Bridging the gap between flat and hierarchical low-rank matrix formats

P. Amestoy¹ A. Buttari² J.-Y. L'Excellent³ T. Mary⁴ ¹INP-IRIT ²CNRS-IRIT ³INRIA-LIP ⁴University of Manchester Structured Matrix Days, Lyon, 14-15 May 2018

Linear system Ax = b

Often a keystone in scientific computing applications (discretization of PDEs, step of an optimization method, ...)

Direct methods

Factorize A = LU and solve LUx = b

- © Numerically reliable
- Computational cost

Linear system Ax = b

Often a keystone in scientific computing applications (discretization of PDEs, step of an optimization method, ...)

Direct methods

Factorize A = LU and solve LUx = b

- © Numerically reliable
- 🙁 Computational cost

Objective: reduce the cost of direct methodswhile maintaining their numerical reliability

Theo Mary (contact: theo.mary@manchester.ac.uk)

Large scale applications

- Target size is $n\sim 10^9$ for sparse $\Rightarrow m\sim 10^6$ for dense
- $O(m^2)$ storage complexity and $O(m^3)$ flop complexity $m \sim 10^6 \Rightarrow$ TeraBytes of storage and ExaFlops of computation!
- Need to reduce the asymptotic complexity

Large scale systems

- Increasingly large numbers of cores available
- Need to design parallel algorithms

Large scale applications

- Target size is $n\sim 10^9$ for sparse $\Rightarrow m\sim 10^6$ for dense
- $O(m^2)$ storage complexity and $O(m^3)$ flop complexity $m \sim 10^6 \Rightarrow$ TeraBytes of storage and ExaFlops of computation!
- Need to reduce the asymptotic complexity

Large scale systems

- Increasingly large numbers of cores available
- Need to design parallel algorithms

These two objectives are not always compatible

Outline

1. Introduction

- $\circ~$ The ${\cal H}$ format: very good complexity
- The BLR format: very good parallelism

2. Motivation

 $\circ~$ Why we need a new format to bridge the gap

3. The MBLR format

- Complexity analysis
- Numerical results

4. Conclusion

Preprint

P. Amestoy, A. Buttari, J.-Y. L'Excellent, and T. Mary, *Bridging the gap between flat and hierarchical low-rank matrix formats: the multilevel BLR format*, submitted (2018).

Introduction

Take a dense matrix *B* of size $b \times b$ and compute its SVD B = XSY:

Take a dense matrix *B* of size $b \times b$ and compute its SVD B = XSY:

 $k = \min \{k \le n; \sigma_{k+1} \le \varepsilon\}$ is the numerical rank at accuracy ε

Theo Mary (contact: theo.mary@manchester.ac.uk)

Take a dense matrix *B* of size $b \times b$ and compute its SVD B = XSY:

 $k = \min \{k \le n; \sigma_{k+1} \le \varepsilon\}$ is the numerical rank at accuracy ε $\tilde{B} = X_1 S_1 Y_1$ is a low-rank approximation to B: $||B - \tilde{B}||_2 \le \varepsilon$

Theo Mary (contact: theo.mary@manchester.ac.uk)

Take a dense matrix *B* of size $b \times b$ and compute its SVD B = XSY:

 $k = \min \{k \le n; \sigma_{k+1} \le \varepsilon\}$ is the numerical rank at accuracy ε $\tilde{B} = X_1 S_1 Y_1$ is a low-rank approximation to B: $||B - \tilde{B}||_2 \le \varepsilon$ Storage savings: $b^2/2bk = b/2k$

Similar flops savings when used in most linear algebra kernels

Most matrices are not low-rank in general but in some applications they exhibit low-rank blocks

A block B represents the interaction between two subdomains σ and τ . Small diameter and far away \Rightarrow low numerical rank. Most matrices are not low-rank in general but in some applications they exhibit low-rank blocks

A block B represents the interaction between two subdomains σ and τ . Small diameter and far away \Rightarrow low numerical rank.

How to choose a good block partitioning of the matrix?

${\mathcal H}$ and BLR matrices

 $\mathcal H\text{-matrix}$

- Nearly linear complexity
- Complex, hierarchical structure

${\cal H}$ and BLR matrices

 $\mathcal H ext{-matrix}$

- Nearly linear complexity
- Complex, hierarchical structure

BLR matrix

- Superlinear complexity
- Simple, flat structure

${\cal H}$ and BLR matrices

 $\mathcal H ext{-matrix}$

- Nearly linear complexity
- Complex, hierarchical structure

BLR matrix

- Superlinear complexity
- Simple, flat structure

BLR is a comprise between complexity and performance:

- \circ Small blocks \Rightarrow can fit on single shared-memory node
- $\circ~$ No global order between blocks \Rightarrow flexible data distribution
- Easy to handle numerical pivoting

${\cal H}$ and BLR matrices

 $\mathcal H ext{-matrix}$

- Nearly linear complexity
- Complex, hierarchical structure

BLR matrix

- Superlinear complexity
- Simple, flat structure

BLR is a comprise between complexity and performance:

- \circ Small blocks \Rightarrow can fit on single shared-memory node
- No global order between blocks \Rightarrow flexible data distribution
- Easy to handle numerical pivoting

Can we find an even better comprise?

Motivation

Computing the BLR complexity

Assume all off-diagonal blocks are low-rank. Then:

Storage = $cost_{LR} * nb_{LR} + cost_{FR} * nb_{FR}$ = $O(br) * O((\frac{m}{b})^2) + O(b^2) * O(\frac{m}{b})$ = $O(m^2r/b + mb)$ = $O(m^{3/2}r^{1/2})$ for $b = (mr)^{1/2}$

Computing the BLR complexity

Assume all off-diagonal blocks are low-rank. Then:

 $FlopLU = \operatorname{cost_{getrf}} * \operatorname{nb_{getrf}} + \operatorname{cost_{trsm}} * \operatorname{nb_{trsm}} + \operatorname{cost_{gemm}} * \operatorname{nb_{gemm}}$ $= O(b^3) * O(\frac{m}{b}) + O(b^2r) * O((\frac{m}{b})^2) + O(br^2) * O((\frac{m}{b})^3)$ $= O(mb^2 + m^2r + m^3r^2/b^2)$ $= O(m^2r) \text{ for } b = (mr)^{1/2}$

Theo Mary (contact: theo.mary@manchester.ac.uk)

Computing the BLR complexity

Assume all off-diagonal blocks are low-rank. Then:

 $FlopLU = cost_{getrf} * nb_{getrf} + cost_{trsm} * nb_{trsm} + cost_{gemm} * nb_{gemm}$ $= O(b^3) * O(\frac{m}{b}) + O(b^2r) * O((\frac{m}{b})^2) + O(br^2) * O((\frac{m}{b})^3)$ $= O(mb^2 + m^2r + m^3r^2/b^2)$ $= O(m^2r) \text{ for } b = (mr)^{1/2}$

Result holds if a **constant** number of off-diag. blocks is full-rank.

P. Amestoy, A. Buttari, J.-Y. L'Excellent, and T. Mary, *On the Complexity of the Block Low-Rank Multifrontal Factorization*, SIAM J. Sci. Comput. (2017).

From dense to sparse: nested dissection

From dense to sparse: nested dissection

Proceed recursively to compute separator tree

Factorizing a sparse matrix amounts to factorizing a sequence of dense matrices ⇒ sparse complexity is directly derived from dense one

Theo Mary (contact: theo.mary@manchester.ac.uk)

Nested dissection complexity formulas

2D:
$$C_{sparse} = \sum_{\ell=0}^{\log N} 4^{\ell} C_{dense}(\frac{N}{2^{\ell}})$$

Nested dissection complexity formulas

2D:
$$C_{sparse} = \sum_{\ell=0}^{\log N} 4^{\ell} C_{dense}(\frac{N}{2^{\ell}})$$

3D: $C_{sparse} = \sum_{\ell=0}^{\log N} 8^{\ell} C_{dense}(\frac{N^2}{4^{\ell}})$

Nested dissection complexity formulas

$$\begin{aligned} \textbf{2D:} \quad \mathcal{C}_{sparse} &= \sum_{\ell=0}^{\log N} 4^{\ell} \mathcal{C}_{dense}(\frac{N}{2^{\ell}}) \quad \rightarrow \text{ common ratio } 2^{2-\beta} \\ \textbf{3D:} \quad \mathcal{C}_{sparse} &= \sum_{\ell=0}^{\log N} 8^{\ell} \mathcal{C}_{dense}(\frac{N^2}{4^{\ell}}) \quad \rightarrow \text{ common ratio } 2^{3-2\beta} \\ & \frac{\text{Assume } \mathcal{C}_{dense} = O(m^{\beta}). \text{ Then:}}{2D \qquad 3D} \\ \hline \frac{\mathcal{C}_{sparse}(n)}{\mathcal{C}_{sparse}(n)} & \mathcal{C}_{sparse}(n) \\ \beta &> 2 \quad O(n^{\beta/2}) \\ \beta &= 2 \quad O(n \log n) \\ \beta &< 2 \quad O(n) \\ \beta &< 1.5 \quad O(n \log n) \\ \beta &< 1.5 \quad O(n) \end{aligned}$$

⇒ Key motivation: $C_{dense} < O(m^2)$ (2D) or $O(m^{3/2})$ (3D) is enough to get optimal sparse complexity!

Theo Mary (contact: theo.mary@manchester.ac.uk)

Storage				Flop LU		
	\mathcal{C}_{dense}	\mathcal{C}_{sparse}		\mathcal{C}_{dense}	\mathcal{C}_{sparse}	
		2D	3D	I	2D	3D
FR	$O(m^2)$	$O(n \log n)$	$O(n^{4/3})$	$O(m^3)$	$O(n^{3/2})$	$O(n^2)$
BLR	$O(m^{3/2})$	O(n)	$O(n \log n)$	$O(m^2)$	$O(n \log n)$	$O(n^{4/3})$
\mathcal{H}	$O(m \log m)$	O(n)	O(n)	$O(m \log^2 m)$	O(n)	<i>O</i> (<i>n</i>)

Motivation:

- 2D flop and 3D storage complexity: can we find a simple way to improve just a little C_{dense} ?
- 3D flop complexity: still a large gap between BLR and ${\cal H}$

We propose a multilevel BLR format to bridge the gap

The MBLR format

Complexity of the two-level BLR format

Assume all off-diagonal blocks are low-rank. Then:

Storage = $cost_{LR} * nb_{LR} + cost_{BLR} * nb_{BLR}$ = $O(br) * O((\frac{m}{b})^2) + O(b^{3/2}r^{1/2}) * O(\frac{m}{b})$ = $O(m^2r/b + m(br)^{1/2})$

 $= \mathbf{O}(\mathbf{m^{4/3}r^{2/3}})$ for $b = (m^2 r)^{1/3}$

Theo Mary (contact: theo.mary@manchester.ac.uk)

Complexity of the two-level BLR format

Assume all off-diagonal blocks are low-rank. Then:

Storage = $cost_{LR} * nb_{LR} + cost_{BLR} * nb_{BLR}$ = $O(br) * O((\frac{m}{b})^2) + O(b^{3/2}r^{1/2}) * O(\frac{m}{b})$ = $O(m^2r/b + m(br)^{1/2})$ = $O(m^{4/3}r^{2/3})$ for $b = (m^2r)^{1/3}$

Similarly, we can prove: $FlopLU = \mathbf{O}(\mathbf{m}^{5/3}\mathbf{r}^{4/3})$ for $b = (m^2 r)^{1/3}$

Result holds if a constant number of off-diag. blocks is BLR.

Complexity of the two-level BLR format

Assume all off-diagonal blocks are low-rank. Then:

Storage = $cost_{LR} * nb_{LR} + cost_{BLR} * nb_{BLR}$ = $O(br) * O((\frac{m}{b})^2) + O(b^{3/2}r^{1/2}) * O(\frac{m}{b})$ = $O(m^2r/b + m(br)^{1/2})$ = $O(m^{4/3}r^{2/3})$ for $b = (m^2r)^{1/3}$

Similarly, we can prove: $FlopLU = \mathbf{O}(\mathbf{m}^{5/3}\mathbf{r}^{4/3})$ for $b = (m^2 r)^{1/3}$

Result holds if a constant number of off-diag. blocks is BLR.

Main result

For $b = m^{\ell/(\ell+1)} r^{1/(\ell+1)}$, the ℓ -level complexities are:

Storage =
$$O(m^{(\ell+2)/(\ell+1)}r^{\ell/(\ell+1)})$$

FlopLU = $O(m^{(\ell+3)/(\ell+1)}r^{2\ell/(\ell+1)})$

Proof: by induction. \Box

- Simple way to finely control the desired complexity
- Block size $b \propto O(m^{\ell/(\ell+1)}) \ll O(m)$ \Rightarrow may be efficiently processed in shared-memory
- Number of blocks per row/column $\propto O(m^{1/(\ell+1)}) \gg O(1)$ \Rightarrow flexibility to distribute data in parallel

Influence of the number of levels ℓ

 If r = O(1), can achieve O(n) storage complexity with only two levels and O(n log n) flop complexity with three levels

Influence of the number of levels ℓ

- If r = O(1), can achieve O(n) storage complexity with only two levels and $O(n \log n)$ flop complexity with three levels
- For higher ranks, optimal sparse complexity is not attainable with constant *l* but improvement rate is rapidly decreasing: the first few levels achieve most of the asymptotic gain

Numerical experiments (Poisson)

- Experimental complexity in relatively good agreement with theoretical one
- Asymptotic gain decreases with levels

Conclusion

A new multilevel format to...

- Finely control desired complexity between BLR's and \mathcal{H} 's
- Strike a balance between BLR's simplicity and \mathcal{H} 's complexity
- Trade off \mathcal{H} 's nearly linear dense complexity and still achieve $\mathcal{C}_{sparse} = O(n)$

Future work: high-performance implementation

• Implementation of the MBLR format in a parallel, algebraic, general purpose sparse solver (e.g. MUMPS)

Thank you for your attention

Slides and paper available here: personalpages.manchester.ac.uk/staff/theo.mary/