SIAM LA 2021

May 20, 2021

Multiple Word Arithmetic with GPU Tensor Cores: Theory and Practice

Theo Mary

> Sorbonne Université, CNRS, LIP6
> https://www-pequan.lip6.fr/~tmary/

Slides available at https://bit.ly/la21multiword
Joint work with Massimiliano Fasi (Örebro Univ.), Nicholas J. Higham, Mantas Mikaitis, Srikara Pranesh (Univ. Manchester), Florent Lopez (LSTC, Ansys).

GPU tensor cores

Tensor cores compute $D=C+A B$:

fp32 \rightarrow fp16/bf16 speedup evolution:
P100: $2 \times$ V100: $8 \times$ A100: $16 \times$

Matrix multiplication with tensor cores

Let $A \in \mathbb{R}^{m \times n}$ and $B \in \mathbb{R}^{n \times p}$ and compute $C=A B$.
The computed \widehat{C} satisfies
$|\widehat{C}-C| \leq n u_{16}|A||B| \quad$ in standard fp16/bf16 arithmetic
$|\widehat{C}-C| \leq\left(2 u_{16}+n u_{32}\right)|A||B| \quad$ with tensor cores
$|\widehat{C}-C| \leq n u_{32}|A||B| \quad$ in standard fp32 arithmetic

且 Blanchard, Higham, Lopez, M., Pranesh (2020) .

- Tensor cores greatly reduce the impact of error accumulation
- But error still depends on u_{16} because of the conversion of A and B
\Rightarrow Can we get rid of it to achieve an accuracy equivalent to fp 32 ?

Multiword arithmetic

- Represent high precision number as the unevaluated sum of lower precision numbers
- Double-double arithmetic:

$$
x=\underbrace{x_{1}}_{f p 64}+\underbrace{x_{2}}_{f p 64}
$$

$\Rightarrow x$ has up to $2 \times 53=106$ significand bits $\approx 10^{-32}$ precision

- Less than fp128 (113 significand bits), but much faster, because computations rely on fp64 arithmetic
- Need for error-free transformations makes it much slower than fp64 \Rightarrow double-single arithmetic not meaningful on most processors

Double-half and triple-half arithmetics

Signif. bits Exp. bits Range Unit roundoff u

fp32	24	8	$10^{ \pm 38}$	6×10^{-8}
fp16	11	5	$10^{ \pm 5}$	5×10^{-4}
bfloat16	8	8	$10^{ \pm 38}$	4×10^{-3}

Let $x \in \mathbb{R}$ and $u_{s}=2^{-24}$

$$
\begin{aligned}
& x=\underbrace{x_{1}}_{\mathrm{fp} 16}+\underbrace{x_{2}}_{\mathrm{fp} 16}+\epsilon \quad|\epsilon| \leq 4 u_{\mathrm{s}} \\
& x=\underbrace{x_{1}}_{\text {bfloat16 }}+\underbrace{x_{2}}_{\text {bfloat16 }}+\underbrace{x_{3}}_{\text {bfloat16 }}+\epsilon \quad|\epsilon| \leq u_{\mathrm{s}}
\end{aligned}
$$

Double-half arithmetic with tensor cores

Apply this elementwise to $A \in \mathbb{R}^{m \times n}$ and $B \in \mathbb{R}^{n \times p}$:

$$
A=A_{1}+A_{2}, \quad B=B_{1}+B_{2}
$$

and compute $C=A B$ as

$$
C \approx \sum_{i, j} A_{i} B_{j} \text { using tensor cores }
$$

GPU tensor cores provide a new perspective:

- Intermediate computations are done in $\mathrm{fp} 32 \Rightarrow$ no need for error-free transformations!
- Double-fp16 $\Rightarrow 4 \times$ more flops (can be reduced to $3 \times$)
- Triple-bfloat16 $\Rightarrow 9 \times$ more flops (can be reduced to $6 \times$)
- Tensor cores $8 \times-16 \times$ faster than fp32
\Rightarrow Multiword half arithmetic potentially faster at same accuracy!

Related work

Several recent papers around this idea:

- S. Markidis, S. W. D. Chien, E. Laure, I. B. Peng and J. S. Vetter, NVIDIA Tensor Core Programmability, Performance \& Precision, IPDPSW 2018. Double-fp16 arithmetic for GEMM with Tensor Cores.
- A. Sorna, X. Cheng, E. D'Azevedo, K. Won and S. Tomov, Optimizing the Fast Fourier Transform Using Mixed Precision on Tensor Core Hardware, HiPCW 2018. Double-fp16 arithmetic for FFT with Tensor Cores.
- G. Henry, P. T. P. Tang and A. Heinecke, Leveraging the bfloat16 Artificial Intelligence Datatype For Higher-Precision Computations, ARITH 2019. Triple-bfloat16 arithmetic.
- D. Mukunoki, K. Ozaki, T. Ogita, T. Imamura, DGEMM Using Tensor Cores, and Its Accurate and Reproducible Versions, ISC 2020. Double-fp16 arithmetic with Tensor and with fp64 target.
- Several others

Block FMA framework

We use the Block FMA framework from 国 Blanchard et al. (2020)

- $A \in \mathbb{R}^{b_{1} \times b}, B \in \mathbb{R}^{b \times b_{2}}$, and $C \in \mathbb{R}^{b_{1} \times b_{2}}$,

$$
\underbrace{D}_{u_{\text {high }}}=\underbrace{C}_{u_{\text {high }}}+\underbrace{A}_{\text {Ulow }} \underbrace{B}_{u_{\text {low }}}
$$

- Internal computation $C+A B$ is done in precision Uhigh

	b_{1}	b	b_{2}	$u_{\text {low }}$	$u_{\text {high }}$
Google TPU v1	256	256	256	bfloat16	$f p 32$
Google TPU v2	128	128	128	bfloat16	$f p 32$
NVIDIA Volta	4	4	4	$f p 16$	$f p 32$
NVIDIA Ampere	8	8	4	$f p 16$	$f p 32$
NVIDIA Ampere	8	8	4	bfloat16	$f p 32$
NVIDIA Ampere	4	8	4	tfloat32	$f p 32$
Intel NNP-T	32	32	32	bfloat16	$f p 32$
Armv8-A	2	4	2	bfloat16	$f p 32$

General error analysis

For any $x \in \mathbb{R}$ and $p>0$, let

$$
\begin{aligned}
& x_{1}=f \mathrm{fl}_{\text {low }}(x) \\
& x_{2}=\mathrm{fl}_{\text {low }}\left(x-x_{1}\right) \\
& \vdots \\
& x_{p}=\mathrm{fl}_{\text {low }}\left(x-\sum_{i=1}^{p-1} x_{i}\right)
\end{aligned}
$$

We obtain

$$
x=\sum_{i=1}^{p} x_{i}+\Delta x, \quad|\Delta x| \leq u_{\text {low }}^{p}|x| .
$$

Using this representation elementwise on A and B :

$$
\begin{aligned}
& A=\sum_{i=1}^{p} A_{i}+\Delta A, \quad|\Delta A| \leq u_{\text {low }}^{p}|A|, \\
& B=\sum_{j=1}^{p} B_{j}+\Delta B, \quad|\Delta B| \leq u_{\text {low }}^{p}|B| .
\end{aligned}
$$

Then the product $C=A B$ is given by

$$
C=\sum_{i=1}^{p} \sum_{j=1}^{p} A_{i} B_{j}+A \Delta B+\Delta A B-\Delta A \Delta B .
$$

Compute the p^{2} products $A_{i} B_{j}$ by chaining calls to the block FMA:

$$
\widehat{C}=C+\Delta C, \quad|\Delta C| \leq\left(n+p^{2}\right) u_{\text {high }}|A||B| .
$$

Overall

$$
\widehat{C}=A B+E, \quad|E| \leq\left(2 u_{\text {low }}^{p}+u_{\text {low }}^{2 p}+\left(n+p^{2}\right) u_{\text {high }}\right)|A||B| .
$$

$x_{k}=\mathrm{fl}_{\text {low }}\left(x-\sum_{i=1}^{k-1} x_{i}\right)$ is the approximation residual from the first $k-1$ words

$$
\begin{aligned}
\left|A_{i}\right| & \leq u_{\text {low }}^{i-1}\left(1+u_{\text {low }}\right)|A| \\
\left|B_{j}\right| & \leq u_{\text {low }}^{j-1}\left(1+u_{\text {low }}\right)|B| \\
\left|A_{i}\right|\left|B_{j}\right| & \leq u_{\text {low }}^{i+j-2}\left(1+u_{\text {low }}\right)^{2}|A||B|
\end{aligned}
$$

\Rightarrow Not all p^{2} products $A_{i} B_{j}$ need be computed! Skipping any product $A_{i} B_{j}$ such that $i+j>p+1$ yields $\widehat{C}=A B+E_{1}$
$|E| \leq\left(2 u_{\text {low }}^{p}+u_{\text {low }}^{2 p}+\left(n+p^{2}\right) u_{\text {high }}+\sum_{i=1}^{p-1}(p-i) u_{\text {low }}^{p+i-1}\left(1+u_{\text {low }}\right)^{2}\right)|A||B|$.

- number of products: $p^{2} \rightarrow p(p+1) / 2$
- error to order $u_{\text {low }}^{p}$: constant $2 \rightarrow p+1$

Summary of theory

$u_{\text {high }}$	$u_{\text {low }}$		Error bound
	$2^{-11}(\mathrm{fp} 16)$	$p=1$	$2 \times 2^{-11}+n \times 2^{-24}$
$2^{-24}(\mathrm{fp} 32)$		$p \geq 2$	$n \times 2^{-24}$
	(bfloat16)	$p=1$	$2 \times 2^{-8}+n \times 2^{-24}$
		$2^{-8}=2$	$3 \times 2^{-16}+n \times 2^{-24}$
		$p \geq 3$	$n \times 2^{-24}$

Encompasses existing approaches and some new ones

From theory to practice

- Double-fp16 up to $2 \times$ faster than fp32

- Double-fp16 up to $2 \times$ faster than fp32
- Similar backward error for matrices with random $[-1,1]$ uniform entries (decreasing error is expected 目 Higham and M. (2020))

From theory to practice

- Double-fp16 up to $2 \times$ faster than fp32
- Similar backward error for matrices with random $[-1,1]$ uniform entries (decreasing error is expected 目 Higham and M. (2020))
- $[0,1]$ uniform entries!!

The issue

Our explanation: the culprit is round to zero (RZ)

- fp32 uses the standard RTN, but tensor cores only support RZ国 Fasi, Higham, Mikaitis, Pranesh (2020)
- With data of nonzero mean and RZ, most rounding errors happen in the same direction
\Rightarrow Worst-case bound $n u_{32}$ is attained with RZ, whereas with RTN we can usually replace it by $\sqrt{n} u_{32}$ 国 Higham and M. (2019)
- Same error bound \neq same error !

A proposed cure

- The worst-case accumulation bound $n u_{32}$ is attained \Rightarrow need to reduce the bound
- FABsum 目 Blanchard, Higham, M. (2020)
- Sum blocks of size b in precision u_{32}
- Combine n / b blocks in precision u_{64}
\Rightarrow Reduced error bound $b u_{32}+n u_{64} / b$
- Parameter b controls tradeoff between accuracy and performance
- FABsum with Tensor Cores: based on CUTLASS library, which implements uniform precision blocked summation ("splitK")

A proposed cure (results)

- As fast as cuBLAS but an order of magnitude more accurate
- Almost as accurate as fp32 and slightly faster
- And anything in between: flexible tradeoff

A proposed cure (results)

- As fast as cuBLAS but an order of magnitude more accurate
- Almost as accurate as fp32 and slightly faster
- And anything in between: flexible tradeoff

Thank you! Questions?

