λ. It justifies the long-standing rule of thumb that one can take
the square root of an error constant because of statistical effects in rounding error
propagation.

As an example of what can be proved using Lemma 4.2 we state the following
result for inner products from [16, Thm. 3.1]. We define

Q(λ, n) = 1− n(1− P (λ)) = 1− 2n exp(−λ2/2).

Theorem 4.3 (inner products). Let y = aT b, where a, b ∈ Rn, be evaluated in
floating-point arithmetic. If the rounding errors are independent random variables of

2Indeed once nu > 1, the bound (4.1) is not valid. By exploiting the round to nearest property
it is possible to relax the condition nu < 1 at the cost of more complicated proofs [24], [33], but the
bound will still be large for nu > 1.
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mean zero then no matter what the order of evaluation the computed ŷ satisfies

ŷ = (a+∆a)T b = aT (b+∆b), |∆a| ≤ γ̃n(λ)|a|, |∆b| ≤ γ̃n(λ)|b|(4.3)

with probability at least Q(λ, n).

Lemma 4.2 and Theorem 4.3 rely, however, on the two key assumptions that
rounding errors are independent and have zero mean. With deterministic rounding
modes these assumptions do not always hold and indeed examples where the prob-
abilistic bound is violated are provided in [16] and are used in our experiments in
section 7.

4.2. Generalizing backward error bounds to mean independence. We
now weaken the independence assumption in Lemma 4.2 to mean independence. A
random variable X is said to be mean independent of another random variable Y
if its conditional expectation given Y is equal to its unconditional expectation, that
is, E(X | Y ) = E(X). Random variables δ1, δ2, . . . are mean independent if E(δk |
δ1, . . . , δk−1) = E(δk) for all k. Independent random variables are mean independent,
but the converse is not true in general. We will show in the next section that the
rounding errors from mode 1 stochastic rounding are mean independent.

The probabilistic error analyses of [17], [23] prove that the assumption of inde-
pendence of rounding errors can be relaxed to mean independence in the special case
of inner product-based computations. We now show that it is possible to do so for
general linear algebra operations, by deriving a version of Lemma 4.2 that requires
only mean independence. To do so, we need the concept of a martingale.

Definition 4.4 (martingale). A sequence of random variables E0, . . . , En is a
martingale if, for all k, E(|Ek|) <∞ and

E
(
Ek | E0, . . . , Ek−1

)
= Ek−1.

We also need the following inequality [27, Thm. 13.4].

Lemma 4.5 (Azuma–Hoeffding inequality). Let E0, . . . , En be a martingale
such that |Ek − Ek−1| ≤ ck, for k = 1: n. Then for any λ > 0,

Pr

(
|En − E0| ≥ λ

( n∑
k=1

c2k

)1/2
)
≤ 2 exp

(
−λ2/2

)
.

We are ready for the main result, which is a version of Lemma 4.2 with the
independence assumption replaced by the weaker assumption of mean independence.

Theorem 4.6. Let δ1, δ2, . . . , δn be random variables of mean zero with |δk| ≤ u
for all k such that E(δk+1 | δ1, . . . , δk) = E(δk+1) = 0 for k = 1: n − 1. Then for
ρi = ±1, i = 1: n and any constant λ > 0,

(4.4)

n∏
i=1

(1 + δi)
ρi = 1 + θn, |θn| ≤ γ̃n(λ)

holds with probability at least 1− 2 exp(−λ2/2).

Proof. Let Ek =
∑k
i=1 ρiδi for k = 1: n and E0 = 0. Since |Ek| ≤ ku, clearly

E(|Ek|) <∞. Moreover, since Ek+1 = Ek + ρk+1δk+1,

E(Ek+1 | E1, . . . , Ek) = Ek + ρk+1 E(δk+1 | δ1, . . . , δk) = Ek.

9



Therefore E0, . . . , En is a martingale. Since |Ek+1 − Ek| ≤ u, Lemma 4.5 yields

(4.5) |En − E0| = |En| ≤ λ
√
nu

with probability at least 1 − 2 exp(−λ2/2). By a Taylor expansion it can be shown
that [16, (2.3)]

δi −
u2

1− u
≤ log(1 + δi) ≤ δi +

u2

1− u
.

Hence, for ρi = ±1,

ρiδi −
u2

1− u
≤ ρi log(1 + δi) ≤ ρiδi +

u2

1− u
.

Summing gives

En −
nu2

1− u
≤ log

n∏
i=1

(1 + δi)
ρi ≤ En +

nu2

1− u
,

which by (4.5) can be weakened to

−
(
λ
√
nu+

nu2

1− u

)
≤ log

n∏
i=1

(1 + δi)
ρi ≤ λ

√
nu+

nu2

1− u
.

We slightly weaken this bound further by dividing the λ
√
nu terms by 1− u on each

side, and then we exponentiate to obtain

1− γ̃n(λ)

1 + γ̃n(λ)
=

1

1 + γ̃n(λ)
≤

n∏
i=1

(1 + δi)
ρi ≤ 1 + γ̃n(λ).

From the definition of θn, we therefore have |θn| ≤ γ̃n(λ).

Theorem 4.6 can now be used to derive analogues of the probabilistic backward
error results from [16] for inner products, matrix–vector and matrix–matrix products,
LU factorization, Cholesky factorization, solution of triangular systems, and solution
of linear systems by LU factorization or Cholesky factorization. In all cases the as-
sumption that the rounding errors are independent random variables can be weakened
to an assumption of mean independence. To be precise, we define the following model
of rounding errors in a given computation.

Model 4.7 (probabilistic model of rounding errors). Let the computation of
interest generate rounding errors δ1, δ2, . . . in that order. The δk are random variables
of mean zero such that E(δk | δ1, . . . , δk−1) = E(δk) (= 0).

As an example, we write down the results for inner products, matrix–matrix
products, and solution of linear systems.

Theorem 4.8 (inner products). Let y = aT b, where a, b ∈ Rn, be evaluated in
floating-point arithmetic. Under Model 4.7, no matter what the order of evaluation
the computed ŷ satisfies

ŷ = (a+∆a)T b = aT (b+∆b), |∆a| ≤ γ̃n(λ)|a|, |∆b| ≤ γ̃n(λ)|b|(4.6)

with probability at least Q(λ, n).

Proof. The proof is almost identical to that of [16, Thm. 3.1], the difference being
that we invoke Theorem 4.6 instead of Lemma 4.2.
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The next two results are analogs of [16, Thms. 3.4, 3.7].

Theorem 4.9 (matrix–matrix products). Let C = AB with A ∈ Rm×n and

B ∈ Rn×p. Under Model 4.7, the jth column of the computed Ĉ satisfies

(4.7) ĉj = (A+∆Aj)bj , |∆Aj | ≤ γ̃n(λ)|A|, j = 1: n,

with probability at least Q(λ,mn), and hence

(4.8) |C − Ĉ| ≤ γ̃n(λ)|A||B|

with probability at least Q(λ,mnp).

Theorem 4.10 (linear system). Let A ∈ Rn×n and suppose that LU factorization

and substitution produce computed factors L̂ and Û and a computed solution x̂ to
Ax = b. Then, under Model 4.7,

(4.9) (A+∆A)x̂ = b, |∆A| ≤
(
3γ̃n(λ) + γ̃n(λ)2

)
|L̂||Û |

holds with probability at least Q(λ, n3/3 + 3n2/2 + 7n/6).

5. Backward error analysis for stochastic rounding. Now we focus on
stochastic rounding, with the aim of showing that the analysis of the previous section
is applicable, that is, that stochastic rounding satisfies Model 4.7. Throughout this
section stochastic rounding means mode 1 stochastic rounding. In all our analysis the
data is assumed to be deterministic.

We first show that stochastic rounding forces the rounding errors to be random
variables with zero mean.

Lemma 5.1. For x ∈ R, if y = fl(x) = x(1+δ) is produced by stochastic rounding
then δ is a random variable with E(δ) = 0.

Proof. Recall the definition (1.1) of stochastic rounding:

f l(x) =

{
dxe with probability p = (x− bxc)/(dxe − bxc),
bxc with probability 1− p.

Clearly, f l(x) and δ = (fl(x)− x)/x are random variables. We have

E(f l(x)) = pdxe+ (1− p)bxc =
(x− bxc)dxe+ (dxe − x)bxc

dxe − bxc
= x.

Then E(δ) = E((f l(x)− x)/x) = 0.

It is important to note that mode 2 stochastic rounding does not produce a zero
mean: (1.2) implies that E(f l(x)) = (dxe+ bxc)/2, which is in general not equal to x.

Lemma 4.2, and the analysis of [16], require independence of rounding errors. The
question therefore arises: does stochastic rounding enforce independence of rounding
errors? The answer is negative. Indeed, successive rounding errors are still depen-
dent on each other since they affect the computed values. Consider for example the
computation of (a+ b) + c. We have

fl(f l(a+ b) + c) = ((a+ b)(1 + δ1) + c)(1 + δ2).

Clearly, δ2 depends on the addends (a + b)(1 + δ1) and c and hence on δ1. This
simple example shows that independence of rounding errors is not enforced by sto-
chastic rounding. However, stochastic rounding does enforce mean independence of
the rounding errors.
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Lemma 5.2. Let the computation of interest generate rounding errors δ1, δ2, . . . ,
in that order. If stochastic rounding is used then the δk satisfy Model 4.7.

Proof. We know by Lemma 5.1 that the rounding errors have mean zero. It suf-
fices to consider quantities a and b resulting from the computation of k − 1 scalar
operations that have produced rounding errors δ1, . . . , δk−1. Consider now the com-
putation of c = a op b for any scalar operation op ∈ {+,−, ∗, /,√}, resulting in

ĉ = fl(a op b) = (a op b)(1 + δk). The rounding error δk = (ĉ − c)/c is a random
variable that depends on δ1, . . . , δk−1 and is given by

(5.1) δk =

{
(dce − c)/c with probability p = (c− bcc)/(dce − bcc),
(bcc − c)/c with probability 1− p.

Moreover, (dce − c)/c and (bcc − c)/c are themselves random variables that are en-
tirely determined by δ1, . . . , δk−1 and so the conditional expectation of each given
δ1, . . . , δk−1 is itself. Therefore we obtain

E(δk | δ1, . . . , δk−1) = pE
(
dce − c
c

| δ1, . . . , δk−1

)
+ (1− p)E

(
bcc − c
c

| δ1, . . . , δk−1

)
= p

(
dce − c
c

)
+ (1− p)

(
bcc − c
c

)
= 0.

Since we have proven in Lemmas 5.1 and 5.2 that the rounding errors δi produced
by stochastic rounding satisfy the assumptions of Theorem 4.6, we conclude that the
probabilistic bound (4.4) holds unconditionally for them (with u ← 2u in view of
(2.4)), without exception. Hence for stochastic rounding the rule of thumb that
one can replace nu in a worst-case error bound by

√
nu to obtain a more realistic

(probabilistic) error bound is unconditionally true. Furthermore, the backward error
bounds in Theorems 4.8– 4.10 hold unconditionally for stochastic rounding as long as
we replace u by 2u in γ̃(λ) in (4.2).

6. The mean of the error for stochastic rounding. We now ask what is the
expected value of the computed result for stochastic rounding. Since the result from a
computation with stochastic rounding has a random error, which is generally different
each time the computation is repeated, it is intuitively desirable that the expected
value of the computed result is the true result. We focus on mode 1 stochastic rounding
since, as we noted in the previous section, for mode 2 this property does not hold.

For a single floating-point operation we know that the expected value is the true
value by Lemma 5.1, because E(1 + δ) = 1 for a single rounding error δ. In the next
result we show that a product of rounding error terms also has expected value 1. The
key property needed is mean independence.

Lemma 6.1. Let δ1, δ2, . . . , δn be random variables of mean zero such that E(δk+1 |
δ1, . . . , δk) = E(δk+1) = 0 for k = 1: n− 1. Then

E

(
n∏
i=1

(1 + δi)

)
= 1.

Proof. Define Pn =
∏n
i=1(1 + δi). We prove E(Pn) = 1 by induction. The result

clearly holds for P1 since E(1 + δ1) = 1. Assume it holds for Pn−1. Using the law of
total expectation (or tower property) E(X) = E

(
E(X | Y )

)
[3, p. 448], [45, p. 401],
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we have

E(Pn) = E(E(Pn | δ1, . . . , δn−1))

= E(E(Pn−1(1 + δn) | δ1, . . . , δn−1))

= E(Pn−1 E(1 + δn | δ1, . . . , δn−1))

= E(Pn−1) = 1,

and the result follows by induction.

We note that Lemma 6.1 does not generalize to the product
∏n
i=1(1 + δi)

ρi with
ρi = ±1. We apply the lemma to inner products.

Theorem 6.2 (inner products). Let y = aT b, where a, b ∈ Rn, be evaluated
in floating-point arithmetic. Under stochastic rounding, no matter what the order of
evaluation the computed ŷ satisfies E(ŷ) = y.

Proof. Standard backward error analysis [15, sect. 3.1] shows that ŷ can be written
as

ŷ =

n∑
i=1

aibi

n∏
k=1

(1 + δki),

where the δki satisfy (2.4b). (Some of the δki will be zero, depending on the order in
which the inner product is evaluated). Taking the mean and using Lemma 6.1, along
with the fact that the rounding errors from stochastic rounding are mean independent
with zero mean by Lemma 5.2, we obtain E(ŷ) =

∑n
i=1 aibi = y.

As a special case of Theorem 6.2 we have that the expected value of a sum
is the exact sum under stochastic rounding. We have a similar result for matrix
multiplication (and, as a special case, matrix–vector products).

Theorem 6.3 (matrix multiplication). Let C = AB, where A ∈ Rm×n and
B ∈ Rn×p, be evaluated in floating-point arithmetic. Under stochastic rounding, no
matter what the order of evaluation the computed Ĉ satisfies E(Ĉ) = C.

Proof. The result is obtained by applying Theorem 6.2 to the inner products
cij = A(i, :)B(:, j).

Theorems 6.2 and 6.3 do not, of course, hold for round to nearest, because it is
deterministic.

This argument extends to the solution of triangular systems, as we now show.
We need an extension of Lemma 6.1.

Lemma 6.4. Let δ−m, . . . , δ0, δ1, δ2, . . . , δn be random variables of mean zero such
that E(δk | δ−m, . . . , δk−1) = E(δk) = 0 for k = 1: n. Then

E

(
n∏
i=1

(1 + δi)
∣∣∣ δ0, . . . , δ−m) = 1.

Proof. Define

pn = E

(
n∏
i=1

(1 + δi)
∣∣∣ δ−m, . . . , δ0).

We prove by induction that pn = 1. We have

p1 = E
(
1 + δ1 | δ−m, . . . , δ0

)
= 1 + E

(
δ1 | δ−m, . . . , δ0

)
= 1.
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Assume that pn−1 = 1. Using the general form of the law of total expectation,
E(X | Y ) = E(E(X | Z) | Y ) where “Y ⊆ Z” [3, Thm. 34.4], we have

pn = E

(
n∏
i=1

(1 + δi)
∣∣∣ δ−m, . . . , δ0)

= E

(
E

(
n∏
i=1

(1 + δi)
∣∣∣ δ−m, . . . , δn−1

) ∣∣∣ δ−m, . . . , δ0)

= E

(
n−1∏
i=1

(1 + δi)E
(
1 + δn | δ−m, . . . , δn−1

) ∣∣∣ δ−m, . . . , δ0)
= pn−1 = 1,

so the result follows by induction.

Theorem 6.5. Let the triangular system Tx = b, where T ∈ Rn×n is nonsingular,
be solved by substitution with stochastic rounding. The computed solution x̂ satisfies
E(x̂) = x.

Proof. Assume that T is lower triangular without loss of generality. We prove
that E(x̂i) = xi by induction. From (2.4b) and Lemma 5.1, we have

E(x̂1) = E
(
b1
t11

(1 + δ
(1)
1 )

)
=

b1
t11

= x1.

Assume that E(x̂j) = xj for all j < i. We compute xi from

(6.1) xi =
(
bi −

i−1∑
j=1

tijxj

)/
tii.

There are 2i−1 rounding errors in total and no term in (6.1) is involved in more than
i + 1 rounding errors. Using (2.4b), and proceeding as in standard backward error
analysis [15, sect. 8.1], we find that no matter what the order of evaluation of (6.1),
we can write

tiix̂i = bi

i+1∏
k=1

(
1 + δ

(i)
i,k

)
−

i−1∑
j=1

tij x̂j

i+1∏
k=1

(
1 + δ

(i)
j,k

)
,

where the δ
(i)
j,k are drawn from the 2i−1 rounding errors and some of the δ

(i)
j,k are zero,

depending on the order of evaluation. Therefore we obtain

(6.2) E(tiix̂i) = bi E
( i+1∏
k=1

(
1 + δ

(i)
i,k

))
−

i−1∑
j=1

tij E
(
x̂j

i+1∏
k=1

(
1 + δ

(i)
j,k

))
.

The first expectation term in this equation is equal to 1 by Lemmas 5.2 and 6.1.
We need to show that the second expectation term is also 1, which is not immediate
because x̂j is not constant (it depends on the previous rounding errors, which are
random). To prove the result, we use the law of total expectation to condition on all
the rounding errors upon which x̂j depends. Let

Sj = { (p, `,m) : p = 1: j, ` = 1: p, m = 1: p+ 1 }.
14



We have

E
(
x̂j

i+1∏
k=1

(
1 + δ

(i)
j,k

))
= E

(
E
(
x̂j

i+1∏
k=1

(
1 + δ

(i)
j,k

) ∣∣∣ { δ(p)`,m : (p, `,m) ∈ Sj
}))

= E
(
x̂j E

( i+1∏
k=1

(
1 + δ

(i)
j,k

) ∣∣∣ { δ(p)`,m : (p, `,m) ∈ Sj }
))

= E(x̂j) = xj ,

where the penultimate equality follows from Lemma 6.4, which is applicable by

Lemma 5.2 and since the rounding errors δ
(i)
j,k occur later than the rounding errors

{ δ(p)`,m : (p, `,m) ∈ Sj } for all j < i. Equation (6.2) now gives

tii E(x̂i) = bi −
i−1∑
j=1

tijxj = tiixi,

so E(x̂i) = xi. The result follows by induction.

These results do not extend to matrix factorizations and the solution of general
linear systems by LU factorization. The reason is that such kernels involve divisions by
computed quantities, which leads to a nonzero mean error because E(1/X) 6= 1/E(X).
For example, the Doolittle form of LU factorization [15, sec. 9.2] gives the following
recurrence for the lower triangular factor:

`ik =

(
aik −

k−1∑
j=1

̂̀
ij ûjk

)/
ûkk,

where the division by the computed ûkk prevents the mean of the computed `ik
equalling `ik.

7. Numerical experiments. We present a set of numerical experiments to

verify that mode 1 stochastic rounding obeys the probabilistic bound γ̃
(s)
n (λ) in (4.6)

for inner products without fail, even when the bound does not hold for round to
nearest. To that end, we revisit the numerical experiments of [16], which give two
examples where the bound is violated with round to nearest.

We use the implementation of stochastic rounding provided in the MATLAB
function chop3 [18]. The computations are performed in MATLAB R2019b. The pre-
cisions used are half precision (fp16) and single precision (fp32). Reference solutions
used in backward error formulas are computed in double precision (fp64).

In Figure 7.1 we plot the backward error for the inner product of two random
vectors with constant entries, the two constants being sampled uniformly from [0, 1].
We also plot γn and

γ̃(s)n (λ) = exp

(
2λ
√
nu+ 4nu2

1− 2u

)
− 1 = 2λ

√
nu+O(u2),

which is γ̃n(λ) in (4.2) with u replaced by 2u. We take λ = 1, as in the experiments
of [16]. With round to nearest, the error does not satisfy the bound (4.6), which is

3https://github.com/higham/chop
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Fig. 7.1: Computed backward errors of inner products for random constant vectors in (a) fp32 and
(b) fp16. For each value of n we perform the computation 10 times and plot the maximum backward
error for round to nearest (RTN ) and stochastic rounding (SR).

proportional to
√
nu, but rather grows proportionally to nu. As explained in [16],

since the entries in each vector are constant, so too are the rounding errors within
intervals of consecutive powers of 2. For round to nearest we thus have

E(δk+1 | δ1, . . . , δk) = δk+1 6= 0

for any δk+1 unless it is the first rounding error incurred within the current interval
of consecutive powers of two. Therefore the rounding errors are clearly not mean
independent. However, stochastic rounding avoids producing constant rounding errors
by randomizing them, and it thereby yields a much smaller error that satisfies the
probabilistic bound (4.6).

The second example displays the phenomenon of stagnation [4], [16]. It arises
when summing a large number of terms of identical sign (positive, say). Consider,
for example, the following recursive summation algorithm to compute the sum s =∑n
i=1 xi of nonnegative xi.

s← x1
for i = 2 : n do

s← s+ xi
end for

Since the xi are all nonnegative, the sum s grows monotonically with i. At some
point, the sum becomes so large that the spacing ψ of floating-point numbers around
s becomes larger than the xi. Specifically, if the xi are less than ψ/2, then with round
to nearest the computed sum absorbs the xi and no longer grows, that is, ŝi+1 = ŝi.
This leads to necessarily negative rounding errors, which therefore causes the error
to start growing as nu rather than

√
nu. This stagnation is especially critical when

using low precisions, since it can occur even for moderate values of n.
Figure 7.2 illustrates this phenomenon with the inner product of two vectors with

random entries uniformly sampled in [0, 1]. With round to nearest, stagnation occurs
for n & 106 in single precision and for n & 104 in half precision. Stochastic rounding
does not suffer stagnation and is able to maintain an error growth bounded by

√
nu.

This is because stochastic rounding allows the sum to continue growing: indeed, each
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Fig. 7.2: Computed backward errors of inner products for data sampled from [0, 1] in (a) fp32 and
(b) fp16. For each value of n we perform the computation 10 times and plot the maximum backward
error for each rounding mode.

increment has a small probability of increasing the sum to the next floating-point
number, and statistically for a large number of increments the sum averages out to
the exact sum. Theorem 6.2 makes this argument rigorous: the expected value of the
computed inner product is the exact inner product.

In conclusion, these two examples illustrate that even in situations where round
to nearest leads to rounding errors violating the assumptions required for the prob-
abilistic bound (4.4) to hold, stochastic rounding still enforces these assumptions.
Stochastic rounding can therefore produce significantly more accurate results than
round to nearest by reducing the error from nu to

√
nu. In particular, this explains

the improvements from using stochastic rounding reported in deep learning applica-
tions.

The two examples above are bad cases for round to nearest. Figure 7.3 shows the
results of an experiment with inner products of vectors x and y with elements from
the uniform distribution on [−1, 1]. In this case the errors for stochastic rounding and
round to nearest do not grow with n and so are both much less than the probabilistic
error bound. The reason the errors do not grow is that the elements of x and y have
mean zero [17, Thm. 3.2]. Overall, round to nearest provides slightly more accurate
results than stochastic rounding in this example, as might be expected in view of (2.3)
and (2.4b).

8. Conclusions. Stochastic rounding is an old idea that is drawing renewed
interest, notably in the context of deep learning. We have presented rounding er-
ror analyses applicable to a wide range of numerical linear algebra algorithms using
floating-point arithmetic with stochastic rounding, and we expect our conclusions to
extend to fixed-point arithmetic.

Stochastic rounding satisfies the basic model of floating-point arithmetic (2.3),
provided that the unit roundoff u is replaced by 2u; see (2.4b). However, we have
identified several properties of round to nearest that no longer hold with stochastic
rounding. Before replacing round to nearest by stochastic rounding in a computation
one should therefore check whether these properties are needed.
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Fig. 7.3: Computed backward errors of inner products for data sampled uniformly from [−1, 1] in
fp32 (a) and fp16 (b). For each value of n we perform the computation 10 times and plot the
maximum backward error for each rounding mode.

Stochastic rounding has some attractive features compared with round to nearest,
especially for large problems and low precisions. We have shown that stochastic
rounding has the property that the rounding errors it produces are mean independent.
We have also generalized the probabilistic error analysis result of [16] (Lemma 4.2 here)
by weakening the independence assumption to mean independence (Theorem 4.6). An
important consequence of these results is that for stochastic rounding a worst-case
error bound nu can be replaced by the more realistic probabilistic error bound

√
nu—

that is, the long-standing rule of thumb is actually a rule for stochastic rounding.
Stochastic rounding can yield significantly more accurate results than round to

nearest in the situations where the latter violates the probabilistic bounds, notably in
certain sums and inner products. In particular, we have proved that stochastic round-
ing avoids stagnation and that the computed result has expected value equal to the
exact sum. These findings are particularly important for deep learning applications,
where stagnation can hamper parameter updates in neural networks.
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