Bridging the gap between flat and hierarchical low-rank matrix formats

P. Amestoy ${ }^{1} \quad$ A. Buttari ${ }^{2} \quad$ J.-Y. L'Excellent ${ }^{3} \quad$ T. Mary ${ }^{4}$
${ }^{1}$ INP-IRIT $\quad{ }^{2}$ CNRS-IRIT $\quad{ }^{3}$ INRIA-LIP $\quad{ }^{4}$ University of Manchester
Structured Matrix Days, Lyon, 14-15 May 2018

Context

Linear system $A x=b$
Often a keystone in scientific computing applications (discretization of PDEs, step of an optimization method, ...)

Direct methods
Factorize $A=L U$ and solve $L U x=b$
(;) Numerically reliable
(:) Computational cos \dagger

Context

Linear system $A x=b$
Often a keystone in scientific computing applications (discretization of PDEs, step of an optimization method, ...)

Direct methods
Factorize $A=L U$ and solve $L U x=b$
(;) Numerically reliable
(2) Computational cos \dagger

Objective:

Context

Large scale applications

- Target size is $n \sim 10^{9}$ for sparse $\Rightarrow m \sim 10^{6}$ for dense
- $O\left(m^{2}\right)$ storage complexity and $O\left(m^{3}\right)$ flop complexity $m \sim 10^{6} \Rightarrow$ TeraBytes of storage and ExaFlops of computation!
\Rightarrow Need to reduce the asymptotic complexity

Large scale systems

- Increasingly large numbers of cores available
\Rightarrow Need to design parallel algorithms

Context

Large scale applications

- Target size is $n \sim 10^{9}$ for sparse $\Rightarrow m \sim 10^{6}$ for dense
- $O\left(m^{2}\right)$ storage complexity and $O\left(m^{3}\right)$ flop complexity $m \sim 10^{6} \Rightarrow$ TeraBytes of storage and ExaFlops of computation!
\Rightarrow Need to reduce the asymptotic complexity
Large scale systems
- Increasingly large numbers of cores available
\Rightarrow Need to design parallel algorithms
These two objectives are not always compatible

Outline

1. Introduction

- The \mathcal{H} format: very good complexity
- The BLR format: very good parallelism

2. Motivation

- Why we need a new format to bridge the gap

3. The MBLR format

- Complexity analysis
- Numerical results

4. Conclusion

Preprint

R. P. Amestoy, A. Buttari, J.-Y. L'Excellent, and T. Mary, Bridging the gap between flat and hierarchical low-rank matrix formats: the multilevel BLR format, submitted (2018).

Introduction

Low-rank matrices

Take a dense matrix B of size $b \times b$ and compute its SVD $B=X S Y$:

Low-rank matrices

Take a dense matrix B of size $b \times b$ and compute its SVD $B=X S Y$:

$k=\min \left\{k \leq n ; \sigma_{k+1} \leq \varepsilon\right\}$ is the numerical rank at accuracy ε

Low-rank matrices

Take a dense matrix B of size $b \times b$ and compute its SVD $B=X S Y$:

S

$k=\min \left\{k \leq n ; \sigma_{k+1} \leq \varepsilon\right\}$ is the numerical rank at accuracy ε $\tilde{B}=X_{1} S_{1} Y_{1}$ is a low-rank approximation to $B:\|B-\tilde{B}\|_{2} \leq \varepsilon$

Low-rank matrices

Take a dense matrix B of size $b \times b$ and compute its SVD $B=X S Y$:

$k=\min \left\{k \leq n ; \sigma_{k+1} \leq \varepsilon\right\}$ is the numerical rank at accuracy ε $\tilde{B}=X_{1} S_{1} Y_{1}$ is a low-rank approximation to $B:\|B-\tilde{B}\|_{2} \leq \varepsilon$

Storage savings: $b^{2} / 2 b k=b / 2 k$
Similar flops savings when used in most linear algebra kernels

Low-rank blocks

Most matrices are not low-rank in general but in some applications they exhibit low-rank blocks

A block B represents the interaction between two subdomains σ and τ.
Small diameter and far away \Rightarrow low numerical rank.

Low-rank blocks

Most matrices are not low-rank in general but in some applications they exhibit low-rank blocks

A block B represents the interaction between two subdomains σ and τ. Small diameter and far away \Rightarrow low numerical rank.

How to choose a good block partitioning of the matrix?

\mathcal{H} and BLR matrices

$$
\mathcal{H} \text {-matrix }
$$

- Nearly linear complexity
- Complex, hierarchical structure

\mathcal{H} and BLR matrices

\mathcal{H}-matrix

- Nearly linear complexity
- Complex, hierarchical structure

BLR matrix

- Superlinear complexity
- Simple, flat structure

\mathcal{H} and BLR matrices

\mathcal{H}-matrix

- Nearly linear complexity
- Complex, hierarchical structure

BLR matrix

- Superlinear complexity
- Simple, flat structure

BLR is a comprise between complexity and performance:

- Small blocks \Rightarrow can fit on single shared-memory node
- No global order between blocks \Rightarrow flexible data distribution
- Easy to handle numerical pivoting

\mathcal{H} and BLR matrices

\mathcal{H}-matrix

- Nearly linear complexity
- Complex, hierarchical structure

BLR matrix

- Superlinear complexity
- Simple, flat structure

BLR is a comprise between complexity and performance:

- Small blocks \Rightarrow can fit on single shared-memory node
- No global order between blocks \Rightarrow flexible data distribution
- Easy to handle numerical pivoting

Can we find an even better comprise?

Motivation

Computing the BLR complexity

Assume all off-diagonal blocks are low-rank. Then:

$$
\left.\begin{array}{rl}
\text { Storage } & =\operatorname{cost}_{L R} * n b_{L R}+\operatorname{cost}_{F R} * n b_{F R} \\
& =O(b r) * O\left(\left(\frac{m}{b}\right)^{2}\right)+O\left(b^{2}\right) * O\left(\frac{m}{b}\right) \\
& =O\left(m^{2} r / b+m b\right) \\
& =O\left(m^{3 / 2} \mathbf{r}\right. \\
\mathbf{r}
\end{array}\right) \text { for } b=(m r)^{1 / 2} .
$$

Computing the BLR complexity

Assume all off-diagonal blocks are low-rank. Then:

$$
\begin{aligned}
\text { Storage } & =\operatorname{cost}_{\angle R} * n b_{L R}+\operatorname{cost}_{F R} * n b_{F R} \\
& =O(b r) * O\left(\left(\frac{m}{b}\right)^{2}\right)+O\left(b^{2}\right) * O\left(\frac{m}{b}\right) \\
& =O\left(m^{2} r / b+m b\right) \\
& =O\left(\mathbf{m}^{3 / 2} \mathbf{r}^{1 / 2}\right) \text { for } b=(m r)^{1 / 2}
\end{aligned}
$$

FlopLU $=\operatorname{cost}_{\text {getrf }} * n b_{\text {getrf }}+$ cost trsm $* n b_{\text {trsm }}+\operatorname{costgemm} * n b_{\text {gemm }}$

$$
\begin{aligned}
& =O\left(b^{3}\right) * O\left(\frac{m}{b}\right)+O\left(b^{2} r\right) * O\left(\left(\frac{m}{b}\right)^{2}\right)+O\left(b r^{2}\right) * O\left(\left(\frac{m}{b}\right)^{3}\right) \\
& =O\left(m b^{2}+m^{2} r+m^{3} r^{2} / b^{2}\right) \\
& =\mathbf{O}\left(\mathbf{m}^{2} \mathbf{r}\right) \text { for } b=(m r)^{1 / 2}
\end{aligned}
$$

Computing the BLR complexity

Assume all off-diagonal blocks are low-rank. Then:

$$
\begin{aligned}
\text { Storage } & =\operatorname{cost}_{\angle R} * n b_{L R}+\operatorname{cost}_{F R} * n b_{F R} \\
& =O(b r) * O\left(\left(\frac{m}{b}\right)^{2}\right)+O\left(b^{2}\right) * O\left(\frac{m}{b}\right) \\
& =O\left(m^{2} r / b+m b\right) \\
& =O\left(\mathbf{m}^{3 / 2} \mathbf{r}^{1 / 2}\right) \text { for } b=(m r)^{1 / 2}
\end{aligned}
$$

FlopLU $=\operatorname{cost}_{\text {getrf }} * n b_{\text {getrf }}+$ cost trsm $* n b_{\text {trsm }}+\operatorname{costgemm} * n b_{\text {gemm }}$

$$
\begin{aligned}
& =O\left(b^{3}\right) * O\left(\frac{m}{b}\right)+O\left(b^{2} r\right) * O\left(\left(\frac{m}{b}\right)^{2}\right)+O\left(b r^{2}\right) * O\left(\left(\frac{m}{b}\right)^{3}\right) \\
& =O\left(m b^{2}+m^{2} r+m^{3} r^{2} / b^{2}\right) \\
& =\mathbf{O}\left(\mathbf{m}^{2} \mathbf{r}\right) \text { for } b=(m r)^{1 / 2}
\end{aligned}
$$

Result holds if a constant number of off-diag. blocks is full-rank.
國 P. Amestoy, A. Buttari, J.-Y. L'Excellent, and T. Mary, On the Complexity of the Block Low-Rank Multifrontal Factorization, SIAM J. Sci. Comput. (2017).

From dense to sparse: nested dissection

From dense to sparse: nested dissection

Proceed recursively to compute separator tree

Factorizing a sparse matrix amounts to factorizing a sequence of dense matrices

$$
\Rightarrow
$$

sparse complexity is directly derived from dense one

Nested dissection complexity formulas

2D: $\quad \mathcal{C}_{\text {sparse }}=\sum_{\ell=0}^{\log N} 4^{\ell} \mathcal{C}_{\text {dense }}\left(\frac{N}{2^{\ell}}\right)$

Nested dissection complexity formulas

$\begin{aligned} \text { 2D: } & \mathcal{C}_{\text {sparse }}=\sum_{\ell=0}^{\log N} 4^{\ell} \mathcal{C}_{\text {dense }}\left(\frac{N}{2^{\ell}}\right) \\ \text { 3D: } & \mathcal{C}_{\text {sparse }}=\sum_{\ell=0}^{\log N} 8^{\ell} \mathcal{C}_{\text {dense }}\left(\frac{N^{2}}{4^{\ell}}\right)\end{aligned}$

Nested dissection complexity formulas

2D: $\quad \mathcal{C}_{\text {sparse }}=\sum_{\ell=0}^{\log N} 4^{\ell} \mathcal{C}_{\text {dense }}\left(\frac{N}{2^{\ell}}\right) \quad \rightarrow$ common ratio $2^{2-\beta}$
3D: $\quad \mathcal{C}_{\text {sparse }}=\sum_{\ell=0}^{\log N} 8^{\ell} \mathcal{C}_{\text {dense }}\left(\frac{N^{2}}{4^{\ell}}\right) \quad \rightarrow$ common ratio $2^{3-2 \beta}$

Assume $\mathcal{C}_{\text {dense }}=O\left(m^{\beta}\right)$. Then:				
2D			3 C	
$\mathcal{C}_{\text {sparse }}(n)$				
$\mathcal{C}_{\text {sparse }}(n)$				
$\beta>2$	$O\left(n^{\beta / 2}\right)$	$\beta>1.5$	$O\left(n^{2 \beta / 3}\right)$	
$\beta=2$	$O(n \log n)$	$\beta=1.5$	$O(n \log n)$	
$\beta<2$	$O(n)$	$\beta<1.5$	$O(n)$	

\Rightarrow Key motivation: $\mathcal{C}_{\text {dense }}<O\left(m^{2}\right)$ (2D) or $O\left(m^{3 / 2}\right)$ (3D)
is enough to get optimal sparse complexity!

	Storage				Flop LU		
	$\mathcal{C}_{\text {dense }}$		$\mathcal{C}_{\text {sparse }}$		$\mathcal{C}_{\text {dense }}$	$\mathcal{C}_{\text {sparse }}$	
		2D	3D		2D		
FR	$O\left(m^{2}\right)$	$O(n \log n)$	$O\left(n^{4 / 3}\right)$	$O\left(m^{3}\right)$	$O\left(n^{3 / 2}\right)$	$O\left(n^{2}\right)$	
BLR	$O\left(m^{3 / 2}\right)$	$O(n)$	$O(n \log n)$	$O\left(m^{2}\right)$	$O(n \log n)$	$O\left(n^{4 / 3}\right)$	
\mathcal{H}	$O(m \log m)$	$O(n)$	$O(n)$	$O\left(m \log ^{2} m\right)$	$O(n)$	$O(n)$	

Motivation:

- 2D flop and 3D storage complexity: can we find a simple way to improve just a little $\mathcal{C}_{\text {dense }}$?
- 3D flop complexity: still a large gap between BLR and \mathcal{H}

We propose a multilevel BLR format to bridge the gap

The MBLR format

Assume all off-diagonal blocks are low-rank. Then:

$$
\text { Storage }=\operatorname{cost}_{L R} * n b_{L R}+\operatorname{cost}_{B L R} * n b_{B L R}
$$

$$
\begin{aligned}
& =O(b r) * O\left(\left(\frac{m}{b}\right)^{2}\right)+O\left(b^{3 / 2} r^{1 / 2}\right) * O\left(\frac{m}{b}\right) \\
& =O\left(m^{2} r / b+m(b r)^{1 / 2}\right) \\
& =O\left(\mathbf{m}^{4 / 3} \mathbf{r}^{2 / 3}\right) \text { for } b=\left(m^{2} r\right)^{1 / 3}
\end{aligned}
$$

Assume all off-diagonal blocks are low-rank. Then:

$$
\begin{aligned}
\text { Storage } & =\operatorname{cost} \\
& =O(b r) * O\left(\left(\frac{m}{b}\right)^{2}\right)+O\left(b^{3 / 2} r^{1 / 2}\right) * O\left(\frac{m}{b}\right) \\
& =O\left(m^{2} r / b+m(b r)^{1 / 2}\right) \\
& =O\left(m^{4 / 3} r^{2 / 3}\right) \text { for } b=\left(m^{2} r\right)^{1 / 3}
\end{aligned}
$$

Similarly, we can prove:
FlopLU $=\mathbf{O}\left(\boldsymbol{m}^{5 / 3} \mathbf{r}^{4 / 3}\right)$ for $b=\left(m^{2} r\right)^{1 / 3}$
Result holds if a constant number of off-diag. blocks is BLR.

Assume all off-diagonal blocks are low-rank. Then:

$$
\begin{aligned}
\text { Storage } & =\operatorname{cost}_{L R} * n b_{L R}+\operatorname{cost}_{B L R} * n b_{B L R} \\
& =O(b r) * O\left(\left(\frac{m}{b}\right)^{2}\right)+O\left(b^{3 / 2} r^{1 / 2}\right) * O\left(\frac{m}{b}\right) \\
& =O\left(m^{2} r / b+m(b r)^{1 / 2}\right) \\
& =\mathbf{O}\left(\mathbf{m}^{4 / 3} \mathbf{r}^{2 / 3}\right) \text { for } b=\left(m^{2} r\right)^{1 / 3}
\end{aligned}
$$

Similarly, we can prove:

$$
\text { Flop } L U=\mathbf{O}\left(\mathbf{m}^{5 / 3} \mathbf{r}^{4 / 3}\right) \text { for } b=\left(m^{2} r\right)^{1 / 3}
$$

Result holds if a constant number of off-diag. blocks is BLR.

		FR	BLR	$2-B L R$	\ldots	\mathcal{H}
storage	dense	$O\left(m^{2}\right)$	$O\left(m^{1.5}\right)$	$O\left(m^{1.33}\right)$	\ldots	$O(m \log m)$
	sparse	$O\left(n^{1.33}\right)$	$O(n \log n)$	$O(n)$	\ldots	$O(n)$
flop LU	dense	$O\left(m^{3}\right)$	$O\left(m^{2}\right)$	$O\left(m^{1.66}\right)$	\ldots	$O\left(m \log ^{3} m\right)$
	sparse	$O\left(n^{2}\right)$	$O\left(n^{1.33}\right)$	$O\left(n^{1.11}\right)$	\ldots	$O(n)$

Multilevel BLR complexity

Main result

For $b=m^{\ell /(\ell+1)} r^{1 /(\ell+1)}$, the ℓ-level complexities are:

$$
\begin{aligned}
\text { Storage } & =\mathbf{O}\left(\mathbf{m}^{(\ell+2) /(\ell+1)} \mathbf{r}^{\ell /(\ell+1)}\right) \\
\text { Flop } L U & =\mathbf{O}\left(\mathbf{m}^{(\ell+3) /(\ell+1)} \mathbf{r}^{2 \ell /(\ell+1)}\right)
\end{aligned}
$$

Proof: by induction. \square

- Simple way to finely control the desired complexity
- Block size $b \propto O\left(m^{\ell /(\ell+1)}\right) \ll O(m)$
\Rightarrow may be efficiently processed in shared-memory
- Number of blocks per row/column $\propto O\left(m^{1 /(\ell+1)}\right) \gg O(1)$ \Rightarrow flexibility to distribute data in parallel

Influence of the number of levels ℓ

Flop LU

- If $r=O(1)$, can achieve $O(n)$ storage complexity with only two levels and $O(n \log n)$ flop complexity with three levels

Influence of the number of levels ℓ

- If $r=O(1)$, can achieve $O(n)$ storage complexity with only two levels and $O(n \log n)$ flop complexity with three levels
- For higher ranks, optimal sparse complexity is not attainable with constant ℓ but improvement rate is rapidly decreasing: the first few levels achieve most of the asymptotic gain

Numerical experiments (Poisson)

Storage

Flop LU

- Experimental complexity in relatively good agreement with theoretical one
- Asymptotic gain decreases with levels

Conclusion

A new multilevel format to...

- Finely control desired complexity between BLR's and H's
- Strike a balance between BLR's simplicity and H's complexity
- Trade off \mathcal{H} 's nearly linear dense complexity and still achieve $\mathcal{C}_{\text {sparse }}=O(n)$

Future work: high-performance implementation

- Implementation of the MBLR format in a parallel, algebraic, general purpose sparse solver (e.g. MUMPS)

Thank you for your attention

Slides and paper available here: personalpages.manchester.ac.uk/staff/theo.mary/

