
SIAG/LA Early Career Prize
SIAM LA, May 18, 2021

Exploiting Mixed Precision Arithmetic
in the Solution of Linear Systems

Theo Mary
Sorbonne Université, CNRS, LIP6

https://www-pequan.lip6.fr/~tmary/
Slides available at https://bit.ly/la21mix

1/29

https://www-pequan.lip6.fr/~tmary/
https://bit.ly/la21mix

Patrick Amestoy Pierre Blanchard Olivier Boiteau Alfredo Buttari

Matthieu Gerest Nicholas Higham Fabienne Jézéquel

Jean-Yves L’Excellent Florent Lopez Srikara Pranesh Bastien Vieublé

2/29

Outline
Objective: accelerate Ax = b in mixed precision by exploiting…
1. Low precisions (e.g., fp16, bfloat16)

fp16

sign exponent significant

bfloat16

sign exponent significant

2. Specialized hardware (e.g., Tensor Cores)
× × × ×
× × × ×
× × × ×
× × × ×

︸ ︷︷ ︸
fp16 or fp32

=

× × × ×
× × × ×
× × × ×
× × × ×

︸ ︷︷ ︸

fp16

× × × ×
× × × ×
× × × ×
× × × ×

︸ ︷︷ ︸

fp16

+

× × × ×
× × × ×
× × × ×
× × × ×

︸ ︷︷ ︸
fp16 or fp32

3. Sparsity (both structural and data sparsity)

3/29

Low precisions
Specialized hardware
Sparsity

Low precisions
Specialized hardware
Sparsity

Today’s floating-point landscape

Bits
Signif. (t) Exp. Range u = 2−t

bfloat16 B 8 8 10±38 4× 10−3

fp16 H 11 5 10±5 5× 10−4

fp32 S 24 8 10±38 6× 10−8

fp64 D 53 11 10±308 1× 10−16

fp128 Q 113 15 10±4932 1× 10−34

Low precision increasingly supported by hardware:
• Fp16 used by NVIDIA GPUs, AMD Radeon Instinct MI25 GPU,
ARM NEON, Fujitsu A64FX ARM

• Bfloat16 used by Google TPU, NVIDIA GPUs, Arm, Intel

4/29

Today’s floating-point landscape

Bits
Signif. (t) Exp. Range u = 2−t

bfloat16 B 8 8 10±38 4× 10−3

fp16 H 11 5 10±5 5× 10−4

fp32 S 24 8 10±38 6× 10−8

fp64 D 53 11 10±308 1× 10−16

fp128 Q 113 15 10±4932 1× 10−34

Great benefits:
• Reduced storage, data movement, and communications
• Increased speed on emerging hardware (16× on A100 from
fp32 to fp16/bfloat16)

• Reduced energy consumption (5× with fp16, 9× with bfloat16)

4/29

Solving Ax = b

Standard method to solve Ax = b:

1. Factorize A = LU, where L and U are lower and upper triangular

2. Solve Ly = b and Ux = y

Precision u⇒ computed x̂ satisfies ∥x̂− x∥ ≤ f(n)κ(A)u∥x∥

An algorithm to refine the solution: iterative refinement (IR)

Solve Ax1 = b via x1 = U−1(L−1b)
while Not converged do

ri = b− Axi
Solve Adi = ri via di = U−1(L−1ri)
xi+1 = xi + di

end while

Many variants over the years, depending on choice of precisions
and solver for Adi = ri

5/29

Solving Ax = b

Standard method to solve Ax = b:

1. Factorize A = LU, where L and U are lower and upper triangular

2. Solve Ly = b and Ux = y

Precision u⇒ computed x̂ satisfies ∥x̂− x∥ ≤ f(n)κ(A)u∥x∥

An algorithm to refine the solution: iterative refinement (IR)

Solve Ax1 = b via x1 = U−1(L−1b)
while Not converged do

ri = b− Axi
Solve Adi = ri via di = U−1(L−1ri)
xi+1 = xi + di

end while

Many variants over the years, depending on choice of precisions
and solver for Adi = ri

5/29

Error analysis of general IR

 Carson and Higham (2018) analyze the most general version of IR:
For a target accuracy u, and assuming κ(A)u < 1:

Solve Ax1 = b by LU factorization at precision uf
while Not converged do

ri = b− Axi at precision ur
Solve Adi = ri such that ∥d̂i − di∥ ≤ ϕi∥di∥
xi+1 = xi + di at precision u

end while

Theorem (simplified from Carson and Higham, 2018)

Under the condition ϕi < 1, the forward error converges to

∥x̂− x∥
∥x∥

≤ u+ urκ(A)

• Limiting accuracy: depends on u and ur only, can be made
independent of κ(A) by taking ur = u2

• Convergence condition: depends on the choice of solver

6/29

https://epubs.siam.org/doi/abs/10.1137/17M1140819

Error analysis of general IR

 Carson and Higham (2018) analyze the most general version of IR:
For a target accuracy u, and assuming κ(A)u < 1:

Solve Ax1 = b by LU factorization at precision uf
while Not converged do

ri = b− Axi at precision ur
Solve Adi = ri such that ∥d̂i − di∥ ≤ ϕi∥di∥
xi+1 = xi + di at precision u

end while

Theorem (simplified from Carson and Higham, 2018)

Under the condition ϕi < 1, the forward error converges to

∥x̂− x∥
∥x∥

≤ u+ urκ(A)

• Limiting accuracy: depends on u and ur only, can be made
independent of κ(A) by taking ur = u2

• Convergence condition: depends on the choice of solver6/29

https://epubs.siam.org/doi/abs/10.1137/17M1140819

70 years of LU-IR

LU-IR: reuse LU factors to solve for di:
di = U−1L−1ri ⇒ ∥d̂i − di∥ ≤ f(n)κ(A)uf∥di∥ ⇒ ϕi = O(κ(A)uf)

Solve Ax1 = b by LU factorization in precision uf
for i = 1: nsteps do

ri = b− Axi in precision ur
Solve Adi = ri via di = U−1(L−1ri)
xi+1 = xi + di in precision u

end for

uf u ur max κ(A) Forward error

Fixed D D D 1016 κ(A) · 10−16

Traditional D D Q 1016 10−16

LP factorization S D D 108 κ(A) · 10−16

3 precisions S D Q 108 10−16

MMM
7/29

70 years of LU-IR

LU-IR: reuse LU factors to solve for di:
di = U−1L−1ri ⇒ ∥d̂i − di∥ ≤ f(n)κ(A)uf∥di∥ ⇒ ϕi = O(κ(A)uf)

Solve Ax1 = b by LU factorization uf = double
for i = 1: nsteps do

ri = b− Axi ur = quadruple
Solve Adi = ri via di = U−1(L−1ri)
xi+1 = xi + di u = double

end for

uf u ur max κ(A) Forward error

Fixed D D D 1016 κ(A) · 10−16

Traditional D D Q 1016 10−16

LP factorization S D D 108 κ(A) · 10−16

3 precisions S D Q 108 10−16

Fixed-precision
 Jankowski and Wozniakowski (1977) Skeel (1980)7/29

https://link.springer.com/article/10.1007%2FBF01932150
https://www.ams.org/journals/mcom/1980-35-151/S0025-5718-1980-0572859-4/

70 years of LU-IR

LU-IR: reuse LU factors to solve for di:
di = U−1L−1ri ⇒ ∥d̂i − di∥ ≤ f(n)κ(A)uf∥di∥ ⇒ ϕi = O(κ(A)uf)

Solve Ax1 = b by LU factorization uf = double
for i = 1: nsteps do

ri = b− Axi ur = double
Solve Adi = ri via di = U−1(L−1ri)
xi+1 = xi + di u = double

end for

uf u ur max κ(A) Forward error

Fixed D D D 1016 κ(A) · 10−16

Traditional D D Q 1016 10−16

LP factorization S D D 108 κ(A) · 10−16

3 precisions S D Q 108 10−16

Traditional
 Wilkinson (1948) Moler (1967)7/29

https://dl.acm.org/doi/abs/10.1145/321386.321394

70 years of LU-IR

LU-IR: reuse LU factors to solve for di:
di = U−1L−1ri ⇒ ∥d̂i − di∥ ≤ f(n)κ(A)uf∥di∥ ⇒ ϕi = O(κ(A)uf)

Solve Ax1 = b by LU factorization uf = single
for i = 1: nsteps do

ri = b− Axi ur = double
Solve Adi = ri via di = U−1(L−1ri)
xi+1 = xi + di u = double

end for

uf u ur max κ(A) Forward error

Fixed D D D 1016 κ(A) · 10−16

Traditional D D Q 1016 10−16

LP factorization S D D 108 κ(A) · 10−16

3 precisions S D Q 108 10−16

Low precision factorization
 Langou et al (2006)7/29

https://ieeexplore.ieee.org/abstract/document/4090224

70 years of LU-IR

LU-IR: reuse LU factors to solve for di:
di = U−1L−1ri ⇒ ∥d̂i − di∥ ≤ f(n)κ(A)uf∥di∥ ⇒ ϕi = O(κ(A)uf)

Solve Ax1 = b by LU factorization uf = single
for i = 1: nsteps do

ri = b− Axi ur = quadruple
Solve Adi = ri via di = U−1(L−1ri)
xi+1 = xi + di u = double

end for

uf u ur max κ(A) Forward error

Fixed D D D 1016 κ(A) · 10−16

Traditional D D Q 1016 10−16

LP factorization S D D 108 κ(A) · 10−16

3 precisions S D Q 108 10−16

Three precisions
 Carson and Higham (2018)7/29

https://epubs.siam.org/doi/abs/10.1137/17M1140819

70 years of LU-IR

LU-IR: reuse LU factors to solve for di:
di = U−1L−1ri ⇒ ∥d̂i − di∥ ≤ f(n)κ(A)uf∥di∥ ⇒ ϕi = O(κ(A)uf)

Solve Ax1 = b by LU factorization uf = half
for i = 1: nsteps do

ri = b− Axi ur = quadruple
Solve Adi = ri via di = U−1(L−1ri)
xi+1 = xi + di u = double

end for

uf u ur max κ(A) Forward error

Fixed D D D 1016 κ(A) · 10−16

Traditional D D Q 1016 10−16

LP factorization H D D 103 κ(A) · 10−16

3 precisions H D Q 103 10−16

Only well-conditioned problems can be solved
with a half precision factorization!7/29

GMRES-IR

GMRES-based IR: Carson and Higham (2017)

• Replace LU by GMRES solver: solve Ãdi = r̃i with GMRES,
where Ã = U−1L−1A is preconditioned by LU factors

• Rationale:
◦ κ(Ã) often smaller than κ(A)
◦ GMRES can be asked to converge to accuracy u≪ uf
⇒ Ãdi = r̃i is solved with accuracy ϕi = κ(Ã)u
◦ Convergence condition improved from κ(A)uf < 1 to κ(Ã)u < 1

• The catch: the matrix–vector products are with Ã = U−1L−1A,
introduce an extra κ(A) unless performed in higher precision

Solve Ax1 = b by LU factorization at precision uf
while Not converged do

ri = b− Axi at precision ur
Solve U−1L−1Adi = U−1L−1ri by GMRES at precision u with

 products with U−1L−1A at precision u2

xi+1 = xi + di at precision u
end while

8/29

https://epubs.siam.org/doi/abs/10.1137/17M1122918

GMRES-IR

GMRES-based IR: Carson and Higham (2017)

• Replace LU by GMRES solver: solve Ãdi = r̃i with GMRES,
where Ã = U−1L−1A is preconditioned by LU factors

• Rationale:
◦ κ(Ã) often smaller than κ(A)
◦ GMRES can be asked to converge to accuracy u≪ uf
⇒ Ãdi = r̃i is solved with accuracy ϕi = κ(Ã)u
◦ Convergence condition improved from κ(A)uf < 1 to κ(Ã)u < 1

• The catch: the matrix–vector products are with Ã = U−1L−1A,
introduce an extra κ(A) unless performed in higher precision

Solve Ax1 = b by LU factorization at precision uf
while Not converged do

ri = b− Axi at precision ur
Solve U−1L−1Adi = U−1L−1ri by GMRES at precision u with

 products with U−1L−1A at precision u2

xi+1 = xi + di at precision u
end while8/29

https://epubs.siam.org/doi/abs/10.1137/17M1122918

LU-IR vs GMRES-IR

Using κ(Ã) ≤ (1 + κ(A)uf)
2 we determine the convergence

condition on κ(A)

uf u ur max κ(A) Forward error

LU-IR S D Q 108 10−16

GMRES-IR S D Q 1016 10−16

LU-IR H D Q 103 10−16

GMRES-IR H D Q 1011 10−16

GMRES-IR can handle much more ill-conditioned matrices.

However:
• LU solves are performed at precision u2 instead of uf
⇒ practical limitation
◦ Increases cost per iteration
◦ If u is D, requires use of quad precision
◦ Practical implementations have relaxed this requirement by

replacing u2 with u, with no theoretical guarantee

9/29

LU-IR vs GMRES-IR

Using κ(Ã) ≤ (1 + κ(A)uf)
2 we determine the convergence

condition on κ(A)

uf u ur max κ(A) Forward error

LU-IR S D Q 108 10−16

GMRES-IR S D Q 1016 10−16

LU-IR H D Q 103 10−16

GMRES-IR H D Q 1011 10−16

GMRES-IR can handle much more ill-conditioned matrices.
However:
• LU solves are performed at precision u2 instead of uf
⇒ practical limitation
◦ Increases cost per iteration
◦ If u is D, requires use of quad precision
◦ Practical implementations have relaxed this requirement by

replacing u2 with u, with no theoretical guarantee9/29

Rethinking GMRES-IR

• Goal: solve Adi = ri with GMRES and bound ϕi = ∥d̂i−di∥/∥di∥
◦ In what precision do we really need to run GMRES?
◦ How much extra precision is really needed in the matvec products?

Solve Ax1 = b by LU factorization at precision uf
for i = 1: nsteps do

ri = b− Axi at precision ur
Solve Adi = ri with preconditioned GMRES at
precision u except matvecs at precision u2

xi+1 = xi + di at precision u
end for

Relax the requirements on the GMRES precisions: run at
precision ug ≤ u with matvecs at precision up ≤ u2

⇒ FIVE precisions in total!

What can we say about the convergence of this GMRES-IR5?

10/29

Rethinking GMRES-IR

• Goal: solve Adi = ri with GMRES and bound ϕi = ∥d̂i−di∥/∥di∥
◦ In what precision do we really need to run GMRES?
◦ How much extra precision is really needed in the matvec products?

Solve Ax1 = b by LU factorization at precision uf
for i = 1: nsteps do

ri = b− Axi at precision ur
Solve Adi = ri with preconditioned GMRES at
precision u except matvecs at precision u2

xi+1 = xi + di at precision u
end for

Relax the requirements on the GMRES precisions: run at
precision ug ≤ u with matvecs at precision up ≤ u2

⇒ FIVE precisions in total!

What can we say about the convergence of this GMRES-IR5?

10/29

Rethinking GMRES-IR

• Goal: solve Adi = ri with GMRES and bound ϕi = ∥d̂i−di∥/∥di∥
◦ In what precision do we really need to run GMRES?
◦ How much extra precision is really needed in the matvec products?

Solve Ax1 = b by LU factorization at precision uf
for i = 1: nsteps do

ri = b− Axi at precision ur
Solve Adi = ri with preconditioned GMRES at
precision ug except matvecs at precision up

xi+1 = xi + di at precision u
end for

Relax the requirements on the GMRES precisions: run at
precision ug ≤ u with matvecs at precision up ≤ u2

⇒ FIVE precisions in total!

What can we say about the convergence of this GMRES-IR5?
10/29

Two precision GMRES

• Unpreconditioned GMRES in precision u for Ax = b:
◦ Backward error of order u Paige, Rozloznik, Strakos (2006)
◦ Forward error of order κ(A)u

• Two precision preconditioned GMRES for Ãx = b:
◦ Backward error of order κ(A)up + ug

• The matrix–vector products are performed with Ã = U−1L−1A:
y = U−1L−1Ax⇒ ∥ŷ− y∥ ≲ κ(A)up∥Ã∥∥x∥

• The rest is at precision ug

◦ Forward error of order κ(Ã)
(
κ(A)up + ug

)
◦ κ(Ã) ≤ (1 + κ(A)uf)

2 ⇒ ϕi ∼ κ(A)2uf
2
(
κ(A)up + ug

)
Side-result: generalization of the backward stability of GMRES to
a preconditioned two-precision GMRES
 Amestoy, Buttari, Higham, L’Excellent, M., Vieublé (2021)

11/29

https://epubs.siam.org/doi/10.1137/050630416
https://hal.archives-ouvertes.fr/hal-03190686

Five precision GMRES-IR

Solve Ax1 = b by LU factorization at precision uf
for i = 1: nsteps do

ri = b− Axi at precision ur
Solve Adi = ri with preconditioned GMRES at
precision ug except matvecs at precision up

xi+1 = xi + di at precision u
end for

Theorem (convergence of GMRES-IR5)

Under the condition (ug + κ(A)up)κ(A)2uf
2 < 1, the forward error

converges to its limiting accuracy

∥x̂− x∥
∥x∥

≤ urκ(A) + u

 Amestoy, Buttari, Higham, L’Excellent, M., Vieublé (2021)

12/29

https://hal.archives-ouvertes.fr/hal-03190686

Meaningful combinations

With five arithmetics (fp16, bfloat16, fp32, fp64, fp128) there are
over 3000 different combinations of GMRES-IR5!

They are not all relevant !

Meaningful combinations: those where none of the precisions can
be lowered without worsening either the limiting accuracy or the
convergence condition.

Filtering rules

• u2 ≤ ur ≤ u ≤ uf

• up ≤ ug

• up < uf

• up < u, up = u, up > u all possible
• ug ≥ u
• ug < uf, ug = uf, ug > uf all possible

13/29

Theoretical results

Meaningful combinations of GMRES-IR5 for uf = H and u = D.

ug up
Convergence Condition

max(κ(A))

LU-IR 2× 103

B S 3× 104

H S 4× 104

H D 9× 104

S D 8× 106

D D 3× 107

D Q 2× 1011

Five combinations between LU-IR and Carson & Higham’s
GMRES-IR⇒ More flexible precisions choice to fit at best the
hardware constraints and the problem difficulty.

14/29

Experimental results

Take 100 random matrices with specified κ(A) and measure the
success rate: the percentage of matrices for which GMRES-IR5
converges to a small forward error

100 102 104 106 108 1010 1012 1014 1016

0.2

0.4

0.6

0.8

1.0

κ(A)

uf = H ug = D

LU-IR

Similar picture on many types of matrices

15/29

Experimental results

Take 100 random matrices with specified κ(A) and measure the
success rate: the percentage of matrices for which GMRES-IR5
converges to a small forward error

100 102 104 106 108 1010 1012 1014 1016

0.2

0.4

0.6

0.8

1.0

κ(A)

uf = H ug = D

LU-IR

up = Q

Similar picture on many types of matrices

15/29

Experimental results

Take 100 random matrices with specified κ(A) and measure the
success rate: the percentage of matrices for which GMRES-IR5
converges to a small forward error

100 102 104 106 108 1010 1012 1014 1016

0.2

0.4

0.6

0.8

1.0

κ(A)

uf = H ug = D

LU-IR

up = D

up = Q

Similar picture on many types of matrices

15/29

Experimental results

Take 100 random matrices with specified κ(A) and measure the
success rate: the percentage of matrices for which GMRES-IR5
converges to a small forward error

100 102 104 106 108 1010 1012 1014 1016

0.2

0.4

0.6

0.8

1.0

κ(A)

uf = H ug = D

LU-IR
up = S

up = D

up = Q

Similar picture on many types of matrices

15/29

Experimental results

Take 100 random matrices with specified κ(A) and measure the
success rate: the percentage of matrices for which GMRES-IR5
converges to a small forward error

100 102 104 106 108 1010 1012 1014 1016

0.2

0.4

0.6

0.8

1.0

κ(A)

uf = H ug = S

LU-IR
up = S

up = D

up = Q

Similar picture on many types of matrices

15/29

Experimental results

Take 100 random matrices with specified κ(A) and measure the
success rate: the percentage of matrices for which GMRES-IR5
converges to a small forward error

100 102 104 106 108 1010 1012 1014 1016

0.2

0.4

0.6

0.8

1.0

κ(A)

uf = H ug = H

LU-IR
up = S

up = D

up = Q

Similar picture on many types of matrices

15/29

Low precisions
Specialized hardware
Sparsity

Low precisions
Specialized hardware
Sparsity

NVIDIA GPU tensor cores
Tensor cores units available on NVIDIA GPUs V100 carry out a
4× 4 matrix multiplication in 1 clock cycle:

D = A B + C
× × × ×
× × × ×
× × × ×
× × × ×

︸ ︷︷ ︸

fp32

=

× × × ×
× × × ×
× × × ×
× × × ×

︸ ︷︷ ︸

fp16

× × × ×
× × × ×
× × × ×
× × × ×

︸ ︷︷ ︸

fp16

+

× × × ×
× × × ×
× × × ×
× × × ×

︸ ︷︷ ︸

fp32

• Performance boost: peaks at 125 TFLOPS (8× speedup vs
fp32, 16× on A100)

• Accuracy boost: let C = AB, with A ∈ Rm×n, B ∈ Rn×p, the
computed Ĉ satisfies

|Ĉ− C| ≲ cn|A||B|, cn =

nu16 (fp16)
2u16 + nu32 (tensor cores)
nu32 (fp32)

 Blanchard, Higham, Lopez, M., Pranesh (2020)

16/29

https://epubs.siam.org/doi/10.1137/19M1289546

NVIDIA GPU tensor cores
Tensor cores units available on NVIDIA GPUs V100 carry out a
4× 4 matrix multiplication in 1 clock cycle:

D = A B + C
× × × ×
× × × ×
× × × ×
× × × ×

︸ ︷︷ ︸

fp32

=

× × × ×
× × × ×
× × × ×
× × × ×

︸ ︷︷ ︸

fp16

× × × ×
× × × ×
× × × ×
× × × ×

︸ ︷︷ ︸

fp16

+

× × × ×
× × × ×
× × × ×
× × × ×

︸ ︷︷ ︸

fp32

• Performance boost: peaks at 125 TFLOPS (8× speedup vs
fp32, 16× on A100)

• Accuracy boost: let C = AB, with A ∈ Rm×n, B ∈ Rn×p, the
computed Ĉ satisfies

|Ĉ− C| ≲ cn|A||B|, cn =

nu16 (fp16)
2u16 + nu32 (tensor cores)
nu32 (fp32)

 Blanchard, Higham, Lopez, M., Pranesh (2020)16/29

https://epubs.siam.org/doi/10.1137/19M1289546

NVIDIA GPU tensor cores
Tensor cores units available on NVIDIA GPUs V100 carry out a
4× 4 matrix multiplication in 1 clock cycle:

D = A B + C
× × × ×
× × × ×
× × × ×
× × × ×

︸ ︷︷ ︸

fp32

=

× × × ×
× × × ×
× × × ×
× × × ×

︸ ︷︷ ︸

fp16

× × × ×
× × × ×
× × × ×
× × × ×

︸ ︷︷ ︸

fp16

+

× × × ×
× × × ×
× × × ×
× × × ×

︸ ︷︷ ︸

fp32

• Performance boost: peaks at 125 TFLOPS (8× speedup vs
fp32, 16× on A100)

• Accuracy boost: let C = AB, with A ∈ Rm×n, B ∈ Rn×p, the
computed Ĉ satisfies

|Ĉ− C| ≲ cn|A||B|, cn =

nu16 (fp16)

2u16 + nu32 (tensor cores)

nu32 (fp32)

 Blanchard, Higham, Lopez, M., Pranesh (2020)16/29

https://epubs.siam.org/doi/10.1137/19M1289546

NVIDIA GPU tensor cores
Tensor cores units available on NVIDIA GPUs V100 carry out a
4× 4 matrix multiplication in 1 clock cycle:

D = A B + C
× × × ×
× × × ×
× × × ×
× × × ×

︸ ︷︷ ︸

fp32

=

× × × ×
× × × ×
× × × ×
× × × ×

︸ ︷︷ ︸

fp16

× × × ×
× × × ×
× × × ×
× × × ×

︸ ︷︷ ︸

fp16

+

× × × ×
× × × ×
× × × ×
× × × ×

︸ ︷︷ ︸

fp32

• Performance boost: peaks at 125 TFLOPS (8× speedup vs
fp32, 16× on A100)

• Accuracy boost: let C = AB, with A ∈ Rm×n, B ∈ Rn×p, the
computed Ĉ satisfies

|Ĉ− C| ≲ cn|A||B|, cn =

nu16 (fp16)
2u16 + nu32 (tensor cores)
nu32 (fp32)

 Blanchard, Higham, Lopez, M., Pranesh (2020)16/29

https://epubs.siam.org/doi/10.1137/19M1289546

Block LU factorization

with tensor cores

• Block version to use matrix–matrix operations

• O(n3) part of the flops done with tensor cores

for k = 1: n/b do
Factorize LkkUkk = Akk (with unblocked alg.)
for i = k+ 1: n/b do

Solve LikUkk = Aik and LkkUki = Aki for Lik and Uki
end for
for i = k+ 1: n/b do

for j = k+ 1: n/b do

L̃ik ← fl16(Lik) and Ũki ← fl16(Uki)

Aij ← Aij − L̃ikŨkj

using tensor cores

end for
end for

end for

17/29

Block LU factorization with tensor cores

• Block version to use matrix–matrix operations
• O(n3) part of the flops done with tensor cores

for k = 1: n/b do
Factorize LkkUkk = Akk (with unblocked alg.)
for i = k+ 1: n/b do

Solve LikUkk = Aik and LkkUki = Aki for Lik and Uki
end for
for i = k+ 1: n/b do

for j = k+ 1: n/b do
L̃ik ← fl16(Lik) and Ũki ← fl16(Uki)
Aij ← Aij − L̃ikŨkj using tensor cores

end for
end for

end for

17/29

LU factorization with tensor cores

Error analysis for LU follows from matrix multiplication analysis
and gives same bounds to first order Blanchard et al. (2020)

Standard fp16 Tensor cores Standard fp32

nu16 2u16 + nu32 nu32

10,000 20,000 30,000 40,000

10−7

10−6

10−5

10−4

Matrix size: n

B
a
ck
w
a
rd

er
ro
r

fp16
tensor cores

fp32

18/29

https://epubs.siam.org/doi/10.1137/19M1289546

Impact on iterative refinement

Results from Haidar et al. (2018)

• TC accuracy boost can be critical!
• TC performance suboptimal here

⇒ why?

19/29

https://ieeexplore.ieee.org/abstract/document/8665777

Impact on iterative refinement

Results from Haidar et al. (2018)

• TC accuracy boost can be critical!
• TC performance suboptimal here⇒ why?

19/29

https://ieeexplore.ieee.org/abstract/document/8665777

• LU factorization is traditionally a compute-bound operation…
• With Tensor Cores, flops are 8× faster
• Matrix is stored in fp32⇒ data movement is unchanged !
⇒ LU with tensor cores becomes memory-bound !

10,000 20,000 30,000 40,000 50,000

0

10

20

30

40

50

Matrix size: n

P
er
fo
rm

a
n
ce

(T
F
L
O
P
S
)

fp16

tensor cores (A in fp32)

10,000 20,000 30,000 40,000 50,000
10−7

10−6

10−5

10−4

10−3

Matrix size: n
B
a
ck
w
a
rd

er
ro
r

fp16

tensor cores (A in fp32)

• Idea: store matrix in fp16
• Problem: huge accuracy loss, tensor cores accuracy boost
completely negated

20/29

• LU factorization is traditionally a compute-bound operation…
• With Tensor Cores, flops are 8× faster
• Matrix is stored in fp32⇒ data movement is unchanged !
⇒ LU with tensor cores becomes memory-bound !

10,000 20,000 30,000 40,000 50,000

0

10

20

30

40

50

Matrix size: n

P
er
fo
rm

a
n
ce

(T
F
L
O
P
S
)

fp16

tensor cores (A in fp32)

tensor cores (A in fp16)

10,000 20,000 30,000 40,000 50,000
10−7

10−6

10−5

10−4

10−3

Matrix size: n
B
a
ck
w
a
rd

er
ro
r

fp16

tensor cores (A in fp32)

tensor cores (A in fp16)

• Idea: store matrix in fp16
• Problem: huge accuracy loss, tensor cores accuracy boost
completely negated

20/29

Reducing data movement

Two ingredients to reduce data movement with no accuracy loss:

1. Mixed fp16/fp32 representation

2. Right-looking→ left-looking factorization

Matrix after 2 steps:

fp16

fp32

O(n3) fp32 + O(n2) fp16→ O(n2) fp32 + O(n3) fp16

21/29

Reducing data movement

Two ingredients to reduce data movement with no accuracy loss:

1. Mixed fp16/fp32 representation

2. Right-looking→ left-looking factorization

Matrix after 2 steps:

fp16

fp32

O(n3) fp32 + O(n2) fp16→ O(n2) fp32 + O(n3) fp16

21/29

Reducing data movement

Two ingredients to reduce data movement with no accuracy loss:

1. Mixed fp16/fp32 representation

2. Right-looking→ left-looking factorization

Matrix after 2 steps:

fp16

fp32

read

write

O(n3) fp32 + O(n2) fp16→ O(n2) fp32 + O(n3) fp16

21/29

Reducing data movement

Two ingredients to reduce data movement with no accuracy loss:

1. Mixed fp16/fp32 representation

2. Right-looking → left-looking factorization

Matrix after 2 steps:

fp16

fp32

read

write

O(n3) fp32 + O(n2) fp16→ O(n2) fp32 + O(n3) fp16
21/29

Experimental results

10,000 20,000 30,000 40,000 50,000

0

10

20

30

40

50

Matrix size: n

P
er
fo
rm

a
n
ce

(T
F
L
O
P
S
)

fp16

tensor cores (A in fp32)

tensor cores (A in fp16)

left-looking tensor cores

10,000 20,000 30,000 40,000 50,000
10−7

10−6

10−5

10−4

10−3

Matrix size: n

B
a
ck
w
a
rd

er
ro
r

fp16

tensor cores (A in fp32)

tensor cores (A in fp16)

left-looking tensor cores

Nearly 50 TFLOPS without significantly impacting accuracy
 Lopez and M. (2020)

22/29

http://eprints.maths.manchester.ac.uk/2782/

Low precisions
Specialized hardware
Sparsity

Low precisions
Specialized hardware
Sparsity

Sparsity and data sparsity

• Sparse matrices: exploit exact zeros
• Data sparse matrices: exploit numerical zeros

σ

τ

B
ρ σ

τ

low rank

large rank

• A block B represents the interaction between two subdomains
⇒ low numerical rank for far away subdomains

→B

23/29

BLR matrices

Block low rank (BLR) matrices use a flat 2D block partitioning
 Amestoy et al. (2015) Amestoy et al. (2019)

Example of a BLR matrix (Schur

complement of a 643 Poisson

problem with block size 128)

• Diagonal blocks are full rank
• Off-diagonal blocks Aij are
approximated by low-rank blocks Tij
satisfying ∥Aij − Tij∥ ≤ ε∥A∥

• ε controls the backward error of BLR
LU Higham and M. (2021)

24/29

https://epubs.siam.org/doi/abs/10.1137/120903476
https://dl.acm.org/doi/10.1145/3242094
https://doi.org/10.1093/imanum/drab020

Complexity of LU factorization

• Crucial to exploit sparsity to tackle large scale problems

Flops Storage

Dense O(n3) O(n2)
Sparse (3D domain) O(n2) O(n4/3)
BLR (constant ranks) O(n2) O(n3/2)
Sparse+BLR O(n4/3) O(n logn)

 Amestoy, Buttari, L’Excellent, M. (2017)

• In mixed precision, is sparsity a challenge or an opportunity?
⇒ A little bit of both

Challenge: ratio LU factorization cost / LU solve cost

Dense → Sparse → Sparse+BLR
O(n) → O(n2/3) → O(n1/3)

⇒ less room to amortize iterations

25/29

https://epubs.siam.org/doi/10.1137/16M1077192

Complexity of LU factorization

• Crucial to exploit sparsity to tackle large scale problems

Flops Storage

Dense O(n3) O(n2)
Sparse (3D domain) O(n2) O(n4/3)
BLR (constant ranks) O(n2) O(n3/2)
Sparse+BLR O(n4/3) O(n logn)

 Amestoy, Buttari, L’Excellent, M. (2017)

• In mixed precision, is sparsity a challenge or an opportunity?
⇒ A little bit of both

Challenge: ratio LU factorization cost / LU solve cost

Dense → Sparse → Sparse+BLR
O(n) → O(n2/3) → O(n1/3)

⇒ less room to amortize iterations
25/29

https://epubs.siam.org/doi/10.1137/16M1077192

IR with sparse LU

fp32 LU (MUMPS) + IR on large sparse ill-conditioned matrices
Time (%) w.r.t. fp64 MUMPS solver

ss

n
lp

k
k

t8
0

S
er

en
a

G
eo

_
14

38

C
h

ev
ro

n
4

M
L

_
G

ee
r

T
ra

n
sp

or
t

B
u

m
p

_
29

11

va
s_

st
ok

es
_

1M

H
o

ok
_

14
89

Q
u

ee
n

_
41

47

d
ie

lF
il

te
rV

2r
ea

l

F
la

n
_

15
65

P
fl

ow
_

74
2

C
u

b
e_

C
ou

p
_

d
t0

fe
m

_
h

if
re

q
_

ci
rc

u
it

L
on

g_
C

ou
p

_
d

t0

0%

25%

50%

75%

100%

n
o

co
n

ve
rg

en
ce

n
o

co
n

ve
rg

en
ce

LU-IR time GMRES-IR time

• Often more than 25% acceleration, up to 2×
• GMRES-IR slower than LU-IR but more robust

26/29

Mixed precision low rank compression
U

VT

U1 U2 U3

VT1
VT2

VT3

Σ∥B∥

ε

ε/us

ε/uh

• Low-rank compress based on, e.g., SVD:⇒ ∥B−UΣVT∥ ≤ ε,
everything stored in double precision

• Mixed precision compression: partition the SVD into several
groups of different precision

• Converting Ui and Vi to precision ui introduces error
proportional ui∥Σi∥

⇒ Need to partition Σ such that ∥Σi∥ ≤ ε/ui

27/29

Mixed precision low rank compression

U

VT

U1 U2 U3

VT1
VT2

VT3

Σ∥B∥

ε

ε/us

ε/uh

• Low-rank compress based on, e.g., SVD:⇒ ∥B−UΣVT∥ ≤ ε,
everything stored in double precision

• Mixed precision compression: partition the SVD into several
groups of different precision

• Converting Ui and Vi to precision ui introduces error
proportional ui∥Σi∥

⇒ Need to partition Σ such that ∥Σi∥ ≤ ε/ui

27/29

Mixed precision low rank compression

U

VT

U1 U2 U3

VT1
VT2

VT3

Σ∥B∥

ε

ε/us

ε/uh

• Low-rank compress based on, e.g., SVD:⇒ ∥B−UΣVT∥ ≤ ε,
everything stored in double precision

• Mixed precision compression: partition the SVD into several
groups of different precision

• Converting Ui and Vi to precision ui introduces error
proportional ui∥Σi∥

⇒ Need to partition Σ such that ∥Σi∥ ≤ ε/ui
27/29

Mixed precision BLR matrices

(Poisson, ε = 10−12)

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Double

Single Half

100%

44% 30%
Most entries can be stored in precision much lower than ε !
 Amestoy, Boiteau, Buttari, Gerest, Jézéquel, L’Excellent, M. (2021)

28/29

https://www-pequan.lip6.fr/~tmary/doc/CSE21.pdf

Mixed precision BLR matrices

(Poisson, ε = 10−12)

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Double Single

Half

26% 74%

30%
Most entries can be stored in precision much lower than ε !
 Amestoy, Boiteau, Buttari, Gerest, Jézéquel, L’Excellent, M. (2021)

28/29

https://www-pequan.lip6.fr/~tmary/doc/CSE21.pdf

Mixed precision BLR matrices

(Poisson, ε = 10−12)

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Double Single Half
26% 44% 30%

Most entries can be stored in precision much lower than ε !
 Amestoy, Boiteau, Buttari, Gerest, Jézéquel, L’Excellent, M. (2021)28/29

https://www-pequan.lip6.fr/~tmary/doc/CSE21.pdf

Conclusions

• Emerging low precisions provide new opportunities for high
performance NLA

• Mixed precision algorithms have proven highly successful at
Ax = b, even for ill-conditioned A

• Specialized hardware helps, both for speed and accuracy
• Sparsity can make things more challenging… but data sparsity
creates new mixed precision opportunities!

Slides available at https://bit.ly/la21mix
(references on next slides)

29/29

https://bit.ly/la21mix

References (mixed precision algorithms)

• E. Carson and N. J. Higham. Accelerating the Solution of Linear Systems by
Iterative Refinement in Three Precisions. SIAM J. Sci. Comput., 40(2),
A817–A847 (2018)

• E. Carson and N. J. Higham. A New Analysis of Iterative Refinement and Its
Application to Accurate Solution of Ill-Conditioned Sparse Linear Systems.
SIAM J. Sci. Comput., 39(6), A2834–A2856 (2017).

• P. R. Amestoy, A. Buttari, N. J. Higham, J.-Y. L’Excellent, T. Mary, and B.
Vieublé. Five-precision GMRES-based Iterative Refinement. MIMPS EPrint
2021.5.

• A. Haidar, S. Tomov, J. Dongarra, and N. J. Higham. Harnessing GPU Tensor
Cores for Fast FP16 Arithmetic to Speed up Mixed-Precision Iterative
Refinement Solvers. SC’18.

• P. Blanchard, N. J. Higham, F. Lopez, T. Mary, and S. Pranesh. Mixed
Precision Block Fused Multiply-Add: Error Analysis and Application to GPU
Tensor Cores. SIAM J. Sci. Comput. 42(3), C124–C141 (2020).

• F. Lopez and T. Mary. Mixed Precision LU Factorization on GPU Tensor Cores:
Reducing Data Movement and Memory Footprint. MIMS EPrint 2020.20.

30/29

https://doi.org/10.1137/17M1140819
https://doi.org/10.1137/17M1140819
https://epubs.siam.org/doi/abs/10.1137/17M1122918
https://epubs.siam.org/doi/abs/10.1137/17M1122918
https://hal.archives-ouvertes.fr/hal-03190686
https://ieeexplore.ieee.org/abstract/document/8665777
https://ieeexplore.ieee.org/abstract/document/8665777
https://ieeexplore.ieee.org/abstract/document/8665777
https://doi.org/10.1137/19M1289546
https://doi.org/10.1137/19M1289546
https://doi.org/10.1137/19M1289546
http://eprints.maths.manchester.ac.uk/2782/
http://eprints.maths.manchester.ac.uk/2782/

References (BLR matrices)

• P. R. Amestoy, C. Ashcraft, O. Boiteau, A. Buttari, J.-Y. L’Excellent, and C.
Weisbecker. Improving Multifrontal Methods by Means of Block Low-Rank
Representations SIAM J. Sci. Comput., 37(3), A1451–A1474 (2015).

• P. R. Amestoy, A. Buttari, J.-Y. L’Excellent, and T. Mary. On the Complexity of
the Block Low-Rank Multifrontal Factorization. SIAM J. Sci. Comput., 39(4),
A1710–A1740 (2017).

• P. R. Amestoy, A. Buttari, J.-Y. L’Excellent, and T. Mary. Performance and
Scalability of the Block Low-Rank Multifrontal Factorization on Multicore
Architectures. ACM Trans. Math. Softw., 45(1), 2:1–2:26 (2019).

• N. J. Higham and T. Mary. Solving Block Low-Rank Linear Systems by LU
Factorization is Numerically Stable. IMA J. Numer. Anal., drab020 (2021).

• P. R. Amestoy, O. Boiteau, A. Buttari, M. Gerest, F. Jézéquel, J.-Y. L’Excellent,
and T. Mary. Mixed Precision Low Rank Approximations and their Application
to Block Low Rank Matrix Factorization. In preparation.

31/29

https://doi.org/10.1137/120903476
https://doi.org/10.1137/120903476
https://doi.org/10.1137/16M1077192
https://doi.org/10.1137/16M1077192
https://doi.org/10.1145/3242094
https://doi.org/10.1145/3242094
https://doi.org/10.1145/3242094
https://doi.org/10.1093/imanum/drab020
https://doi.org/10.1093/imanum/drab020

	Low precisions Specialized hardwareSparsity
	Low precisions Specialized hardwareSparsity
	Low precisions Specialized hardwareSparsity
	Low precisions Specialized hardwareSparsity
	Low precisions Specialized hardwareSparsity
	Low precisions Specialized hardwareSparsity

