## Accuracy and Stability of Block Low-Rank Linear Solvers

Theo Mary
University of Manchester, School of Mathematics
LIP6, Sorbonne Université, 6 December 2018

## Context



## Linear system $A x=b$

Often a keystone in scientific computing applications (discretization of PDEs, step of an optimization method, ...)

Large, sparse matrices
Matrix $A$ is sparse (many zeros) but also large ( $10^{6}-10^{9}$ unknowns)
Direct methods
Factorize $A=L U$ and solve $L U x=b$
(:) Numerically reliable
(2) Computational cost

## 1. Complexity and performance of BLR linear solvers

P. Amestoy, A. Buttari, J.-Y. L'Excellent, and T. Mary. On the Complexity of the Block Low-Rank Multifrontal Factorization. SIAM J. Sci. Comput. (2017).
P. Amestoy, A. Buttari, J.-Y. L'Excellent, and T. Mary. Performance and Scalability of the Block Low-Rank

Multifrontal Factorization on Multicore Architectures. ACM Trans. Math. Soft. (2018).
P. Amestoy, A. Buttari, J.-Y. L'Excellent, and T. Mary. Bridging the gap between flat and hierarchical low-
rank matrix formats: the multilevel BLR format. Submitted (2018).
2. Rounding error analysis of BLR factorization
3. Low-accuracy BLR preconditioners
N. Higham and T. Mary. A New Preconditioner that Exploits Low-Rank Approximations to Factorization Error. SIAM J. Sci. Comp (2018).
4. Probabilistic rounding error analysis
N. Higham and T. Mary. A New Approach to Probabilistic Rounding Error Analysis. Submitted (2018).

Complexity and performance of BLR linear solvers


2D problem complexity

- Flops: $O\left(n^{3}\right) \rightarrow O\left(n^{3 / 2}\right)$
- Storage: $O\left(n^{2}\right) \rightarrow O(n \log n)$

3D problem complexity

- Flops: $O\left(n^{3}\right) \rightarrow O\left(n^{2}\right)$
- Storage: $O\left(n^{2}\right) \rightarrow O\left(n^{4 / 3}\right)$



## Data sparsity

In many cases of interest the matrix has a block low-rank structure


A block $B$ represents the interaction between two subdomains.
Far away subdomains $\Rightarrow$ block of low numerical rank:

$$
\underset{b \times b}{B} \approx \underset{b \times k_{\varepsilon}}{ } \quad k_{\varepsilon} \times b
$$

with $k_{\varepsilon} \ll b$ such that $\left\|B-X Y^{\top}\right\| \leq \varepsilon$

## Flat vs hierarchical matrices

How to choose a good block partitioning of the matrix?


BLR matrix

- Superlinear complexity
- Simple, flat structure

$\mathcal{H}$-matrix
- Nearly linear complexity
- Complex, hierarchical structure


## BLR factorization: standard FCU variant



- FCU


## BLR factorization: standard FCU variant



- FCU (Factor,
- Easy to handle numerical pivoting


## BLR factorization: standard FCU variant



- FCU (Factor, Compress,
- Easy to handle numerical pivoting


## BLR factorization: standard FCU variant



- FCU (Factor, Compress, Update)
- Easy to handle numerical pivoting


## BLR factorization: standard FCU variant



- FCU (Factor, Compress, Update)
- Easy to handle numerical pivoting


## BLR factorization: standard FCU variant



- FCU (Factor, Compress, Update)
- Easy to handle numerical pivoting


## BLR factorization: standard FCU variant



- FCU (Factor, Compress, Update)
- Easy to handle numerical pivoting


## BLR factorization: standard FCU variant



- FCU (Factor, Compress, Update)
- Easy to handle numerical pivoting


## BLR factorization: standard FCU variant



- FCU (Factor, Compress, Update)
- Easy to handle numerical pivoting


## BLR factorization: standard FCU variant



- FCU (Factor, Compress, Update)
- Easy to handle numerical pivoting


## BLR factorization: standard FCU variant



- FCU (Factor, Compress, Update)
- Easy to handle numerical pivoting


## CFU factorization variant



- CFU


## CFU factorization variant



- CFU (Compress,


## CFU factorization variant



- CFU (Compress, Factor,
- Factor step is performed on compressed blocks $\Rightarrow$ reduced flops


## CFU factorization variant



- CFU (Compress, Factor, Update)
- Factor step is performed on compressed blocks $\Rightarrow$ reduced flops


## CFU factorization variant



- CFU (Compress, Factor, Update)
- Factor step is performed on compressed blocks $\Rightarrow$ reduced flops
- How can we handle numerical pivoting?


## CFU factorization variant



- CFU (Compress, Factor, Update)
- Factor step is performed on compressed blocks $\Rightarrow$ reduced flops
- How can we handle numerical pivoting?
- Restricting pivot choice to diagonal block is acceptable (in combination with a pivot delaying strategy)


## CFU factorization variant



- CFU (Compress, Factor, Update)
- Factor step is performed on compressed blocks $\Rightarrow$ reduced flops
- How can we handle numerical pivoting?
- Restricting pivot choice to diagonal block is acceptable (in combination with a pivot delaying strategy)
- Must still check entries in off-diagonal blocks: can be estimated from entries in low-rank blocks


## Complexity of the BLR factorization

P. Amestoy, A. Buttari, J.-Y. L'Excellent, and T. Mary. On the Complexity of the Block Low-Rank Multifrontal Factorization. SIAM J. Sci. Comput. (2017).

| storage |  |  |  |
| :--- | :--- | :--- | :--- |
| flops |  |  |  |
|  | FR | $O\left(m^{2}\right)$ | $O\left(m^{3}\right)$ |
|  | BLR | $O\left(m^{3 / 2}\right)$ | $O\left(m^{2}\right)$ |
|  | $\mathcal{H}$ | $O(m \log m)$ | $O\left(m \log ^{2} m\right)$ |
|  |  |  |  |
|  |  |  |  |
| (assuming $r=O(1))$ |  |  |  |

## Complexity of the BLR factorization

P. Amestoy, A. Buttari, J.-Y. L'Excellent, and T. Mary. On the Complexity of the Block Low-Rank Multifrontal Factorization. SIAM J. Sci. Comput. (2017).

| storage |  |  |  |  |  |
| :--- | :--- | :--- | :--- | :---: | :---: |
| flops |  |  |  |  |  |
|  | FR | $O\left(m^{2}\right)$ | $O\left(m^{3}\right)$ |  |  |
|  | BLR | $O\left(m^{3 / 2}\right)$ | $O\left(m^{2}\right)$ |  |  |
|  | $\mathcal{H}$ | $O(m \log m)$ | $O\left(m \log ^{2} m\right)$ |  |  |
|  | FR | $O(n \log n)$ | $O\left(n^{3 / 2}\right)$ |  |  |
|  | BLR | $O(n)$ | $O(n \log n)$ |  |  |
|  | $\mathcal{H}$ | $O(n)$ | $O(n)$ |  |  |
|  |  |  |  |  |  |
| (assuming $r=O(1))$ |  |  |  |  |  |

- In a 2D world hierarchical matrices would not be needed


## Complexity of the BLR factorization

P. Amestoy, A. Buttari, J.-Y. L'Excellent, and T. Mary. On the Complexity of the Block Low-Rank Multifrontal Factorization. SIAM J. Sci. Comput. (2017).

| storage |  |  | flops |
| :--- | :--- | :--- | :--- |
| dense | FR | $O\left(m^{2}\right)$ | $O\left(m^{3}\right)$ |
|  | BLR | $O\left(m^{3 / 2}\right)$ | $O\left(m^{2}\right)$ |
|  | $\mathcal{H}$ | $O(m \log m)$ | $O\left(m \log ^{2} m\right)$ |
| sparse 2D | FR | $O(n \log n)$ | $O\left(n^{3 / 2}\right)$ |
|  | BLR | $O(n)$ | $O(n \log n)$ |
|  | $\mathcal{H}$ | $O(n)$ | $O(n)$ |
| sparse 3D | FR | $O\left(n^{4 / 3}\right)$ | $O\left(n^{2}\right)$ |
|  | BLR | $O(n \log n)$ | $O\left(n^{4 / 3}\right)$ |
|  | $\mathcal{H}$ | $O(n)$ | $O(n)$ |
| (assuming $r=O(1))$ |  |  |  |

- In a 2D world hierarchical matrices would not be needed
- Superlinear complexities in 3D


## Multilevel BLR format

Flop complexity (assuming $r=O(1)$ ):

|  | BLR | Hierar. |
| :--- | :--- | :--- |
| Dense | $O\left(m^{2}\right)$ | $O\left(m \log ^{2} m\right)$ |
| Sparse (2D) | $O(n \log n)$ | $O(n)$ |
| Sparse (3D) | $O\left(n^{1.33}\right)$ | $O(n)$ |



## Multilevel BLR format

Flop complexity (assuming $r=O(1)$ ):

|  | BLR | Hierar. |
| :--- | :--- | :--- |
| Dense | $O\left(m^{2}\right)$ | $O\left(m \log ^{2} m\right)$ |
| Sparse (2D) | $O(n \log n)$ | $O(n)$ |
| Sparse (3D) | $O\left(n^{1.33}\right)$ | $O(n)$ |

Multilevel BLR (MBLR) format: refine full-rank blocks up to a constant number of levels $\ell$
P. Amestoy, A. Buttari, J.-Y. L'Excellent, and T. Mary. Bridging the gap between flat and hierarchical low-rank matrix formats: the multilevel BLR format. Submitted (2018).


## Multilevel BLR format

Flop complexity (assuming $r=O(1)$ ):

|  | $\ell=1$ | $\ell=2$ | Hierar. |
| :--- | :--- | :--- | :--- |
| Dense | $O\left(m^{2}\right)$ | $O\left(m^{1.66}\right)$ | $O\left(m \log ^{2} m\right)$ |
| Sparse (2D) | $O(n \log n)$ | $O(n)$ | $O(n)$ |
| Sparse (3D) | $O\left(n^{1.33}\right)$ | $O\left(n^{1.11}\right)$ | $O(n)$ |

Multilevel BLR (MBLR) format: refine full-rank blocks up to a constant number of levels $\ell$
P. Amestoy, A. Buttari, J.-Y. L'Excellent, and T. Mary. Bridging the gap between flat and hierarchical low-rank matrix formats: the multilevel BLR format. Submitted (2018).


## Multilevel BLR format

Flop complexity (assuming $r=O(1)$ ):

|  | $\ell=1$ | $\ell=2$ | $\ell=3$ | Hierar. |
| :--- | :--- | :--- | :--- | :--- |
| Dense | $O\left(m^{2}\right)$ | $O\left(m^{1.66}\right)$ | $O\left(m^{1.5}\right)$ | $O\left(m \log ^{2} m\right)$ |
| Sparse (2D) | $O(n \log n)$ | $O(n)$ | $O(n)$ | $O(n)$ |
| Sparse (3D) | $O\left(n^{1.33}\right)$ | $O\left(n^{1.11}\right)$ | $O(n \log n)$ | $O(n)$ |

Multilevel BLR (MBLR) format: refine full-rank blocks up to a constant number of levels $\ell$
P. Amestoy, A. Buttari, J.-Y. L'Excellent, and T. Mary. Bridging the gap between flat and hierarchical low-rank matrix formats: the multilevel BLR format. Submitted (2018).


## Multilevel BLR format

Flop complexity (assuming $r=O(1)$ ):

|  | $\ell=1$ | $\ell=2$ | $\ell=3$ | $\ell=4$ | Hierar. |
| :--- | :--- | :--- | :--- | :--- | :--- |
| Dense | $O\left(m^{2}\right)$ | $O\left(m^{1.66}\right)$ | $O\left(m^{1.5}\right)$ | $O\left(m^{1.4}\right)$ | $O\left(m \log ^{2} m\right)$ |
| Sparse (2D) | $O(n \log n)$ | $O(n)$ | $O(n)$ | $O(n)$ | $O(n)$ |
| Sparse (3D) | $O\left(n^{1.33}\right)$ | $O\left(n^{1.11}\right)$ | $O(n \log n)$ | $O(n)$ | $O(n)$ |

Multilevel BLR (MBLR) format: refine full-rank blocks up to a constant number of levels $\ell$
P. Amestoy, A. Buttari, J.-Y. L'Excellent, and T. Mary. Bridging the gap between flat and hierarchical low-rank matrix formats: the multilevel BLR format. Submitted (2018).


## Multilevel BLR format

Flop complexity (assuming $r=O(1)$ ):

|  | $\ell=1$ | $\ell=2$ | $\ell=3$ | $\ell=4$ | Hierar. |
| :--- | :--- | :--- | :--- | :--- | :--- |
| Dense | $O\left(m^{2}\right)$ | $O\left(m^{1.66}\right)$ | $O\left(m^{1.5}\right)$ | $O\left(m^{1.4}\right)$ | $O\left(m \log ^{2} m\right)$ |
| Sparse (2D) | $O(n \log n)$ | $O(n)$ | $O(n)$ | $O(n)$ | $O(n)$ |
| Sparse (3D) | $O\left(n^{1.33}\right)$ | $O\left(n^{1.11}\right)$ | $O(n \log n)$ | $O(n)$ | $O(n)$ |

Multilevel BLR (MBLR) format: refine full-rank blocks up to a constant number of levels $\ell$
P. Amestoy, A. Buttari, J.-Y. L'Excellent, and T. Mary. Bridging the gap between flat and hierarchical low-rank matrix formats: the multilevel BLR format. Submitted (2018).


With $r=O(1)$ only 4 levels are enough (even fewer needed for storage and sparse 2D complexities). With larger ranks more levels needed but gain from adding more levels decreases rapidly
Matrix S3

Double complex (z) symmetric Electromagnetics application (CSEM)
3.3 millions unknowns

Required accuracy: $\varepsilon=10^{-7}$
D. Shantsev, P. Jaysaval, S. Kethulle de Ryhove, P. Amestoy, A. Buttari, J.-Y. L'Excellent, and T. Mary. Large-scale 3D EM modeling with a
 Block Low-Rank multifrontal direct solver. Geophys. J. Int (2017).
flops $\left(\times 10^{12}\right)$ time ( 1 core) time ( 24 cores)

| FR | 78.0 | 7390 | 509 |
| :---: | :---: | :---: | :---: |
| BLR | 10.2 | 2242 | 307 |
| ratio | 7.7 | 3.3 | 1.7 |

7.7 gain in flops only translated to a 1.7 gain in time:

Can we do better?

## Improving the performance of BLR factorization

| Variant name | time | FR/BLR ratio |
| :--- | :---: | :---: |
| Full-Rank | 509 |  |
| BLR (FCU) | 307 | 1.7 |
|  |  |  |

## Improving the performance of BLR factorization

Tree parallelism improves performance by reducing the relative cost of the fronts at the bottom of the tree, which achieve poor compression

| Variant name | time | FR/BLR ratio |
| :--- | :---: | :---: | :---: |
| Full-Rank <br> + Tree par. | 509 |  |
| BLR (FCU) |  |  |
| +Tree par. | 318 |  |

## Improving the performance of BLR factorization

Left-looking FCU improves performance thanks to a left-looking approach which reduces memory transfers

| Variant name | time | FR/BLR ratio |
| :--- | :---: | :---: |
| Full-Rank | 509 |  |
| +Tree par. | 418 |  |
| BLR (FCU) | 307 | 1.7 |
| +Tree par. | 221 | 1.9 |
| +Left-looking | 175 | 2.4 |
|  |  |  |
|  |  |  |



## Improving the performance of BLR factorization

LUA improves performance because it accumulates multiple low-rank updates and applies them at once increasing the granularity of operations

| Variant name | time | FR/BLR ratio |
| :---: | :---: | :---: |
| Full-Rank | 509 |  |
| +Tree par. | 418 |  |
| BLR (FCU) | 307 | 1.7 |
| + Tree par. | 221 | 1.9 |
| +Left-looking | 175 | 2.4 |
| +Accumulation | 167 | 2.5 |

## Improving the performance of BLR factorization

LUAR reduces complexity because recompresses accumulated updates on the fly

| Variant name | time | FR/BLR ratio |
| :---: | :---: | :---: |
| Full-Rank <br> +Tree par. | $\begin{aligned} & 509 \\ & 418 \end{aligned}$ |  |
| BLR (FCU) | 307 | 1.7 |
| + Tree par. | 221 | 1.9 |
| +Left-looking | 175 | 2.4 |
| + Accumulation | 167 | 2.5 |
| +Recompression | 160 | 2.6 |

## Improving the performance of BLR factorization

CFU reduces complexity because solve operations are also done in low-rank

| Variant name | time | FR/BLR ratio |
| :--- | :---: | :---: |
| Full-Rank | 509 |  |
| +Tree par. | 418 |  |
| BLR (FCU) | 307 | 1.7 |
| +Tree par. | 221 | 1.9 |
| +Left-looking | 175 | 2.4 |
| +Accumulation | 167 | 2.5 |
| +Recompression | 160 | 2.6 |
| +CFU | 111 | 3.8 |



## Improving the performance of BLR factorization

| Variant name | time | FR/BLR ratio |
| :--- | :---: | :---: |
| Full-Rank | 509 |  |
| +Tree par. | 418 |  |
| BLR (FCU) | 307 | 1.7 |
| +Tree par. | 221 | 1.9 |
| +Left-looking | 175 | 2.4 |
| +Accumulation | 167 | 2.5 |
| +Recompression | 160 | 2.6 |
| +CFU | 111 | 3.8 |

Converting the theoretical flop reduction into actual time gains on modern architectures requires careful algorithmic work

## Multicore performance results (24 cores)

Results with the BLR MUMPS solver:
国
P. Amestoy, A. Buttari, J.-Y. L'Excellent, and T. Mary. Performance and Scalability of the Block Low-Rank Multifrontal Factorization on Multicore Architectures. ACM Trans. Math. Soft. (2018).


## Distributed-memory performance results

Results on $300 \rightarrow 900$ cores
(eos supercomputer, CALMIP)


## Matrix 10 Hz

Single complex (c) unsymmetric Seismic imaging application (FWI)

17 millions unknowns Required accuracy: $\varepsilon=10^{-3}$
P. Amestoy, R. Brossier, A. Buttari, J.-Y. L'Excellent, T. Mary, L. Métivier, A. Miniussi, and S. Operto. Fast 3D frequencydomain full waveform inversion with a parallel Block LowRank multifrontal direct solver: application to OBC data from the North Sea. Geophysics (2016).

How to improve the scalability of the BLR factorization?
Two main difficulties:

- Higher weight of communications: flops reduced by 13 but volume of communications only by 2
- Unpredictability of compression: more difficult to design good mapping and scheduling strategies


## Rounding error analysis of

 BLR factorization
## Why we need an error analysis



Each off-diagonal block $B$ is approximated by a low-rank matrix $\widetilde{B}$ such that $\|B-\widetilde{B}\| \leq \varepsilon\|B\|$ $\Rightarrow\left\|A-A_{\varepsilon}\right\| \leq \varepsilon\|A\|$ with good norm choice However:
$\left\|A-L_{\varepsilon} U_{\varepsilon}\right\| \neq \varepsilon$ because of rounding errors
$\Rightarrow$ What is the overall accuracy $\left\|A-L_{\varepsilon} \cup_{\varepsilon}\right\|$ ?

- Can we prove that $\left\|A-L_{\varepsilon} U_{\varepsilon}\right\|=O(\varepsilon)$ ? What is the role of the unit roundoff $u$ ?
- What is the error growth, i.e., how does the error depend on the matrix size $n$ ?
- How do the different variants (FCU, CFU, etc.) compare?
- Should we use an absolute threshold $(\|B-\widetilde{B}\| \leq \varepsilon)$ or a relative one $(\|B-\widetilde{B}\| \leq \varepsilon\|B\|)$ ?


## Main result: statement

## Reminder

The full-rank LU factorization of $A \in \mathbb{R}^{n \times n}$ satisfies

$$
\|A-L U\| \leq n u\|L\|\|U\|+O\left(u^{2}\right)
$$

## Main result

The FCU BLR factorization of $A \in \mathbb{R}^{n \times n}$ with relative threshold $\varepsilon$ satisfies

$$
\left\|A-L_{\varepsilon} U_{\varepsilon}\right\| \leq(n u+\varepsilon)\|L\|\|U\|+O(u \varepsilon)+O\left(u^{2}\right)
$$

The proof is quite technical and based on Stability of Block Algorithms with Fast Level-3 BLAS (Demmel and Higham, 1992)

## Main result: comments

## Main result

The FCU BLR factorization of $A \in \mathbb{R}^{n \times n}$ with relative threshold $\varepsilon$ satisfies

$$
\left\|A-L_{\varepsilon} \cup_{\varepsilon}\right\| \leq(n u+\varepsilon)\|L\|\|U\|+O(u \varepsilon)+O\left(u^{2}\right)
$$

## Main result: comments

## Main result

The FCU BLR factorization of $A \in \mathbb{R}^{n \times n}$ with relative threshold $\varepsilon$ satisfies

$$
\left\|A-L_{\varepsilon} \cup_{\varepsilon}\right\| \leq(n u+\varepsilon)\|L\|\|U\|+O(u \varepsilon)+O\left(u^{2}\right)
$$

- $\|L\|\|U\| \leq n^{2} \rho_{n}\|A\|$ where $\rho_{n}$ is the growth factor $\Rightarrow$ with partial pivoting, the BLR factorization is stable!


## Main result: comments

## Main result

The FCU BLR factorization of $A \in \mathbb{R}^{n \times n}$ with relative threshold $\varepsilon$ satisfies

$$
\left\|A-L_{\varepsilon} \cup_{\varepsilon}\right\| \leq(n u+\varepsilon)\|L\|\|U\|+O(u \varepsilon)+O\left(u^{2}\right)
$$

- $\|L\|\|U\| \leq n^{2} \rho_{n}\|A\|$ where $\rho_{n}$ is the growth factor $\Rightarrow$ with partial pivoting, the BLR factorization is stable!
- Usually $\varepsilon \gg u$ :
$\Rightarrow$ Role of $u$ is limited
$\Rightarrow$ Very slow error growth
$\Rightarrow$ Usage of fast matrix arithmetic may be stable in BLR


## Main result: comments

## Main result

The FCU BLR factorization of $A \in \mathbb{R}^{n \times n}$ with relative threshold $\varepsilon$ satisfies

$$
\left\|A-L_{\varepsilon} \cup_{\varepsilon}\right\| \leq(n u+\varepsilon)\|L\|\|U\|+O(u \varepsilon)+O\left(u^{2}\right)
$$

- $\|L\|\left\|\|U\| \leq n^{2} \rho_{n}\right\| A \|$ where $\rho_{n}$ is the growth factor $\Rightarrow$ with partial pivoting, the BLR factorization is stable!
- Usually $\varepsilon \gg u$ :
$\Rightarrow$ Role of $u$ is limited
$\Rightarrow$ Very slow error growth
$\Rightarrow$ Usage of fast matrix arithmetic may be stable in BLR



## Main result: comments

## Main result

The FCU BLR factorization of $A \in \mathbb{R}^{n \times n}$ with relative threshold $\varepsilon$ satisfies

$$
\left\|A-L_{\varepsilon} \cup_{\varepsilon}\right\| \leq(n u+\varepsilon)\|L\|\|U\|+O(u \varepsilon)+O\left(u^{2}\right)
$$

- $\|L\|\left\|\|U\| \leq n^{2} \rho_{n}\right\| A \|$ where $\rho_{n}$ is the growth factor $\Rightarrow$ with partial pivoting, the BLR factorization is stable!
- Usually $\varepsilon \gg u$ :
$\Rightarrow$ Role of $u$ is limited
$\Rightarrow$ Very slow error growth
$\Rightarrow$ Usage of fast matrix arithmetic may be stable in BLR



## Main result: comments

## Main result

The FCU BLR factorization of $A \in \mathbb{R}^{n \times n}$ with relative threshold $\varepsilon$ satisfies

$$
\left\|A-L_{\varepsilon} \cup_{\varepsilon}\right\| \leq(n u+\varepsilon)\|L\|\|U\|+O(u \varepsilon)+O\left(u^{2}\right)
$$

- $\|L\|\left\|\|U\| \leq n^{2} \rho_{n}\right\| A \|$ where $\rho_{n}$ is the growth factor $\Rightarrow$ with partial pivoting, the BLR factorization is stable!
- Usually $\varepsilon \gg u$ :
$\Rightarrow$ Role of $u$ is limited
$\Rightarrow$ Very slow error growth
$\Rightarrow$ Usage of fast matrix arithmetic may be stable in BLR

For example with Strassen's algorithm, $n u \rightarrow n^{\log _{2} 12} u \approx n^{3.6} u$

Ongoing work with C.-P. Jeannerod, C. Pernet, and D. Roche: Exploiting fast matrix arithmetic within BLR factorizations:
$O\left(n^{2}\right)$ complexity $\rightarrow O\left(n^{(\omega+1) / 2}\right)$ ( $\approx O\left(n^{1.9}\right)$ for Strassen)

## Relative vs absolute threshold

## Theorem

The FCU BLR factorization of $A \in \mathbb{R}^{n \times n}$ with absolute threshold $\varepsilon$ satisfies

$$
\left\|A-L_{\varepsilon} U_{\varepsilon}\right\| \leq(n u+\theta \varepsilon)\|L\|\|U\|+O(u \varepsilon)+O\left(u^{2}\right)
$$

where $\theta=\sqrt{n / b-1} \sum_{i=1}^{n / b}\left\|L_{i i}\right\|+\left\|U_{i i}\right\|$

The BLR factorization with absolute threshold
© Has a faster error growth
© Is scaling-dependent

## Relative vs absolute threshold

## Theorem

The FCU BLR factorization of $A \in \mathbb{R}^{n \times n}$ with absolute threshold $\varepsilon$ satisfies

$$
\left\|A-L_{\varepsilon} U_{\varepsilon}\right\| \leq(n u+\theta \varepsilon)\|L\|\|U\|+O(u \varepsilon)+O\left(u^{2}\right)
$$

where $\theta=\sqrt{n / b-1} \sum_{i=1}^{n / b}\left\|L_{i i}\right\|+\left\|U_{i i}\right\|$

The BLR factorization with absolute threshold
© Has a faster error growth
© Is scaling-dependent
(). Is more efficient in practice


## Error analysis: CFU variant

## Theorem

The CFU BLR factorization of $A \in \mathbb{R}^{n \times n}$ with relative threshold $\varepsilon$ satisfies

$$
\left\|A-L_{\varepsilon} U_{\varepsilon}\right\| \leq(n u+\varepsilon)\|L\|\|U\|+O(\kappa(A) u \varepsilon)+O\left(u^{2}\right)
$$

## Error analysis: CFU variant

## Theorem

The CFU BLR factorization of $A \in \mathbb{R}^{n \times n}$ with relative threshold $\varepsilon$ satisfies

$$
\left\|A-L_{\varepsilon} \cup_{\varepsilon}\right\| \leq(n u+\varepsilon)\|L\|\|U\|+O(\kappa(A) u \varepsilon)+O\left(u^{2}\right)
$$



## Error analysis: CFU variant

## Theorem

The CFU BLR factorization of $A \in \mathbb{R}^{n \times n}$ with relative threshold $\varepsilon$ satisfies

$$
\left\|A-L_{\varepsilon} \cup_{\varepsilon}\right\| \leq(n u+\varepsilon)\|L\|\|U\|+O(\kappa(A) u \varepsilon)+O\left(u^{2}\right)
$$




Low-accuracy BLR preconditioners

## Low-accuracy BLR preconditioners: storage

BLR factorization + GMRES solve with stopping tolerance $10^{-9}$

| Matrix | $n$ | Time (s) |  | Storage (GB) |  |
| :--- | :---: | :---: | :---: | :---: | :---: |
|  |  | $\varepsilon=10^{-2}$ | $\varepsilon=10^{-8}$ | $\varepsilon=10^{-2}$ | $\varepsilon=10^{-8}$ |
| audikw_1 | 1.0 M | 1163 | 69 | 5 | 10 |
| Bump_2911 | 2.9 M | - | 282 | 34 | 56 |
| Emilia_923 | 0.9 M | 304 | 63 | 7 | 12 |
| Fault_639 | 0.6 M | - | 45 | 5 | 9 |
| Ga41As41H72 | 0.3 M | - | 76 | 12 | 17 |
| Hook_1498 | 1.5 M | 902 | 75 | 6 | 11 |
| Si87H76 | 0.2 M | - | 62 | 10 | 14 |

Low-accuracy BLR solvers:
© ${ }^{\text {( }}$ are slower and less robust
() but require much less storage

## Improved preconditioner: context

## Objective

- Compute solution to linear system $A x=b$
- $A \in \mathbb{R}^{n \times n}$ is ill conditioned


## LU-based preconditioner

1. Compute approximate factorization $A=\widehat{L} \widehat{U}+\Delta A$

- Half-precision factorization
- Incomplete LU factorization
- Structured matrix factorization: Block Low-Rank, $\mathcal{H}$, HSS,...

2. Solve $\Pi_{L \cup} A x=\Pi_{L \cup b}$ with $\Pi_{L U}=\widehat{U}^{-1} \widehat{L}^{-1}$ via some iterative method

- Convergence to solution may be slow or fail
$\Rightarrow$ Objective: accelerate convergence


## Improved preconditioner: key observation

Matrix lund_a $(n=147, \kappa(A)=2.8 e+06)$



- Often, $A$ is ill conditioned due to a small number of small singular values
- Then, $A^{-1}$ is numerically low-rank


## Improved preconditioner: key idea

## Factorization error might be low-rank?

Let the error $E=\widehat{U}^{-1} \widehat{L}^{-1} A-I=\widehat{U}^{-1} \widehat{L}^{-1}(\widehat{L} \widehat{U}+\Delta A)-I$

$$
=\widehat{U}^{-1} \widehat{L}^{-1} \Delta A \approx A^{-1} \Delta A
$$

Does $E$ retain the low-rank property of $A^{-1}$ ?

## A novel preconditioner

Consider the preconditioner

$$
\Pi_{E_{k}}=\left(I+E_{k}\right)^{-1} \Pi_{L U}
$$

with $E_{k}$ a rank-k approximation to $E$.

- If $E=E_{k}, \Pi_{E_{k}}=A^{-1}$
- If $E \approx E_{k}$ for some small $k_{1} \Pi_{E_{k}}$ can be computed cheaply


## Typical SV distributions of $A^{-1}$ and $E$





## Typical SV distributions of $A^{-1}$ and $E$














We did not specifically select matrices for which $A^{-1}$ is low-rank!

## Computing $E_{k}$

We need to compute a rank-k approximation of

$$
E=\widehat{U}^{-1} \widehat{L}^{-1} A-1
$$

E cannot be built explicitly! $\Rightarrow$ use randomized method

Algorithm 1 Randomized SVD via direct SVD of $V^{\top} E$.
1: Sample $E: S=E \Omega$, with $\Omega$ a $n \times(k+p)$ random matrix.
2: Orthonormalize $S: V=\operatorname{ar}(S) . \quad\left\{\Rightarrow E \approx V V^{\top} E.\right\}$
3: Compute truncated SVD $V^{\top} E \approx X_{k} \Sigma_{k} Y_{k}^{\top}$.
4: $E_{k} \approx\left(V X_{k}\right) \Sigma_{k} Y_{k}^{\top}$.

## Improved BLR preconditioners

$$
\text { Results for } \varepsilon=10^{-2} \text { : }
$$

| Matrix | $\Pi_{L U}$ |  | $\Pi_{E_{k}}$ |  |
| :--- | :---: | :---: | :---: | ---: |
|  | Iter. | Time | Iter. | Time |
| audikw_1 | 691 | 1163 | 331 | 625 |
| Bump_2911 | - | - | 284 | 1708 |
| Emilia_923 | 174 | 304 | 136 | 267 |
| Fault_639 | - | - | 294 | 345 |
| Ga41As41H72 | - | - | 135 | 143 |
| Hook_1498 | 417 | 902 | 356 | 808 |
| Si87H76 | - | - | 131 | 116 |

$\Rightarrow$ performance and robustness improvement with zero storage overhead

Probabilistic rounding error analysis

## Context and motivation

Floating-point arithmetic model

$$
f|(a \circ p b)=(a \circ p b)(1+\delta), \quad| \delta \mid \leq u, \quad \text { op } \in\{+,-, \times, /\}
$$

|  | fp64 <br> (double) | fp32 <br> $($ single $)$ | fp16 <br> (half) | fp8 <br> (quarter) |
| :---: | :---: | :---: | :---: | :---: |
| $u$ | $2^{-53}$ | $2^{-24}$ | $2^{-11}$ | $2^{-4}$ |
|  | $\approx 10^{-16}$ | $\approx 10^{-8}$ | $\approx 10^{-4}$ | $\approx 10^{-2}$ |

- In many numerical linear algebra computations, traditional error bounds are proportional to nu, e.g., for LU factorization:

$$
|A-L U| \leq n u|L||U|
$$

$\Rightarrow$ No guarantees if $n u$ is large: issue of growing importance with the rise of large-scale, mixed-precision computations

## Context and motivation

Floating-point arithmetic model

$$
f|(a \circ p b)=(a \circ p b)(1+\delta), \quad| \delta \mid \leq u, \quad \text { op } \in\{+,-, \times, /\}
$$

|  | fp64 <br>  <br> (double) | fp32 <br> (single) | fp16 <br> (half) | fp8 <br> (quarter) |
| :---: | :---: | :---: | :---: | :---: |
| $u$ | $2^{-53}$ | $2^{-24}$ | $2^{-11}$ | $2^{-4}$ |
|  | $\approx 10^{-16}$ | $\approx 10^{-8}$ | $\approx 10^{-4}$ | $\approx 10^{-2}$ |

- In many numerical linear algebra computations, traditional error bounds are proportional to nu, e.g., for LU factorization:

$$
|A-L U| \leq n u|L||U|
$$

$\Rightarrow$ No guarantees if nu is large: issue of growing importance with the rise of large-scale, mixed-precision computations

- This issue is independent of low-rank solvers, but...
- Improved asymptotic complexity $\Rightarrow$ larger $n$
- Error bound dominated by $\varepsilon \Rightarrow$ larger $u$
$\Rightarrow n u>1$ will happen fast with low-rank solvers


## Traditional bounds are pessimistic

The issue is that traditional bounds are worst-case bounds, and are thus pessimistic on average

## Traditional bounds are pessimistic

The issue is that traditional bounds are worst-case bounds, and are thus pessimistic on average

Matrix-vector product (fp32)


Solution of $A x=b(f p 32)$


## Traditional bounds are pessimistic

The issue is that traditional bounds are worst-case bounds, and are thus pessimistic on average

Matrix-vector product (fp16)


Matrix-vector product (fp8)


## Traditional bounds are pessimistic

The issue is that traditional bounds are worst-case bounds, and are thus pessimistic on average

Matrix-vector product (fp16)


Matrix-vector product (fp8)

$\Rightarrow$ Traditional bounds do not provide a realistic picture of the typical behavior of numerical computations

## Key intuition

- Consider the accumulated effect of $n$ rounding errors

$$
s=\sum_{i=1}^{n} \delta_{i}
$$

- The worst-case bound $|s| \leq n u$ is attained when all $\delta_{i}$ have identical sign and maximal magnitude, which intuitively seems very unlikely
- Assume $\delta_{i}$ are random independent variables of mean zero
- Then, the central limit theorem states that if $n$ is sufficiently large, then

$$
s / \sqrt{n} \sim \mathcal{N}(0, u)
$$

$\Rightarrow|s| \leq \lambda \sqrt{n} u$, with $\lambda$ a small constant, holds with high probability (e.g., $99.7 \%$ with $\lambda=3$ by the 3 -sigma rule)

## The rule of thumb

This probabilistic approach had led to the following rule of thumb
In general, the statistical distribution of the rounding errors will reduce considerably the function of $n$ occurring in the relative errors. We might expect in each case that this function should be replaced by something which is no bigger than its square root.

- James Wilkinson, 1961

However, no rigorous result along these lines exists for a wide class of algorithms

## The rule of thumb

This probabilistic approach had led to the following rule of thumb
In general, the statistical distribution of the rounding errors will reduce considerably the function of $n$ occurring in the relative errors. We might expect in each case that this function should be replaced by something which is no bigger than its square root.

- James Wilkinson, 1961

However, no rigorous result along these lines exists for a wide class of algorithms

## Our contribution:

We provide the first rigorous foundation for this rule of thumb
by computing rigorous error bounds that hold with probability at least a certain value for a wide class of linear algebra algorithms

## Objective and assumptions

Fundamental lemma in backward error analysis
If $\left|\delta_{i}\right| \leq u$ for $i=1: n$ and $n u<1$, then

$$
\prod_{i=1}\left(1+\delta_{i}\right)=1+\theta_{n}, \quad\left|\theta_{n}\right| \leq \gamma_{n} \leq n u+O\left(u^{2}\right)
$$

## Objective and assumptions

Fundamental lemma in backward error analysis
If $\left|\delta_{i}\right| \leq u$ for $i=1: n$ and $n u<1$, then

$$
\prod_{i=1}\left(1+\delta_{i}\right)=1+\theta_{n}, \quad\left|\theta_{n}\right| \leq \gamma_{n} \leq n u+O\left(u^{2}\right)
$$

We seek an anologous result by using the following model

## Probabilistic model of rounding errors

In the computation of interest, the quantities $\delta$ in the model

$$
f|(a \circ p b)=(a \circ p b)(1+\delta), \quad| \delta \mid \leq u, \quad \text { op } \in\{+,-, \times, /\}
$$

associated with every pair of operands are independent random variables of mean zero.

There is no claim that ordinary rounding and chopping are random processes, or that successive errors are independent. The question to be decided is whether or not these particular probabilistic models of the processes will adequately describe what actually happens.

## Proof sketch

First step: transform the product in a sum by taking the logarithm

$$
S=\log \prod_{i=1}^{n}\left(1+\delta_{i}\right)=\sum_{i=1}^{n} \log \left(1+\delta_{i}\right)
$$

## Proof sketch

First step: transform the product in a sum by taking the logarithm

$$
S=\log \prod_{i=1}^{n}\left(1+\delta_{i}\right)=\sum_{i=1}^{n} \log \left(1+\delta_{i}\right)
$$

Second step: apply Hoeffding's concentration inequality:

## Hoeffding's inequality

Let $X_{1}, \ldots, X_{n}$ be random independent variables satisfying $\left|X_{i}\right| \leq c_{i}$. Then the sum $S=\sum_{i=1}^{n} X_{i}$ satisfies

$$
\operatorname{Pr}(|S-\mathbb{E}(S)| \geq \xi) \leq 2 \exp \left(-\frac{\xi^{2}}{2 \sum_{i=1}^{n} c_{i}^{2}}\right)
$$

to $X_{i}=\log \left(1+\delta_{i}\right) \Rightarrow$ requires bounding $\log \left(1+\delta_{i}\right)$ and
$\mathbb{E}\left(\log \left(1+\delta_{i}\right)\right)$ using Taylor expansions

## Proof sketch

First step: transform the product in a sum by taking the logarithm

$$
S=\log \prod_{i=1}^{n}\left(1+\delta_{i}\right)=\sum_{i=1}^{n} \log \left(1+\delta_{i}\right)
$$

Second step: apply Hoeffding's concentration inequality:

## Hoeffding's inequality

Let $X_{1}, \ldots, X_{n}$ be random independent variables satisfying $\left|X_{i}\right| \leq c_{i}$. Then the sum $S=\sum_{i=1}^{n} X_{i}$ satisfies

$$
\operatorname{Pr}(|S-\mathbb{E}(S)| \geq \xi) \leq 2 \exp \left(-\frac{\xi^{2}}{2 \sum_{i=1}^{n} c_{i}^{2}}\right)
$$

to $X_{i}=\log \left(1+\delta_{i}\right) \Rightarrow$ requires bounding $\log \left(1+\delta_{i}\right)$ and
$\mathbb{E}\left(\log \left(1+\delta_{i}\right)\right)$ using Taylor expansions
Third step: retrieve the result by taking the exponential of $S$

## Our main result

## Main result

Let $\delta_{i}, i=1: n$, be independent random variables of mean zero such that $\left|\delta_{i}\right| \leq u$. Then, for any constant $\lambda>0$, the relation

$$
\begin{aligned}
\prod_{i=1}^{n}\left(1+\delta_{i}\right)=1+\theta_{n}, \quad\left|\theta_{n}\right| & \leq \widetilde{\gamma}_{n}(\lambda):=\exp \left(\lambda \sqrt{n} u+\frac{n u^{2}}{1-u}\right)-1 \\
& \leq \lambda \sqrt{n} u+O\left(u^{2}\right)
\end{aligned}
$$

holds with probability of failure $P(\lambda)=2 \exp \left(-\lambda^{2}(1-u)^{2} / 2\right)$

## Our main result

## Main result

Let $\delta_{i}, i=1: n$, be independent random variables of mean zero such that $\left|\delta_{i}\right| \leq u$. Then, for any constant $\lambda>0$, the relation

$$
\begin{aligned}
\prod_{i=1}^{n}\left(1+\delta_{i}\right)=1+\theta_{n}, \quad\left|\theta_{n}\right| & \leq \widetilde{\gamma}_{n}(\lambda):=\exp \left(\lambda \sqrt{n u}+\frac{n u^{2}}{1-u}\right)-1 \\
& \leq \lambda \sqrt{n} u+O\left(u^{2}\right)
\end{aligned}
$$

holds with probability of failure $P(\lambda)=2 \exp \left(-\lambda^{2}(1-u)^{2} / 2\right)$
Key features:

- Exact bound, not first order
- nu $<1$ not required
- No " $n$ is sufficiently large" assumption (achieved by replacing the central limit theorem by Hoeffding's inequality)
- Small values of $\lambda$ suffice: $P(1) \approx 0.27, P(5) \leq 10^{-5}$


## Application to numerical linear algebra

Bounds for many numerical linear algebra algorithms are obtained by the repeated application of our main result. For example:

## Probabilistic bound for LU factorization

Let $L U=A+\Delta A$ be the $L U$ factors computed by Gaussian elimination of $A \in \mathbb{R}^{n \times n}$. Then, for any constant $\lambda>0$, the relation

$$
|\Delta A| \leq \widetilde{\gamma}_{n}(\lambda)|L \| U|, \quad\left|\widetilde{\gamma}_{n}(\lambda)\right| \leq \lambda \sqrt{n} u+O\left(u^{2}\right)
$$

holds with probability of failure $\left(n^{3} / 3+n^{2} / 2+7 n / 6\right) P(\lambda)$

## Application to numerical linear algebra

Bounds for many numerical linear algebra algorithms are obtained by the repeated application of our main result. For example:

## Probabilistic bound for LU factorization

Let $L U=A+\Delta A$ be the $L U$ factors computed by Gaussian elimination of $A \in \mathbb{R}^{n \times n}$. Then, for any constant $\lambda>0$, the relation

$$
|\Delta A| \leq \widetilde{\gamma}_{n}(\lambda)|L \| \cup U|, \quad\left|\widetilde{\gamma}_{n}(\lambda)\right| \leq \lambda \sqrt{n} u+O\left(u^{2}\right)
$$

holds with probability of failure $\left(n^{3} / 3+n^{2} / 2+7 n / 6\right) P(\lambda)$

We wish to keep the probabilities independent of $n$ ! Fortunately:

$$
O\left(n^{3}\right) P(\lambda)=O(1) \quad \Rightarrow \quad \lambda=O(\sqrt{\log n})
$$

$\Rightarrow$ error grows no faster than $\sqrt{n \log n} u$

## Application to numerical linear algebra

Bounds for many numerical linear algebra algorithms are obtained by the repeated application of our main result. For example:

## Probabilistic bound for LU factorization

Let $L U=A+\Delta A$ be the $L U$ factors computed by Gaussian elimination of $A \in \mathbb{R}^{n \times n}$. Then, for any constant $\lambda>0$, the relation

$$
|\Delta A| \leq \widetilde{\gamma}_{n}(\lambda)|L \| \cup U|, \quad\left|\widetilde{\gamma}_{n}(\lambda)\right| \leq \lambda \sqrt{n} u+O\left(u^{2}\right)
$$

holds with probability of failure $\left(n^{3} / 3+n^{2} / 2+7 n / 6\right) P(\lambda)$

We wish to keep the probabilities independent of $n$ ! Fortunately:

$$
O\left(n^{3}\right) P(\lambda)=O(1) \quad \Rightarrow \quad \lambda=O(\sqrt{\log n})
$$

$\Rightarrow$ error grows no faster than $\sqrt{n \log n u}$
Moreover the constant hidden in the big $O$ is small:

$$
P(13) \leq 10^{-5} \text { for } n \leq 10^{10}
$$

## Experimental setting

- We use MATLAB R2018b and set rng(1) for reproducibility
- fp16 and fp8 are simulated with the rounding function chop.m from the Matrix Computation Toolbox
- We use both random matrices with entries drawn from the uniform $[-1,1]$ or $[0,1]$ distribution and real-life matrices from the SuiteSparse collection
- We compare the bounds $\gamma_{n}$ and $\widetilde{\gamma}_{n}(\lambda)$ with the componentwise backward error $\varepsilon_{b w d}$ measured as (Oettli-Prager):
- Matrix-vector product $y=A x: \varepsilon_{b w d}=\max _{i} \frac{|\hat{y}-y|_{i}}{(|A||x|)_{i}}$
- Solution to $A x=b$ via $L U$ factorization: $\varepsilon_{b w d}=\max _{i} \frac{|A \widehat{x}-b|_{i}}{(|\hat{L}||\hat{U}| \mid \hat{\|})_{i}}$
- Our codes are available online: https://gitlab.com/theo.andreas.mary/proberranalysis


## Experimental results with $[-1,1]$ entries

Matrix-vector product (fp32)


Solution of $A x=b(f p 32)$


## Experimental results with $[-1,1]$ entries

Matrix-vector product (fp32)


Solution of $A x=b(f p 32)$


- The probabilistic bound is much closer to the actual error
- However for $[-1,1]$ entries it is still pessimistic


## Experimental results with $[0,1]$ entries

Matrix-vector product (fp32)


Solution of $A x=b(f p 32)$


- Probabilistic bound is plotted with $\lambda=1 \Rightarrow P(\lambda)$ is pessimistic...
- ...but $\widetilde{\gamma}_{n}$ bound itself can be sharp and successfully captures the $\sqrt{n}$ error growth
$\Rightarrow$ Therefore the bounds cannot be further improved without further assumptions


## Experimental results with low precisions ( $[-1,1]$ entries)



Matrix-vector product (fp8)


- Importance of the probabilistic bound becomes even clearer for lower precisions


## Experimental results with low precisions ([0, 1] entries)



Matrix-vector product (fp8)


- Importance of the probabilistic bound becomes even clearer for lower precisions

Experimental results with real-life matrices
Solution of $A x=b(f p 64)$,
for 943 matrices from the SuiteSparse collection


## An example where rounding errors are not independent

Inner product of two constant vectors:

$$
\begin{aligned}
s_{i+1} & =s_{i}+a_{i} b_{i}=s_{i}+c \\
\Rightarrow \quad \hat{s}_{i+1} & =\left(\hat{s}_{i}+c\right)\left(1+\delta_{i}\right)
\end{aligned}
$$

## An example where rounding errors are not independent

Inner product of two constant vectors:

$$
\begin{aligned}
s_{i+1} & =s_{i}+a_{i} b_{i}=s_{i}+c \\
\Rightarrow \quad \widehat{s}_{i+1} & =\left(\widehat{s}_{i}+c\right)\left(1+\delta_{i}\right)
\end{aligned}
$$



## An example where rounding errors are not independent

Inner product of two constant vectors:

$$
\begin{aligned}
s_{i+1} & =s_{i}+a_{i} b_{i}=s_{i}+c \\
\Rightarrow \quad \widehat{s}_{i+1} & =\left(\widehat{s}_{i}+c\right)\left(1+\delta_{i}\right)
\end{aligned}
$$



$\widehat{s}_{i}$
$\widehat{s}_{i+1}$
$\widehat{s}_{i+2}$
$\widehat{s}_{i+3}$

## An example where rounding errors are not independent

Inner product of two constant vectors:

$$
\begin{aligned}
s_{i+1} & =s_{i}+a_{i} b_{i}=s_{i}+c \\
\Rightarrow \quad \widehat{s}_{i+1} & =\left(\widehat{s}_{i}+c\right)\left(1+\delta_{i}\right)
\end{aligned}
$$

$\Rightarrow \delta_{i}=\theta$ is constant within intervals $\left[2^{q-1} ; 2^{q}\right]$


$\widehat{s}_{i}$
$\widehat{s}_{i+1}$
$\widehat{s}_{i+2}$
$\widehat{s}_{i+3}$

## An example where rounding errors have nonzero mean

Inner product of two very large nonnegative vectors:

$$
s_{i+1}=s_{i}+a_{i} b_{i} \quad \Rightarrow \quad \widehat{s}_{i+1}=\left(\hat{s}_{i}+a_{i} b_{i}\right)\left(1+\delta_{i}\right)
$$

## An example where rounding errors have nonzero mean

Inner product of two very large nonnegative vectors:

$$
s_{i+1}=s_{i}+a_{i} b_{i} \quad \Rightarrow \quad \widehat{s}_{i+1}=\left(\hat{s}_{i}+a_{i} b_{i}\right)\left(1+\delta_{i}\right)
$$



## An example where rounding errors have nonzero mean

Inner product of two very large nonnegative vectors:

$$
s_{i+1}=s_{i}+a_{i} b_{i} \quad \Rightarrow \quad \widehat{s}_{i+1}=\left(\widehat{s}_{i}+a_{i} b_{i}\right)\left(1+\delta_{i}\right)
$$



Explanation: $s_{i}$ keeps increasing, at some point, it becomes so large that $\widehat{s}_{i+1}=\widehat{s}_{i} \Rightarrow \delta_{i}=-a_{i} b_{i} /\left(\hat{s}_{i}+a_{i} b_{i}\right)<0$

## An example where rounding errors have nonzero mean

Inner product of two very large nonnegative vectors:

$$
s_{i+1}=s_{i}+a_{i} b_{i} \quad \Rightarrow \quad \widehat{s}_{i+1}=\left(\hat{s}_{i}+a_{i} b_{i}\right)\left(1+\delta_{i}\right)
$$




Explanation: $s_{i}$ keeps increasing, at some point, it becomes so large that $\hat{s}_{i+1}=\widehat{s}_{i} \Rightarrow \delta_{i}=-a_{i} b_{i} /\left(\hat{s}_{i}+a_{i} b_{i}\right)<0$

Conclusion

## Conclusion

## Takeaway messages

BLR solvers are numerically stable (with numerical pivoting) and can efficiently exploit low-precision floating-point arithmetic when used as low-accuracy preconditioners

## Perspectives

- Rounding error analysis of multilevel and hierarchical solvers
- Probabilistic error analysis of low-rank factorizations
- Exploiting half precision within low-rank preconditioners
- Error analysis of low-rank preconditioners with iterative refinement

Slides and papers available here

> bit.ly/theomary (list of references on next slide)

## References

P. Amestoy, A. Buttari, J.-Y. L'Excellent, and T. Mary. On the Complexity of the Block Low-Rank Multifrontal Factorization. SIAM J. Sci. Comput. (2017).
P. Amestoy, A. Buttari, J.-Y. L'Excellent, and T. Mary. Bridging the gap between flat and hierarchical lowrank matrix formats: the multilevel BLR format. Submitted (2018).
P. Amestoy, A. Buttari, J.-Y. L'Excellent, and T. Mary. Performance and Scalability of the Block Low-Rank Multifrontal Factorization on Multicore Architectures. ACM Trans. Math. Soft. (2018).
C. Gorman, G. Chavez, P .Ghysels, T. Mary, F.-H. Rouet, and X. S. Li. Matrix-free Construction of HSS Representation Using Adaptive Randomized Sampling. Submitted (2018).
N. Higham and T. Mary. A New Preconditioner that Exploits Low-Rank Approximations to Factorization Error. SIAM J. Sci. Comp (2018).
N. Higham and T. Mary. A New Approach to Probabilistic Rounding Error Analysis. Submitted (2018).
P. Amestoy, R. Brossier, A. Buttari, J.-Y. L'Excellent, T. Mary, L. Métivier, A. Miniussi, and S. Operto. Fast 3D frequency-domain full waveform inversion with a parallel Block Low-Rank multifrontal direct solver: application to OBC data from the North Sea. Geophysics (2016).
D. Shantsev, P. Jaysaval, S. Kethulle de Ryhove, P. Amestoy, A. Buttari, J.-Y. L'Excellent, and T. Mary. Largescale 3D EM modeling with a Block Low-Rank multifrontal direct solver. Geophys. J. Int (2017).

Backup slides

## Experiments on small matrices

Black-box setting: use $p=10$ and $k=$ num. rank at acc. $10^{-7}$


## Storage overhead: formula

We need to store $E_{k}$ : two dense $n \times k$ matrices
$\Rightarrow$ but only needed after factorization

## Storage overhead: formula

We need to store $E_{k}$ : two dense $n \times k$ matrices
$\Rightarrow$ but only needed after factorization

Traditional multifrontal storage is $S_{A}+S_{L U}+S_{C B}$

- $S_{A}=$ storage for matrix $A$
- $S_{L U}=$ storage for (BLR) LU factors
- $S_{C B}=$ storage for contribution blocks $\Rightarrow$ temporary storage during factorization


## Storage overhead: formula

We need to store $E_{k}$ : two dense $n \times k$ matrices $\Rightarrow$ but only needed after factorization

Traditional multifrontal storage is $S_{A}+S_{L U}+S_{C B}$

- $S_{A}=$ storage for matrix $A$
- $S_{L U}=$ storage for (BLR) LU factors
- $S_{C B}=$ storage for contribution blocks $\Rightarrow$ temporary storage during factorization

Thus, $S_{C B}$ and $S_{E_{k}}$ do not overlap!

- Factorization storage: $S_{A}+S_{L U}+S_{C B}$
- Solution storage: $S_{A}+S_{L U}+S_{E_{k}}$
$\Rightarrow$ Total storage: $S_{A}+S_{L U}+\max \left(S_{C B}, S_{E_{k}}\right)$


## Storage overhead: formula

We need to store $E_{k}$ : two dense $n \times k$ matrices $\Rightarrow$ but only needed after factorization

Traditional multifrontal storage is $S_{A}+S_{L U}+S_{C B}$

- $S_{A}=$ storage for matrix $A$
- $S_{L U}=$ storage for (BLR) LU factors
- $S_{C B}=$ storage for contribution blocks $\Rightarrow$ temporary storage during factorization

Thus, $S_{C B}$ and $S_{E_{k}}$ do not overlap!

- Factorization storage: $S_{A}+S_{L U}+S_{C B}$
- Solution storage: $S_{A}+S_{L U}+S_{E_{k}}$
$\Rightarrow$ Total storage: $S_{A}+S_{L U}+\max \left(S_{C B}, S_{E_{k}}\right)$

$$
\text { If } S_{E_{k}} \leq S_{C B} \text {, zero storage overhead! }
$$

## Storage overhead: results



## Storage overhead: results



## Some ingredients for the proof

The proof is based on Stability of Block Algorithms with Fast Level-3 BLAS (Demmel and Higham, 1992)

$$
A=\left[\begin{array}{ll}
A_{11} & A_{12} \\
A_{21} & A_{22}
\end{array}\right]
$$

Inductive proof: easy to bound error of computing
$S=A_{22}-L_{21} \cup_{12}$ and error of $S=L_{22} U_{22}$ is obtained by induction

## Some ingredients for the proof

The proof is based on Stability of Block Algorithms with Fast Level-3 BLAS (Demmel and Higham, 1992)

$$
A=\left[\begin{array}{ll}
A_{11} & A_{12} \\
A_{21} & A_{22}
\end{array}\right]
$$

Inductive proof: easy to bound error of computing
$S=A_{22}-L_{21} U_{12}$ and error of $S=L_{22} U_{22}$ is obtained by induction

For BLR, several specific difficulties arise:

- Need to bound error of low-rank product kernel:

$$
C=\widetilde{A} \widetilde{B}=X_{A}\left(Y_{A}^{\top} X_{B}\right) Y_{B}^{\top}
$$

- Choice of norm matters: to obtain best constants possible, we need a consistent, unitarily invariant norm
- Global bound is obtained from blockwise bounds $\Rightarrow$ we work with the Frobenius norm

