
Bridging the gap between flat and
hierarchical low-rank matrix formats

P. Amestoy1 A. Buttari2 J.-Y. L’Excellent3 T. Mary4
1INP-IRIT 2CNRS-IRIT 3INRIA-LIP 4University of Manchester

Structured Matrix Days, Lyon, 14-15 May 2018



Context

→ →

Linear system Ax = b

Often a keystone in scientific computing applications
(discretization of PDEs, step of an optimization method, …)

Direct methods
Factorize A = LU and solve LUx = b

, Numerically reliable

/ Computational cost

2/20 Theo Mary (contact: theo.mary@manchester.ac.uk)



Context

→ →

Linear system Ax = b

Often a keystone in scientific computing applications
(discretization of PDEs, step of an optimization method, …)

Direct methods
Factorize A = LU and solve LUx = b

, Numerically reliable

/ Computational cost

Objective:
reduce the cost of direct methods …

…while maintaining their numerical reliability
2/20 Theo Mary (contact: theo.mary@manchester.ac.uk)



Context

→ →

Large scale applications

• Target size is n ∼ 109 for sparse ⇒ m ∼ 106 for dense
• O(m2) storage complexity and O(m3) flop complexity
m ∼ 106 ⇒ TeraBytes of storage and ExaFlops of computation!

⇒ Need to reduce the asymptotic complexity

Large scale systems

• Increasingly large numbers of cores available

⇒ Need to design parallel algorithms

2/20 Theo Mary (contact: theo.mary@manchester.ac.uk)



Context

→ →

Large scale applications

• Target size is n ∼ 109 for sparse ⇒ m ∼ 106 for dense
• O(m2) storage complexity and O(m3) flop complexity
m ∼ 106 ⇒ TeraBytes of storage and ExaFlops of computation!

⇒ Need to reduce the asymptotic complexity

Large scale systems

• Increasingly large numbers of cores available

⇒ Need to design parallel algorithms

These two objectives are not always compatible
2/20 Theo Mary (contact: theo.mary@manchester.ac.uk)



Outline

1. Introduction
◦ The H format: very good complexity
◦ The BLR format: very good parallelism

2. Motivation
◦ Why we need a new format to bridge the gap

3. The MBLR format
◦ Complexity analysis
◦ Numerical results

4. Conclusion

Preprint

P. Amestoy, A. Buttari, J.-Y. L’Excellent, and T. Mary, Bridging the gap between flat and
hierarchical low-rank matrix formats: the multilevel BLR format, submitted (2018).

3/20 Theo Mary (contact: theo.mary@manchester.ac.uk)



Introduction



Low-rank matrices

Take a dense matrix B of size b×b and compute its SVD B = XSY:

5/20 Theo Mary (contact: theo.mary@manchester.ac.uk)



Low-rank matrices

Take a dense matrix B of size b×b and compute its SVD B = XSY:

k = min {k ≤ n;σk+1 ≤ ε} is the numerical rank at accuracy ε

5/20 Theo Mary (contact: theo.mary@manchester.ac.uk)



Low-rank matrices

Take a dense matrix B of size b×b and compute its SVD B = XSY:

k = min {k ≤ n;σk+1 ≤ ε} is the numerical rank at accuracy ε

B̃ = X1S1Y1 is a low-rank approximation to B: ∥B− B̃∥2 ≤ ε

5/20 Theo Mary (contact: theo.mary@manchester.ac.uk)



Low-rank matrices

Take a dense matrix B of size b×b and compute its SVD B = XSY:

k = min {k ≤ n;σk+1 ≤ ε} is the numerical rank at accuracy ε

B̃ = X1S1Y1 is a low-rank approximation to B: ∥B− B̃∥2 ≤ ε

Storage savings: b2/2bk = b/2k
Similar flops savings when used in most linear algebra kernels

5/20 Theo Mary (contact: theo.mary@manchester.ac.uk)



Low-rank blocks
Most matrices are not low-rank in general but in some

applications they exhibit low-rank blocks

σ

τ

hig
h r

an
k

low rank

complete domain

A block B represents the interaction
between two subdomains σ and τ .

Small diameter and far away ⇒ low numerical rank.

How to choose a good block partitioning of the matrix?

6/20 Theo Mary (contact: theo.mary@manchester.ac.uk)



Low-rank blocks
Most matrices are not low-rank in general but in some

applications they exhibit low-rank blocks

σ

τ

hig
h r

an
k

low rank

complete domain

A block B represents the interaction
between two subdomains σ and τ .

Small diameter and far away ⇒ low numerical rank.

How to choose a good block partitioning of the matrix?
6/20 Theo Mary (contact: theo.mary@manchester.ac.uk)



H and BLR matrices

H-matrix

• Nearly linear complexity
• Complex, hierarchical structure

BLR is a comprise between complexity and performance:
◦ Small blocks ⇒ can fit on single shared-memory node
◦ No global order between blocks ⇒ flexible data distribution
◦ Easy to handle numerical pivoting

Can we find an even better comprise?

7/20 Theo Mary (contact: theo.mary@manchester.ac.uk)



H and BLR matrices

H-matrix BLR matrix

• Nearly linear complexity
• Complex, hierarchical structure

• Superlinear complexity
• Simple, flat structure

BLR is a comprise between complexity and performance:
◦ Small blocks ⇒ can fit on single shared-memory node
◦ No global order between blocks ⇒ flexible data distribution
◦ Easy to handle numerical pivoting

Can we find an even better comprise?

7/20 Theo Mary (contact: theo.mary@manchester.ac.uk)



H and BLR matrices

H-matrix BLR matrix

• Nearly linear complexity
• Complex, hierarchical structure

• Superlinear complexity
• Simple, flat structure

BLR is a comprise between complexity and performance:
◦ Small blocks ⇒ can fit on single shared-memory node
◦ No global order between blocks ⇒ flexible data distribution
◦ Easy to handle numerical pivoting

Can we find an even better comprise?

7/20 Theo Mary (contact: theo.mary@manchester.ac.uk)



H and BLR matrices

H-matrix BLR matrix

• Nearly linear complexity
• Complex, hierarchical structure

• Superlinear complexity
• Simple, flat structure

BLR is a comprise between complexity and performance:
◦ Small blocks ⇒ can fit on single shared-memory node
◦ No global order between blocks ⇒ flexible data distribution
◦ Easy to handle numerical pivoting

Can we find an even better comprise?
7/20 Theo Mary (contact: theo.mary@manchester.ac.uk)



Motivation



Computing the BLR complexity
Assume all off-diagonal blocks are low-rank. Then:

getrf
trsm
gemm

Storage = costLR ∗ nbLR + costFR ∗ nbFR

= O(br) ∗O((m
b
)2) +O(b2) ∗O(m

b
)

= O(m2r/b+mb)

= O(m3/2r1/2) for b = (mr)1/2

FlopLU = costgetrf ∗ nbgetrf + costtrsm ∗ nbtrsm + costgemm ∗ nbgemm

= O(b3) ∗O(m
b
) +O(b2r) ∗O((m

b
)2) +O(br2) ∗O((m

b
)3)

= O(mb2 +m2r+m3r2/b2)

= O(m2r) for b = (mr)1/2

Result holds if a constant number of off-diag. blocks is full-rank.
P. Amestoy, A. Buttari, J.-Y. L’Excellent, and T. Mary, On the Complexity of the Block
Low-Rank Multifrontal Factorization, SIAM J. Sci. Comput. (2017).

9/20 Theo Mary (contact: theo.mary@manchester.ac.uk)



Computing the BLR complexity
Assume all off-diagonal blocks are low-rank. Then:

getrf
trsm
gemm

Storage = costLR ∗ nbLR + costFR ∗ nbFR

= O(br) ∗O((m
b
)2) +O(b2) ∗O(m

b
)

= O(m2r/b+mb)

= O(m3/2r1/2) for b = (mr)1/2

FlopLU = costgetrf ∗ nbgetrf + costtrsm ∗ nbtrsm + costgemm ∗ nbgemm

= O(b3) ∗O(m
b
) +O(b2r) ∗O((m

b
)2) +O(br2) ∗O((m

b
)3)

= O(mb2 +m2r+m3r2/b2)

= O(m2r) for b = (mr)1/2

Result holds if a constant number of off-diag. blocks is full-rank.
P. Amestoy, A. Buttari, J.-Y. L’Excellent, and T. Mary, On the Complexity of the Block
Low-Rank Multifrontal Factorization, SIAM J. Sci. Comput. (2017).

9/20 Theo Mary (contact: theo.mary@manchester.ac.uk)



Computing the BLR complexity
Assume all off-diagonal blocks are low-rank. Then:

getrf
trsm
gemm

Storage = costLR ∗ nbLR + costFR ∗ nbFR

= O(br) ∗O((m
b
)2) +O(b2) ∗O(m

b
)

= O(m2r/b+mb)

= O(m3/2r1/2) for b = (mr)1/2

FlopLU = costgetrf ∗ nbgetrf + costtrsm ∗ nbtrsm + costgemm ∗ nbgemm

= O(b3) ∗O(m
b
) +O(b2r) ∗O((m

b
)2) +O(br2) ∗O((m

b
)3)

= O(mb2 +m2r+m3r2/b2)

= O(m2r) for b = (mr)1/2

Result holds if a constant number of off-diag. blocks is full-rank.
P. Amestoy, A. Buttari, J.-Y. L’Excellent, and T. Mary, On the Complexity of the Block
Low-Rank Multifrontal Factorization, SIAM J. Sci. Comput. (2017).

9/20 Theo Mary (contact: theo.mary@manchester.ac.uk)



From dense to sparse: nested dissection

N n = N2

D1

D2

D3

D4

D1

D2

D3

D4

S

Proceed recursively to
compute separator tree

Factorizing a sparse matrix
amounts to factorizing a

sequence of dense matrices
⇒

sparse complexity is directly
derived from dense one

10/20 Theo Mary (contact: theo.mary@manchester.ac.uk)



From dense to sparse: nested dissection

N n = N2

D1

D2

D3

D4

D1

D2

D3

D4

S

Proceed recursively to
compute separator tree

Factorizing a sparse matrix
amounts to factorizing a

sequence of dense matrices
⇒

sparse complexity is directly
derived from dense one

10/20 Theo Mary (contact: theo.mary@manchester.ac.uk)



Nested dissection complexity formulas

2D: Csparse =
logN∑
ℓ=0

4ℓCdense(
N
2ℓ

)

→ common ratio 22−β

3D: Csparse =
logN∑
ℓ=0

8ℓCdense(
N2

4ℓ
)

→ common ratio 23−2β

Assume Cdense = O(mβ). Then:

2D 3D

Csparse(n) Csparse(n)
β > 2 O(nβ/2) β > 1.5 O(n2β/3)
β = 2 O(n logn) β = 1.5 O(n logn)
β < 2 O(n) β < 1.5 O(n)

⇒ Key motivation: Cdense < O(m2) (2D) or O(m3/2) (3D)
is enough to get optimal sparse complexity!

11/20 Theo Mary (contact: theo.mary@manchester.ac.uk)



Nested dissection complexity formulas

2D: Csparse =
logN∑
ℓ=0

4ℓCdense(
N
2ℓ

)

→ common ratio 22−β

3D: Csparse =
logN∑
ℓ=0

8ℓCdense(
N2

4ℓ
)

→ common ratio 23−2β

Assume Cdense = O(mβ). Then:

2D 3D

Csparse(n) Csparse(n)
β > 2 O(nβ/2) β > 1.5 O(n2β/3)
β = 2 O(n logn) β = 1.5 O(n logn)
β < 2 O(n) β < 1.5 O(n)

⇒ Key motivation: Cdense < O(m2) (2D) or O(m3/2) (3D)
is enough to get optimal sparse complexity!

11/20 Theo Mary (contact: theo.mary@manchester.ac.uk)



Nested dissection complexity formulas

2D: Csparse =
logN∑
ℓ=0

4ℓCdense(
N
2ℓ

) → common ratio 22−β

3D: Csparse =
logN∑
ℓ=0

8ℓCdense(
N2

4ℓ
) → common ratio 23−2β

Assume Cdense = O(mβ). Then:

2D 3D

Csparse(n) Csparse(n)
β > 2 O(nβ/2) β > 1.5 O(n2β/3)
β = 2 O(n logn) β = 1.5 O(n logn)
β < 2 O(n) β < 1.5 O(n)

⇒ Key motivation: Cdense < O(m2) (2D) or O(m3/2) (3D)
is enough to get optimal sparse complexity!

11/20 Theo Mary (contact: theo.mary@manchester.ac.uk)



Bridging the gap between flat and hierarchical formats

Storage Flop LU
Cdense Csparse Cdense Csparse

2D 3D 2D 3D

FR O(m2) O(n log n) O(n4/3) O(m3) O(n3/2) O(n2)
BLR O(m3/2) O(n) O(n log n) O(m2) O(n log n) O(n4/3)
H O(m logm) O(n) O(n) O(m log2m) O(n) O(n)

Motivation:
• 2D flop and 3D storage complexity: can we find a simple way
to improve just a little Cdense?

• 3D flop complexity: still a large gap between BLR and H

We propose a multilevel BLR format to bridge the gap

12/20 Theo Mary (contact: theo.mary@manchester.ac.uk)



The MBLR format



Complexity of the two-level BLR format

Assume all off-diagonal blocks are low-rank. Then:
Storage = costLR ∗ nbLR + costBLR ∗ nbBLR

= O(br) ∗O((m
b
)2) +O(b3/2r1/2) ∗O(m

b
)

= O(m2r/b+m(br)1/2)

= O(m4/3r2/3) for b = (m2r)1/3

Similarly, we can prove:
FlopLU = O(m5/3r4/3) for b = (m2r)1/3

Result holds if a constant number of off-diag. blocks is BLR.

FR BLR 2-BLR … H

storage
dense O(m2) O(m1.5) O(m1.33) … O(m logm)
sparse O(n1.33) O(n logn) O(n) … O(n)

flop LU
dense O(m3) O(m2) O(m1.66) … O(m log3m)
sparse O(n2) O(n1.33) O(n1.11) … O(n)

14/20 Theo Mary (contact: theo.mary@manchester.ac.uk)



Complexity of the two-level BLR format

Assume all off-diagonal blocks are low-rank. Then:
Storage = costLR ∗ nbLR + costBLR ∗ nbBLR

= O(br) ∗O((m
b
)2) +O(b3/2r1/2) ∗O(m

b
)

= O(m2r/b+m(br)1/2)

= O(m4/3r2/3) for b = (m2r)1/3

Similarly, we can prove:
FlopLU = O(m5/3r4/3) for b = (m2r)1/3

Result holds if a constant number of off-diag. blocks is BLR.

FR BLR 2-BLR … H

storage
dense O(m2) O(m1.5) O(m1.33) … O(m logm)
sparse O(n1.33) O(n logn) O(n) … O(n)

flop LU
dense O(m3) O(m2) O(m1.66) … O(m log3m)
sparse O(n2) O(n1.33) O(n1.11) … O(n)

14/20 Theo Mary (contact: theo.mary@manchester.ac.uk)



Complexity of the two-level BLR format

Assume all off-diagonal blocks are low-rank. Then:
Storage = costLR ∗ nbLR + costBLR ∗ nbBLR

= O(br) ∗O((m
b
)2) +O(b3/2r1/2) ∗O(m

b
)

= O(m2r/b+m(br)1/2)

= O(m4/3r2/3) for b = (m2r)1/3

Similarly, we can prove:
FlopLU = O(m5/3r4/3) for b = (m2r)1/3

Result holds if a constant number of off-diag. blocks is BLR.

FR BLR 2-BLR … H

storage
dense O(m2) O(m1.5) O(m1.33) … O(m logm)
sparse O(n1.33) O(n logn) O(n) … O(n)

flop LU
dense O(m3) O(m2) O(m1.66) … O(m log3m)
sparse O(n2) O(n1.33) O(n1.11) … O(n)

14/20 Theo Mary (contact: theo.mary@manchester.ac.uk)



Multilevel BLR complexity

Main result
For b = mℓ/(ℓ+1)r1/(ℓ+1), the ℓ−level complexities are:

Storage = O(m(ℓ+2)/(ℓ+1)rℓ/(ℓ+1))

FlopLU = O(m(ℓ+3)/(ℓ+1)r2ℓ/(ℓ+1))

Proof: by induction.

• Simple way to finely control the desired complexity

• Block size b ∝ O(mℓ/(ℓ+1)) ≪ O(m)
⇒ may be efficiently processed in shared-memory

• Number of blocks per row/column ∝ O(m1/(ℓ+1)) ≫ O(1)
⇒ flexibility to distribute data in parallel

15/20 Theo Mary (contact: theo.mary@manchester.ac.uk)



Influence of the number of levels ℓ

Storage

2 4 6 8 10
1

1.1

1.2

1.3

1.4

1.5

1.6

1.7

1.8

Flop LU

2 4 6 8 10
1

1.2

1.4

1.6

1.8

2

2.2

2.4

2.6

• If r = O(1), can achieve O(n) storage complexity with only two
levels and O(n logn) flop complexity with three levels

• For higher ranks, optimal sparse complexity is not attainable
with constant ℓ but improvement rate is rapidly decreasing:
the first few levels achieve most of the asymptotic gain

16/20 Theo Mary (contact: theo.mary@manchester.ac.uk)



Influence of the number of levels ℓ

Storage

2 4 6 8 10
1

1.1

1.2

1.3

1.4

1.5

1.6

1.7

1.8

Flop LU

2 4 6 8 10
1

1.2

1.4

1.6

1.8

2

2.2

2.4

2.6

• If r = O(1), can achieve O(n) storage complexity with only two
levels and O(n logn) flop complexity with three levels

• For higher ranks, optimal sparse complexity is not attainable
with constant ℓ but improvement rate is rapidly decreasing:
the first few levels achieve most of the asymptotic gain

16/20 Theo Mary (contact: theo.mary@manchester.ac.uk)



Numerical experiments (Poisson)

Storage Flop LU

• Experimental complexity in relatively good agreement with
theoretical one

• Asymptotic gain decreases with levels

17/20 Theo Mary (contact: theo.mary@manchester.ac.uk)



Conclusion



Conclusions and perspectives

A new multilevel format to…

• Finely control desired complexity between BLR’s and H’s
• Strike a balance between BLR’s simplicity and H’s complexity
• Trade off H’s nearly linear dense complexity and still achieve
Csparse = O(n)

Future work: high-performance implementation

• Implementation of the MBLR format in a parallel, algebraic,
general purpose sparse solver (e.g. MUMPS)

19/20 Theo Mary (contact: theo.mary@manchester.ac.uk)



? Thank you for
your attention

Slides and paper available here: 
personalpages.manchester.ac.uk/staff/theo.mary/


	Introduction
	Motivation
	The MBLR format
	Conclusion

