SIAG/LA Early Career Prize

SIAM LA, May 18, 2021

Exploiting Mixed Precision Arithmetic in the Solution of Linear Systems

Theo Mary

Sorbonne Université, CNRS, LIP6 https://www-pequan.lip6.fr/~tmary/ Slides available at https://bit.ly/la21mix

Patrick Amestoy

Pierre Blanchard

Olivier Boiteau

Alfredo Buttari

Matthieu Gerest

Nicholas Higham

Fabienne Jézéquel

Jean-Yves L'Excellent

Florent Lopez

Srikara Pranesh

Bastien Vieublé

Outline

Objective: accelerate Ax = b in mixed precision by exploiting...

1. Low precisions (e.g., fp16, bfloat16)

2. Specialized hardware (e.g., Tensor Cores)

3. Sparsity (both structural and data sparsity)

Low precisions Specialized hardware Sparsity

Low precisions Specialized hardware Sparsity

Bits											
		Signif. (†)	Exp.	Range	$u = 2^{-t}$						
bfloat16	В	8	8	$10^{\pm 38}$	4×10^{-3}						
fp16	Н	11	5	$10^{\pm 5}$	5×10^{-4}						
fp32	S	24	8	$10^{\pm 38}$	6×10^{-8}						
fp64	D	53	11	$10^{\pm 308}$	1×10^{-16}						
fp128	Q	113	15	$10^{\pm 4932}$	1×10^{-34}						

Low precision increasingly supported by hardware:

- Fp16 used by NVIDIA GPUs, AMD Radeon Instinct MI25 GPU, ARM NEON, Fujitsu A64FX ARM
- Bfloat16 used by Google TPU, NVIDIA GPUs, Arm, Intel

		Bits			
		Signif. (†)	Exp.	Range	$u = 2^{-t}$
bfloat16	В	8	8	$10^{\pm 38}$	4×10^{-3}
fp16	Н	11	5	$10^{\pm 5}$	5×10^{-4}
fp32	S	24	8	$10^{\pm 38}$	6×10^{-8}
fp64	D	53	11	$10^{\pm 308}$	1×10^{-16}
fp128	Q	113	15	$10^{\pm 4932}$	1×10^{-34}

Great benefits:

- Reduced storage, data movement, and communications
- Increased speed on emerging hardware (16× on A100 from fp32 to fp16/bfloat16)
- Reduced energy consumption (5× with fp16, 9× with bfloat16)

Solving Ax = b

Standard method to solve Ax = b:

- 1. Factorize A = LU, where L and U are lower and upper triangular
- 2. Solve Ly = b and Ux = y

Precision $u \Rightarrow$ computed \hat{x} satisfies $\|\hat{x} - x\| \le f(n)\kappa(A)u\|x\|$

Solving Ax = b

Standard method to solve Ax = b:

1. Factorize A = LU, where L and U are lower and upper triangular

2. Solve Ly = b and Ux = y

Precision $u \Rightarrow$ computed \hat{x} satisfies $\|\hat{x} - x\| \le f(n)\kappa(A)u\|x\|$

An algorithm to refine the solution: iterative refinement (IR)

Solve
$$Ax_1 = b$$
 via $x_1 = U^{-1}(L^{-1}b)$
while Not converged do
 $r_i = b - Ax_i$
Solve $Ad_i = r_i$ via $d_i = U^{-1}(L^{-1}r_i)$
 $x_{i+1} = x_i + d_i$
end while

Many variants over the years, depending on choice of precisions and solver for $Ad_i = r_i$

Error analysis of general IR

Carson and Higham (2018) analyze the most general version of IR: For a **target accuracy** u, and assuming $\kappa(A)u < 1$:

Solve $Ax_1 = b$ by LU factorization at precision $\mathbf{u}_{\mathbf{f}}$ while Not converged **do** $r_i = b - Ax_i$ at precision $\mathbf{u}_{\mathbf{r}}$ Solve $Ad_i = r_i$ such that $\|\widehat{d}_i - d_i\| \le \phi_i \|d_i\|$ $x_{i+1} = x_i + d_i$ at precision \mathbf{u} end while

Theorem (simplified from Carson and Higham, 2018)

Under the condition $\phi_i < 1$, the forward error converges to

$$\frac{\|\widehat{x} - x\|}{\|x\|} \le \mathbf{u} + \mathbf{u}_{\mathsf{r}}\kappa(A)$$

Error analysis of general IR

Carson and Higham (2018) analyze the most general version of IR: For a **target accuracy** u, and assuming $\kappa(A)u < 1$:

Solve $Ax_1 = b$ by LU factorization at precision $\mathbf{u}_{\mathbf{f}}$ while Not converged **do** $r_i = b - Ax_i$ at precision $\mathbf{u}_{\mathbf{r}}$ Solve $Ad_i = r_i$ such that $\|\widehat{d}_i - d_i\| \le \phi_i \|d_i\|$ $x_{i+1} = x_i + d_i$ at precision \mathbf{u} end while

Theorem (simplified from Carson and Higham, 2018)

Under the condition $\phi_i < 1$, the forward error converges to

$$\frac{\|\widehat{x} - x\|}{\|x\|} \le \mathbf{u} + \mathbf{u}_{\mathsf{r}}\kappa(A)$$

- Limiting accuracy: depends on u and u_r only, can be made independent of κ(A) by taking u_r = u²
- Convergence condition: depends on the choice of solver

LU-IR: reuse LU factors to solve for d_i : $d_i = U^{-1}L^{-1}r_i \Rightarrow \|\widehat{d}_i - d_i\| \le f(n)\kappa(A)\mathbf{u_f}\|d_i\| \Rightarrow \phi_i = O(\kappa(A)\mathbf{u_f})$

end for	
$x_{i+1} = x_i + d_i$	in precision u
Solve $Ad_i = r_i$ via $d_i = U^{-1}(L^{-1}r_i)$	
$r_i = b - Ax_i$	in precision u_r
for $i = 1$: nsteps do	
Solve $Ax_1 = b$ by LU factorization	in precision <mark>u_f</mark>

 Uf	и	Ur	max $\kappa(A)$	Forward error

LU-IR: reuse LU factors to solve for d_i : $d_i = U^{-1}L^{-1}r_i \Rightarrow \|\widehat{d}_i - d_i\| \le f(n)\kappa(A)\mathbf{u_f}\|d_i\| \Rightarrow \phi_i = O(\kappa(A)\mathbf{u_f})$

Solve $Ax_1 = b$ by LU factorization	$u_f = double$
for $i = 1$: nsteps do	
$r_i = b - Ax_i$	$\mathbf{u_r} = \mathbf{quadruple}$
Solve $Ad_i = r_i$ via $d_i = U^{-1}(L^{-1}r_i)$	
$x_{i+1} = x_i + d_i$	$\mathbf{u} = \mathbf{double}$
end for	

	Uf	и	U _r	max $\kappa(A)$	Forward error
Fixed	D	D	D	10^{16}	$\kappa(A) \cdot 10^{-16}$
🖨 Jankowski and Wozniakowski (1977) 🛛 🖨 Skeel (1980)					

LU-IR: reuse LU factors to solve for d_i : $d_i = U^{-1}L^{-1}r_i \Rightarrow \|\widehat{d}_i - d_i\| \le f(n)\kappa(A)\mathbf{u_f}\|d_i\| \Rightarrow \phi_i = O(\kappa(A)\mathbf{u_f})$

Solve $Ax_1 = b$ by LU factorization	$u_f = double$
for $i = 1$: nsteps do	
$r_i = b - Ax_i$	$u_r = double$
Solve $Ad_i = r_i$ via $d_i = U^{-1}(L^{-1}r_i)$	
$x_{i+1} = x_i + d_i$	$\mathbf{u} = \mathbf{double}$
end for	

	Uf	и	U _r	max $\kappa(A)$	Forward error
Fixed	D	D	D	10^{16}	$\kappa(A) \cdot 10^{-16}$
Traditional	D	D	Q	10^{16}	10^{-16}
		Te	aditi	onal	
naunona					
l≞l Wi	lkinson	(194	8)	I≡ Moler (1967	7)

LU-IR: reuse LU factors to solve for d_i : $d_i = U^{-1}L^{-1}r_i \Rightarrow \|\widehat{d}_i - d_i\| \le f(n)\kappa(A)\mathbf{u_f}\|d_i\| \Rightarrow \phi_i = O(\kappa(A)\mathbf{u_f})$

Solve $Ax_1 = b$ by LU factorization	$u_f = single$
for $i = 1$: nsteps do	
$r_i = b - Ax_i$	$\mathbf{u_r} = \mathbf{double}$
Solve $Ad_i = r_i$ via $d_i = U^{-1}(L^{-1}r_i)$	
$x_{i+1} = x_i + d_i$	$\mathbf{u} = \mathbf{double}$
end for	

	Uf	и	<i>u</i> _r	max $\kappa(A)$	Forward error
Fixed	D	D	D	10^{16}	$\kappa(A) \cdot 10^{-16}$
Traditional	D	D	Q	10^{16}	10^{-16}
LP factorization	S	D	D	10^{8}	$\kappa(A) \cdot 10^{-16}$

Low precision factorization

Langou et al (2006)

LU-IR: reuse LU factors to solve for d_i : $d_i = U^{-1}L^{-1}r_i \Rightarrow \|\widehat{d}_i - d_i\| \le f(n)\kappa(A)\mathbf{u_f}\|d_i\| \Rightarrow \phi_i = O(\kappa(A)\mathbf{u_f})$

Solve $Ax_1 = b$ by LU factorization	$u_f = single$
for $i = 1$: nsteps do	
$r_i = b - Ax_i$	$u_{r} = quadruple$
Solve $Ad_i = r_i$ via $d_i = U^{-1}(L^{-1}r_i)$	
$x_{i+1} = x_i + d_i$	$\mathbf{u} = \mathbf{double}$
end for	

	Uf	и	ur	max $\kappa(A)$	Forward error
Fixed	D	D	D	10^{16}	$\kappa(A) \cdot 10^{-16}$
Traditional	D	D	Q	10^{16}	10^{-16}
LP factorization	S	D	D	10^{8}	$\kappa(A) \cdot 10^{-16}$
3 precisions	S	D	Q	10^{8}	10^{-16}

Three precisions

Carson and Higham (2018)

LU-IR: reuse LU factors to solve for d_i : $d_i = U^{-1}L^{-1}r_i \Rightarrow \|\widehat{d}_i - d_i\| \le f(n)\kappa(A)\mathbf{u_f}\|d_i\| \Rightarrow \phi_i = O(\kappa(A)\mathbf{u_f})$

Solve $Ax_1 = b$ by LU factorization	u _f = half
for $i = 1$: nsteps do	
$r_i = b - Ax_i$	$u_r = quadruple$
Solve $Ad_i = r_i$ via $d_i = U^{-1}(L^{-1}r_i)$	
$x_{i+1} = x_i + d_i$	$\mathbf{u} = \mathbf{double}$
end for	

	Uf	и	ur	max $\kappa(A)$	Forward error
Fixed	D	D	D	10^{16}	$\kappa(A) \cdot 10^{-16}$
Traditional	D	D	Q	10^{16}	10^{-16}
LP factorization	Н	D	D	10^{3}	$\kappa(A) \cdot 10^{-16}$
3 precisions	Н	D	Q	10^{3}	10^{-16}

Only well-conditioned problems can be solved with a half precision factorization!

GMRES-IR

GMRES-based IR: 🖹 Carson and Higham (2017)

- Replace LU by GMRES solver: solve $\widetilde{A}d_i = \widetilde{r}_i$ with GMRES, where $\widetilde{A} = U^{-1}L^{-1}A$ is preconditioned by LU factors
- Rationale:
 - $\circ \kappa(\widetilde{A})$ often smaller than $\kappa(A)$
 - $\circ\,$ GMRES can be asked to converge to accuracy $u \ll u_f$
 - $\Rightarrow \widetilde{A}d_i = \widetilde{r}_i$ is solved with accuracy $\phi_i = \kappa(\widetilde{A})$ **u**
 - $\circ~$ Convergence condition improved from $\kappa(A) {\bf u_f} < 1$ to $\kappa(\widetilde{A}) {\bf u} < 1$

GMRES-IR

GMRES-based IR: 🖹 Carson and Higham (2017)

- Replace LU by GMRES solver: solve $\widetilde{A}d_i = \widetilde{r}_i$ with GMRES, where $\widetilde{A} = U^{-1}L^{-1}A$ is preconditioned by LU factors
- Rationale:
 - $\circ \kappa(\widetilde{A})$ often smaller than $\kappa(A)$
 - $\,\circ\,$ GMRES can be asked to converge to accuracy $u \ll u_f$
 - $\Rightarrow \widetilde{A}d_i = \widetilde{r}_i$ is solved with accuracy $\phi_i = \kappa(\widetilde{A})$ **u**
 - $\circ~$ Convergence condition improved from $\kappa(A) {\bf u_f} < 1$ to $\kappa(\widetilde{A}) {\bf u} < 1$
- The catch: the matrix-vector products are with $\tilde{A} = U^{-1}L^{-1}A$, introduce an extra $\kappa(A)$ unless performed in higher precision

Solve $Ax_1 = b$ by LU factorization at precision $\mathbf{u}_{\mathbf{f}}$ while Not converged **do** $r_i = b - Ax_i$ at precision $\mathbf{u}_{\mathbf{r}}$ Solve $U^{-1}L^{-1}Ad_i = U^{-1}L^{-1}r_i$ by GMRES at precision \mathbf{u} with products with $U^{-1}L^{-1}A$ at precision \mathbf{u}^2 $x_{i+1} = x_i + d_i$ at precision \mathbf{u} end while

8/2

LU-IR vs GMRES-IR

Using $\kappa(\widetilde{A}) \leq (1+\kappa(A)\mathbf{u_f})^2$ we determine the convergence condition on $\kappa(A)$

	Uf	и	u _r	$\max \kappa(A)$	Forward error
LU-IR	S	D	Q	10^{8}	10^{-16}
GMRES-IR	S	D	Q	10^{16}	10^{-16}
LU-IR	Н	D	Q	10^{3}	10^{-16}
GMRES-IR	Н	D	Q	10^{11}	10^{-16}

GMRES-IR can handle much more ill-conditioned matrices.

LU-IR vs GMRES-IR

Using $\kappa(\widetilde{A}) \leq (1+\kappa(A)\mathbf{u_f})^2$ we determine the convergence condition on $\kappa(A)$

	Uf	и	u _r	max $\kappa(A)$	Forward error
LU-IR	S	D	Q	10^{8}	10^{-16}
GMRES-IR	S	D	Q	10^{16}	10^{-16}
LU-IR	Н	D	Q	10^{3}	10^{-16}
GMRES-IR	Н	D	Q	10^{11}	10^{-16}

GMRES-IR can handle much more ill-conditioned matrices. **However:**

- LU solves are performed at precision u² instead of u_f ⇒ practical limitation
 - Increases cost per iteration
 - \circ If *u* is D, requires use of quad precision
 - Practical implementations have relaxed this requirement by replacing u^2 with u, with no theoretical guarantee

Rethinking GMRES-IR

- Goal: solve $Ad_i = r_i$ with GMRES and bound $\phi_i = \|\widehat{d}_i d_i\|/\|d_i\|$
 - In what precision do we really need to run GMRES?
 - How much extra precision is really needed in the matvec products?

```
Solve Ax_1 = b by LU factorization at precision \mathbf{u_f}
for i = 1: nsteps do
r_i = b - Ax_i at precision \mathbf{u_r}
Solve Ad_i = r_i with preconditioned GMRES at
precision \mathbf{u} except matvecs at precision \mathbf{u}^2
x_{i+1} = x_i + d_i at precision \mathbf{u}
end for
```

Rethinking GMRES-IR

- Goal: solve $Ad_i = r_i$ with GMRES and bound $\phi_i = \|\widehat{d}_i d_i\|/\|d_i\|$
 - In what precision do we really need to run GMRES?
 - How much extra precision is really needed in the matvec products?

```
Solve Ax_1 = b by LU factorization at precision \mathbf{u}_{\mathbf{f}}

for i = 1: nsteps do

r_i = b - Ax_i at precision \mathbf{u}_{\mathbf{r}}

Solve Ad_i = r_i with preconditioned GMRES at

precision \mathbf{u} except matvecs at precision \mathbf{u}^2

x_{i+1} = x_i + d_i at precision \mathbf{u}

end for
```

Rethinking GMRES-IR

- Goal: solve $Ad_i = r_i$ with GMRES and bound $\phi_i = \|\widehat{d}_i d_i\|/\|d_i\|$
 - In what precision do we really need to run GMRES?
 - How much extra precision is really needed in the matvec products?

```
Solve Ax_1 = b by LU factorization at precision \mathbf{u_f}
for i = 1: nsteps do
r_i = b - Ax_i at precision \mathbf{u_r}
Solve Ad_i = r_i with preconditioned GMRES at
precision \mathbf{u_g} except matvecs at precision \mathbf{u_p}
x_{i+1} = x_i + d_i at precision \mathbf{u}
end for
```

Relax the requirements on the GMRES precisions: run at precision $u_g \leq u$ with matvecs at precision $u_p \leq u^2$

⇒ FIVE precisions in total!

What can we say about the convergence of this GMRES-IR5? $_{\rm 0/29}$

Two precision GMRES

- Unpreconditioned GMRES in precision **u** for Ax = b:
 - Backward error of order u Paige, Rozloznik, Strakos (2006)
 - Forward error of order $\kappa(A)$ **u**
- Two precision preconditioned GMRES for Ax = b:
 - \circ Backward error of order $\kappa(A)\mathbf{u_p} + \mathbf{u_g}$
 - The matrix-vector products are performed with $\widetilde{A} = U^{-1}L^{-1}A$: $y = U^{-1}L^{-1}Ax \Rightarrow \|\widehat{y} - y\| \lesssim \kappa(A)\mathbf{u_p}\|\widetilde{A}\|\|x\|$
 - The rest is at precision **u**g
 - Forward error of order $\kappa(\widetilde{A}) (\kappa(A) \mathbf{u_p} + \mathbf{u_g})$
 - $\circ \ \kappa(\widetilde{A}) \leq (1 + \kappa(A)\mathbf{u}_{\mathbf{f}})^2 \Rightarrow \phi_i \sim \kappa(A)^2 \mathbf{u}_{\mathbf{f}}^2 \big(\kappa(A)\mathbf{u}_{\mathbf{p}} + \mathbf{u}_{\mathbf{g}}\big)$

Side-result: generalization of the backward stability of GMRES to a preconditioned two-precision GMRES

🖹 Amestoy, Buttari, Higham, L'Excellent, M., Vieublé (2021)

Five precision GMRES-IR

Solve $Ax_1 = b$ by LU factorization at precision $\mathbf{u_f}$ for i = 1: nsteps do $r_i = b - Ax_i$ at precision $\mathbf{u_r}$ Solve $Ad_i = r_i$ with preconditioned GMRES at precision $\mathbf{u_g}$ except matvecs at precision $\mathbf{u_p}$ $x_{i+1} = x_i + d_i$ at precision \mathbf{u} end for

Theorem (convergence of GMRES-IR5)

Under the condition $(\mathbf{u}_{g} + \kappa(A)\mathbf{u}_{p})\kappa(A)^{2}\mathbf{u}_{f}^{2} < 1$, the forward error converges to its limiting accuracy

$$\frac{\|\widehat{x} - x\|}{\|x\|} \le \mathbf{u}_{\mathsf{r}}\kappa(A) + \mathbf{u}$$

🖹 Amestoy, Buttari, Higham, L'Excellent, M., Vieublé (2021)

With five arithmetics (fp16, bfloat16, fp32, fp64, fp128) there are over **3000 different combinations** of GMRES-IR5!

They are not all relevant !

Meaningful combinations: those where none of the precisions can be lowered without worsening either the limiting accuracy or the convergence condition.

Filtering rules	
• $\mathbf{u}^2 \leq \mathbf{u_r} \leq \mathbf{u} \leq \mathbf{u_f}$	• $\mathbf{u_p} < \mathbf{u}, \mathbf{u_p} = \mathbf{u}, \mathbf{u_p} > \mathbf{u}$ all possible
• $u_p \le u_g$	• $u_g \ge u$
• $u_p < u_f$	$\bullet \ \mathbf{u_g} < \mathbf{u_f}, \mathbf{u_g} = \mathbf{u_f}, \mathbf{u_g} > \mathbf{u_f} \text{ all possible}$

Meaningful combinations of GMRES-IR5 for $\mathbf{u}_{\mathbf{f}} = H$ and $\mathbf{u} = D$.

ug	u _p	Convergence Condition $\max(\kappa(A))$
LU	-IR	2×10^3
В	S	3×10^4
Н	S	4×10^4
Н	D	9×10^4
S	D	$8 imes 10^6$
D	D	$3 imes 10^7$
D	Q	2×10^{11}

Five combinations between LU-IR and Carson & Higham's GMRES-IR \Rightarrow More **flexible** precisions choice to fit at best the **hardware constraints** and the **problem difficulty**.

$$u_f = H$$
 $u_g = L$

Similar picture on many types of matrices

Low precisions Specialized hardware Sparsity

Low precisions Specialized hardware Sparsity

Tensor cores units available on NVIDIA GPUs V100 carry out a 4×4 matrix multiplication **in 1 clock cycle**:

• **Performance boost**: peaks at 125 TFLOPS (8× speedup vs fp32, 16× on A100)

Tensor cores units available on NVIDIA GPUs V100 carry out a 4×4 matrix multiplication in 1 clock cycle:

- **Performance boost**: peaks at 125 TFLOPS (8× speedup vs fp32, 16× on A100)
- Accuracy boost: let C = AB, with A ∈ ℝ^{m×n}, B ∈ ℝ^{n×p}, the computed C satisfies

$$|\widehat{C}-C| \lesssim c_n |A| |B|, \quad c_n = \langle$$

6/29 🖹 Blanchard, Higham, Lopez, M., Pranesh (2020)

Tensor cores units available on NVIDIA GPUs V100 carry out a 4×4 matrix multiplication in 1 clock cycle:

- **Performance boost**: peaks at 125 TFLOPS (8× speedup vs fp32, 16× on A100)
- Accuracy boost: let C = AB, with A ∈ ℝ^{m×n}, B ∈ ℝ^{n×p}, the computed C satisfies

$$|\hat{C} - C| \lesssim c_n |A| |B|, \quad c_n = \begin{cases} nu_{16} & \text{(fp16)} \\ nu_{32} & \text{(fp32)} \end{cases}$$

5/29 🗎 Blanchard, Higham, Lopez, M., Pranesh (2020)

Tensor cores units available on NVIDIA GPUs V100 carry out a 4×4 matrix multiplication in 1 clock cycle:

- **Performance boost**: peaks at 125 TFLOPS (8× speedup vs fp32, 16× on A100)
- Accuracy boost: let C = AB, with A ∈ ℝ^{m×n}, B ∈ ℝ^{n×p}, the computed C satisfies

$$|\widehat{C} - C| \lesssim c_n |A| |B|, \quad c_n = \begin{cases} nu_{16} & \text{(fp16)} \\ 2u_{16} + nu_{32} & \text{(tensor cores)} \\ nu_{32} & \text{(fp32)} \end{cases}$$

6/29 🗎 Blanchard, Higham, Lopez, M., Pranesh (2020)

Block LU factorization

Block version to use matrix-matrix operations

```
for k = 1: n/b do
    Factorize L_{kk}U_{kk} = A_{kk} (with unblocked alg.)
    for i = k + 1: n/b do
         Solve L_{ik}U_{kk} = A_{ik} and L_{kk}U_{ki} = A_{ki} for L_{ik} and U_{ki}
    end for
    for i = k + 1: n/b do
         for i = k + 1: n/b do
             A_{ii} \leftarrow A_{ii} - \widetilde{L}_{ik}\widetilde{U}_{ki}
         end for
    end for
end for
```

Block LU factorization with tensor cores

- Block version to use matrix-matrix operations
- $O(n^3)$ part of the flops done with tensor cores

```
for k = 1: n/b do
    Factorize L_{kk}U_{kk} = A_{kk} (with unblocked alg.)
    for i = k + 1: n/b do
         Solve L_{ik}U_{kk} = A_{ik} and L_{kk}U_{ki} = A_{ki} for L_{ik} and U_{ki}
    end for
    for i = k + 1: n/b do
         for j = k + 1: n/b do
              L_{ik} \leftarrow \mathsf{fl}_{16}(L_{ik}) and U_{ki} \leftarrow \mathsf{fl}_{16}(U_{ki})
              A_{ii} \leftarrow A_{ii} - L_{ik}U_{ki} using tensor cores
         end for
    end for
end for
```

LU factorization with tensor cores

Error analysis for LU follows from matrix multiplication analysis and gives same bounds to first order 🖹 Blanchard et al. (2020)

Impact on iterative refinement

- TC accuracy boost can be critical!
- TC performance suboptimal here

Impact on iterative refinement

- TC accuracy boost can be critical!
- TC performance suboptimal here ⇒ **why?**

- LU factorization is traditionally a compute-bound operation...
- With Tensor Cores, flops are $8 \times$ faster
- Matrix is stored in fp32 ⇒ data movement is unchanged !
- \Rightarrow LU with tensor cores becomes memory-bound !

- LU factorization is traditionally a compute-bound operation...
- With Tensor Cores, flops are $8 \times$ faster
- Matrix is stored in fp32 \Rightarrow data movement is unchanged !
- \Rightarrow LU with tensor cores becomes memory-bound !

- Idea: store matrix in fp16
- Problem: huge accuracy loss, tensor cores accuracy boost completely negated

Two ingredients to reduce data movement with no accuracy loss:

Reducing data movement

Two ingredients to reduce data movement with no accuracy loss:

1. Mixed fp16/fp32 representation

Matrix after 2 steps:

Reducing data movement

Two ingredients to reduce data movement with no accuracy loss:

1. Mixed fp16/fp32 representation

fp16 fp32

Matrix after 2 steps:

Reducing data movement

Two ingredients to reduce data movement with no accuracy loss:

- 1. Mixed fp16/fp32 representation
- 2. Right-looking \rightarrow left-looking factorization

fp16 fp32

Matrix after 2 steps:

 $O(n^3)$ fp32 + $O(n^2)$ fp16 $\rightarrow O(n^2)$ fp32 + $O(n^3)$ fp16

Experimental results

Nearly **50 TFLOPS** without significantly impacting accuracy Lopez and M. (2020)

Low precisions Specialized hardware Sparsity

Low precisions Specialized hardware Sparsity

Sparsity and data sparsity

- Sparse matrices: exploit exact zeros
- Data sparse matrices: exploit numerical zeros

 A block B represents the interaction between two subdomains ⇒ low numerical rank for far away subdomains

Block low rank (BLR) matrices use a flat 2D block partitioning Amestoy et al. (2015)

Example of a BLR matrix (Schur complement of a 64^3 Poisson problem with block size 128)

- Diagonal blocks are full rank
- Off-diagonal blocks A_{ij} are approximated by low-rank blocks T_{ij} satisfying $||A_{ij} - T_{ij}|| \le \varepsilon ||A||$
- ε controls the backward error of BLR
 LU Bigham and M. (2021)

• Crucial to exploit sparsity to tackle large scale problems

	Flops	Storage
Dense	$O(n^3)$	$O(n^2)$
Sparse (3D domain)	$O(n^2)$	$O(n^{4/3})$
BLR (constant ranks)	$O(n^2)$	$O(n^{3/2})$
Sparse+BLR	$O(n^{4/3})$	$O(n \log n)$

Amestoy, Buttari, L'Excellent, M. (2017)

• Crucial to exploit sparsity to tackle large scale problems

	Flops	Storage
Dense	$O(n^3)$	$O(n^2)$
Sparse (3D domain)	$O(n^2)$	$O(n^{4/3})$
BLR (constant ranks)	$O(n^2)$	$O(n^{3/2})$
Sparse+BLR	$O(n^{4/3})$	$O(n \log n)$

Amestoy, Buttari, L'Excellent, M. (2017)

- In mixed precision, is sparsity a challenge or an opportunity?
- \Rightarrow A little bit of both

Challenge: ratio LU factorization cost / LU solve cost

$$\begin{array}{rcl} {\sf Dense} & \rightarrow & {\sf Sparse} & \rightarrow & {\sf Sparse+BLR} \\ {\cal O}(n) & \rightarrow & {\cal O}(n^{2/3}) & \rightarrow & {\cal O}(n^{1/3}) \end{array}$$

⇒ less room to amortize iterations
5/29

IR with sparse LU

fp32 LU (MUMPS) + IR on large sparse ill-conditioned matrices Time (%) w.r.t. fp64 MUMPS solver

- Often more than 25% acceleration, up to 2 imes
- GMRES-IR slower than LU-IR but more robust

26/29

Mixed precision low rank compression

• Low-rank compress based on, e.g., SVD: $\Rightarrow ||B - U\Sigma V^T|| \le \varepsilon$, everything stored in **double precision**

Mixed precision low rank compression

- Low-rank compress based on, e.g., SVD: $\Rightarrow ||B U\Sigma V^T|| \le \varepsilon$, everything stored in **double precision**
- Mixed precision compression: partition the SVD into several groups of different precision
- Converting U_i and V_i to precision u_i introduces error proportional $u_i ||\Sigma_i||$

Mixed precision low rank compression

- Low-rank compress based on, e.g., SVD: $\Rightarrow ||B U\Sigma V^T|| \le \varepsilon$, everything stored in **double precision**
- Mixed precision compression: partition the SVD into several groups of different precision
- Converting U_i and V_i to precision u_i introduces error proportional $u_i ||\Sigma_i||$
- \Rightarrow Need to partition Σ such that $\|\Sigma_i\| \leq \varepsilon/u_i$

Mixed precision BLR matrices

Mixed precision BLR matrices

Mixed precision BLR matrices

Most entries can be stored in precision much lower than arepsilon !

💿 📄 Amestoy, Boiteau, Buttari, Gerest, Jézéquel, L'Excellent, M. (2021)

- Emerging **low precisions** provide new opportunities for high performance NLA
- Mixed precision algorithms have proven highly successful at Ax = b, even for ill-conditioned A
- Specialized hardware helps, both for speed and accuracy
- **Sparsity** can make things more challenging... but data sparsity creates new mixed precision opportunities!

Slides available at https://bit.ly/la21mix (references on next slides)

References (mixed precision algorithms)

- E. Carson and N. J. Higham. Accelerating the Solution of Linear Systems by Iterative Refinement in Three Precisions. SIAM J. Sci. Comput., 40(2), A817–A847 (2018)
- E. Carson and N. J. Higham. A New Analysis of Iterative Refinement and Its Application to Accurate Solution of III-Conditioned Sparse Linear Systems. *SIAM J. Sci. Comput.*, 39(6), A2834–A2856 (2017).
- P. R. Amestoy, A. Buttari, N. J. Higham, J.-Y. L'Excellent, T. Mary, and B. Vieublé. Five-precision GMRES-based Iterative Refinement. MIMPS EPrint 2021.5.
- A. Haidar, S. Tomov, J. Dongarra, and N. J. Higham. Harnessing GPU Tensor Cores for Fast FP16 Arithmetic to Speed up Mixed-Precision Iterative Refinement Solvers. SC'18.
- P. Blanchard, N. J. Higham, F. Lopez, T. Mary, and S. Pranesh. Mixed Precision Block Fused Multiply-Add: Error Analysis and Application to GPU Tensor Cores. SIAM J. Sci. Comput. 42(3), C124–C141 (2020).
- F. Lopez and T. Mary. Mixed Precision LU Factorization on GPU Tensor Cores: Reducing Data Movement and Memory Footprint. MIMS EPrint 2020.20.

References (BLR matrices)

- P. R. Amestoy, C. Ashcraft, O. Boiteau, A. Buttari, J.-Y. L'Excellent, and C. Weisbecker. Improving Multifrontal Methods by Means of Block Low-Rank Representations SIAM J. Sci. Comput., 37(3), A1451–A1474 (2015).
- P. R. Amestoy, A. Buttari, J.-Y. L'Excellent, and T. Mary. On the Complexity of the Block Low-Rank Multifrontal Factorization. SIAM J. Sci. Comput., 39(4), A1710–A1740 (2017).
- P. R. Amestoy, A. Buttari, J.-Y. L'Excellent, and T. Mary. Performance and Scalability of the Block Low-Rank Multifrontal Factorization on Multicore Architectures. ACM Trans. Math. Softw., 45(1), 2:1–2:26 (2019).
- N. J. Higham and T. Mary. Solving Block Low-Rank Linear Systems by LU Factorization is Numerically Stable. IMA J. Numer. Anal., drab020 (2021).
- P. R. Amestoy, O. Boiteau, A. Buttari, M. Gerest, F. Jézéquel, J.-Y. L'Excellent, and T. Mary. Mixed Precision Low Rank Approximations and their Application to Block Low Rank Matrix Factorization. In preparation.