SIAG/LA Early Career Prize SIAM LA, May 18, 2021

Exploiting Mixed Precision Arithmetic in the Solution of Linear Systems

Theo Mary

Sorbonne Université, CNRS, LIP6
https://www-pequan.lip6.fr/~tmary/
Slides available at https://bit.ly/la21mix

Pierre Blanchard

Olivier Boiteau

Alfredo Buttari

Matthieu Gerest

Nicholas Higham

Fabienne Jézéquel

Florent Lopez

Srikara Pranesh

Bastien Vieublé

Outline

Objective: accelerate $A x=b$ in mixed precision by exploiting...

1. Low precisions (e.g., fp16, bfloat16)

2. Specialized hardware (e.g., Tensor Cores)

3. Sparsity (both structural and data sparsity)

Low precisions
Specialized hardware Sparsity

Low precisions

Specialized hardware Sparsity

Today's floating-point landscape

	Bits				
		Signif. (+)	Exp.	Range	$u=2^{-+}$
bfloat16	B	8	8	$10^{ \pm 38}$	4×10^{-3}
fp16	H	11	5	$10^{ \pm 5}$	5×10^{-4}
fp32	S	24	8	$10^{ \pm 38}$	6×10^{-8}
fp64	D	53	11	$10^{ \pm 308}$	1×10^{-16}
fp128	Q	113	15	$10^{ \pm 4932}$	1×10^{-34}

Low precision increasingly supported by hardware:

- Fp16 used by NVIDIA GPUs, AMD Radeon Instinct MI25 GPU, ARM NEON, Fujitsu A64FX ARM
- Bfloat16 used by Google TPU, NVIDIA GPUs, Arm, Intel

Today's floating-point landscape

	Bits				
		Signif. (t)	Exp.	Range	$u=2^{-+}$
bfloat16	B	8	8	$10^{ \pm 38}$	4×10^{-3}
fp16	H	11	5	$10^{ \pm 5}$	5×10^{-4}
fp32	S	24	8	$10^{ \pm 38}$	6×10^{-8}
fp64	D	53	11	$10^{ \pm 308}$	1×10^{-16}
fp128	Q	113	15	$10^{ \pm 4932}$	1×10^{-34}

Great benefits:

- Reduced storage, data movement, and communications
- Increased speed on emerging hardware ($16 \times$ on A1OO from fp32 to fp16/bfloat16)
- Reduced energy consumption ($5 \times$ with $f p 16,9 \times$ with bfloat16)

Solving $A x=b$

Standard method to solve $A x=b$:

1. Factorize $A=L U$, where L and U are lower and upper triangular
2. Solve $L y=b$ and $U x=y$

Precision $u \Rightarrow$ computed \widehat{x} satisfies $\|\widehat{x}-x\| \leq f(n) \kappa(A) u\|x\|$

Solving $A x=b$

Standard method to solve $A x=b$:

1. Factorize $A=L U$, where L and U are lower and upper triangular
2. Solve $L y=b$ and $U x=y$

Precision $u \Rightarrow$ computed \widehat{x} satisfies $\|\widehat{x}-x\| \leq f(n) \kappa(A) u\|x\|$
An algorithm to refine the solution: iterative refinement (IR)

$$
\begin{aligned}
& \text { Solve } A x_{1}=b \text { via } x_{1}=U^{-1}\left(L^{-1} b\right) \\
& \text { while Not converged do } \\
& \quad r_{i}=b-A x_{i} \\
& \quad \text { Solve } A d_{i}=r_{i} \text { via } d_{i}=U^{-1}\left(L^{-1} r_{i}\right) \\
& \quad x_{i+1}=x_{i}+d_{i}
\end{aligned}
$$

end while

Many variants over the years, depending on choice of precisions and solver for $A d_{i}=r_{i}$

Error analysis of general IR

国 Carson and Higham (2018) analyze the most general version of IR:
For a target accuracy u, and assuming $\kappa(A) u<1$:
Solve $A x_{1}=b$ by LU factorization at precision u_{f} while Not converged do

$$
r_{i}=b-A x_{i} \text { at precision } u_{r}
$$

Solve $A d_{i}=r_{i}$ such that $\left\|\widehat{d}_{i}-d_{i}\right\| \leq \phi_{i}\left\|d_{i}\right\|$
$x_{i+1}=x_{i}+d_{i}$ at precision \mathbf{u}
end while
Theorem (simplified from Carson and Higham, 2018)
Under the condition $\phi_{i}<1$, the forward error converges to

$$
\frac{\|\hat{x}-x\|}{\|x\|} \leq \mathbf{u}+\mathbf{u}_{\mathbf{r}} \kappa(A)
$$

Error analysis of general IR

国 Carson and Higham (2018) analyze the most general version of IR: For a target accuracy u, and assuming $\kappa(A) u<1$:

Solve $A x_{1}=b$ by LU factorization at precision u_{f}
while Not converged do
$r_{i}=b-A x_{i}$ at precision u_{r}
Solve $A d_{i}=r_{i}$ such that $\left\|\widehat{d}_{i}-d_{i}\right\| \leq \phi_{i}\left\|d_{i}\right\|$
$x_{i+1}=x_{i}+d_{i}$ at precision \mathbf{u}
end while

Theorem (simplified from Carson and Higham, 2018)

Under the condition $\phi_{i}<1$, the forward error converges to

$$
\frac{\|\hat{x}-x\|}{\|x\|} \leq \mathbf{u}+\mathbf{u}_{\mathbf{r}} \kappa(A)
$$

- Limiting accuracy: depends on u and u_{r} only, can be made independent of $\kappa(A)$ by taking $\mathbf{u}_{\mathbf{r}}=\mathbf{u}^{2}$
- Convergence condition: depends on the choice of solver

70 years of LU-IR

LU-IR: reuse LU factors to solve for d_{i} :
$d_{i}=U^{-1} L^{-1} r_{i} \Rightarrow\left\|\widehat{d}_{i}-d_{i}\right\| \leq f(n) \kappa(A) \mathbf{u}_{\mathbf{f}}\left\|d_{i}\right\| \Rightarrow \phi_{i}=O\left(\kappa(A) \mathbf{u}_{f}\right)$
Solve $A x_{1}=b$ by LU factorization for $i=1$: nsteps do

$$
r_{i}=b-A x_{i}
$$

Solve $A d_{i}=r_{i}$ via $d_{i}=U^{-1}\left(L^{-1} r_{i}\right)$
$x_{i+1}=x_{i}+d_{i} \quad$ in precision \mathbf{u}
end for
in precision u_{r}

	u_{f}	u	u_{r}	$\max \kappa(A)$	Forward error

70 years of LU-IR

LU-IR: reuse LU factors to solve for d_{i} :
$d_{i}=U^{-1} L^{-1} r_{i} \Rightarrow\left\|\widehat{d}_{i}-d_{i}\right\| \leq f(n) \kappa(A) \mathbf{u}_{\mathbf{f}}\left\|d_{i}\right\| \Rightarrow \phi_{i}=O\left(\kappa(A) \mathbf{u}_{f}\right)$
Solve $A x_{1}=b$ by LU factorization
$\mathbf{u}_{\mathrm{f}}=$ double
for $i=1$: nsteps do

$$
r_{i}=b-A x_{i}
$$

$$
\mathbf{u}_{\mathrm{r}}=\text { quadruple }
$$

Solve $A d_{i}=r_{i}$ via $d_{i}=U^{-1}\left(L^{-1} r_{i}\right)$
$x_{i+1}=x_{i}+d_{i} \quad u=$ double
end for

	u_{f}	u	u_{r}	$\max \kappa(A)$	Forward error
Fixed	D	D	D	10^{16}	$\kappa(A) \cdot 10^{-16}$

Fixed-precision
国 Jankowski and Wozniakowski (1977) 国 Skeel (1980)

70 years of LU-IR

LU-IR: reuse LU factors to solve for d_{i} :
$d_{i}=U^{-1} L^{-1} r_{i} \Rightarrow\left\|\widehat{d}_{i}-d_{i}\right\| \leq f(n) \kappa(A) \mathbf{u}_{\mathbf{f}}\left\|d_{i}\right\| \Rightarrow \phi_{i}=O\left(\kappa(A) \mathbf{u}_{f}\right)$
Solve $A x_{1}=b$ by LU factorization for $i=1$: nsteps do

$$
\begin{array}{ll}
r_{i}=b-A x_{i} & \mathbf{u}_{\mathbf{r}}=\text { double } \\
\text { Solve } A d_{i}=r_{i} \text { via } d_{i}=U^{-1}\left(L^{-1} r_{i}\right) & \mathbf{u}=\text { double } \\
x_{i+1}=x_{i}+d_{i} &
\end{array}
$$

end for

	u_{f}	u	u_{r}	$\max \kappa(A)$	Forward error
Fixed	D	D	D	10^{16}	$\kappa(A) \cdot 10^{-16}$
Traditional	D	D	Q	10^{16}	10^{-16}

Traditional
目 Wilkinson (1948) 且 Moler (1967)

70 years of LU－IR

LU－IR：reuse LU factors to solve for d_{i} ：
$d_{i}=U^{-1} L^{-1} r_{i} \Rightarrow\left\|\widehat{d}_{i}-d_{i}\right\| \leq f(n) \kappa(A) \mathbf{u}_{f}\left\|d_{i}\right\| \Rightarrow \phi_{i}=O\left(\kappa(A) \mathbf{u}_{f}\right)$
Solve $A x_{1}=b$ by LU factorization $\mathbf{u}_{\mathrm{f}}=$ single for $i=1$ ：nsteps do

$$
\begin{array}{ll}
r_{i}=b-A x_{i} & \mathbf{u}_{\mathbf{r}}=\text { double } \\
\text { Solve } A d_{i}=r_{i} \text { via } d_{i}=U^{-1}\left(L^{-1} r_{i}\right) & \mathbf{u}=\text { double } \\
x_{i+1}=x_{i}+d_{i} &
\end{array}
$$

end for

	u_{f}	u	u_{r}	$\max \kappa(A)$	Forward error
Fixed	D	D	D	10^{16}	$\kappa(\mathrm{~A}) \cdot 10^{-16}$
Traditional	D	D	Q	10^{16}	10^{-16}
LP factorization	S	D	D	10^{8}	$\kappa(\mathrm{~A}) \cdot 10^{-16}$

Low precision factorization
⿵⿰丿⿺⿻⿻一㇂㇒丶𠃌⿴囗十一 Langou et al（2006）

70 years of LU-IR

LU-IR: reuse LU factors to solve for d_{i} :
$d_{i}=U^{-1} L^{-1} r_{i} \Rightarrow\left\|\widehat{d}_{i}-d_{i}\right\| \leq f(n) \kappa(A) \mathbf{u}_{f}\left\|d_{i}\right\| \Rightarrow \phi_{i}=O\left(\kappa(A) \mathbf{u}_{f}\right)$
Solve $A x_{1}=b$ by LU factorization $\mathbf{u}_{\mathrm{f}}=$ single for $i=1$: nsteps do

$$
\begin{array}{lr}
r_{i}=b-A x_{i} & \mathbf{u}_{\mathrm{r}}=\text { quadruple } \\
\text { Solve } A d_{i}=r_{i} \text { via } d_{i}=U^{-1}\left(L^{-1} r_{i}\right) & \\
x_{i+1}=x_{i}+d_{i} & \mathbf{u}=\text { double }
\end{array}
$$

end for

	u_{f}	u	u_{r}	$\max \kappa(A)$	Forward error
Fixed	D	D	D	10^{16}	$\kappa(\mathrm{~A}) \cdot 10^{-16}$
Traditional	D	D	Q	10^{16}	10^{-16}
LP factorization	S	D	D	10^{8}	$\kappa(A) \cdot 10^{-16}$
3 precisions	S	D	Q	10^{8}	10^{-16}

Three precisions
国 Carson and Higham (2018)

70 years of LU-IR

LU-IR: reuse LU factors to solve for d_{i} :
$d_{i}=U^{-1} L^{-1} r_{i} \Rightarrow\left\|\widehat{d}_{i}-d_{i}\right\| \leq f(n) \kappa(A) \mathbf{u}_{\mathbf{f}}\left\|d_{i}\right\| \Rightarrow \phi_{i}=O\left(\kappa(A) \mathbf{u}_{f}\right)$
Solve $A x_{1}=b$ by LU factorization $\mathbf{u}_{\mathrm{f}}=$ half for $i=1$: nsteps do

$$
\begin{array}{lr}
r_{i}=b-A x_{i} & \mathbf{u}_{\mathrm{r}}=\text { quadruple } \\
\text { Solve } A d_{i}=r_{i} \text { via } d_{i}=U^{-1}\left(L^{-1} r_{i}\right) & \mathbf{u}=\text { double } \\
x_{i+1}=x_{i}+d_{i} &
\end{array}
$$

end for

	u_{f}	u	u_{r}	$\max \kappa(A)$	Forward error
Fixed	D	D	D	10^{16}	$\kappa(\mathrm{~A}) \cdot 10^{-16}$
Traditional	D	D	Q	10^{16}	10^{-16}
LP factorization	H	D	D	10^{3}	$\kappa(\mathrm{~A}) \cdot 10^{-16}$
3 precisions	H	D	Q	10^{3}	10^{-16}

Only well-conditioned problems can be solved

GMRES-IR

GMRES-based IR: 国 Carson and Higham (2017)

- Replace LU by GMRES solver: solve $\widetilde{A} d_{i}=\widetilde{r}_{i}$ with GMRES, where $\widetilde{A}=U^{-1} L^{-1} A$ is preconditioned by $L U$ factors
- Rationale:
- $\kappa(\widetilde{A})$ often smaller than $\kappa(A)$
- GMRES can be asked to converge to accuracy $\mathbf{u} \ll \mathbf{u}_{\mathrm{f}}$
$\Rightarrow \widetilde{A} d_{i}=\widetilde{r}_{i}$ is solved with accuracy $\phi_{i}=\kappa(\widetilde{A}) \mathbf{u}$
- Convergence condition improved from $\kappa(A) \mathbf{u}_{f}<1$ to $\kappa(\widetilde{A}) \mathbf{u}<1$

GMRES-IR

GMRES-based IR: R Carson and Higham (2017)

- Replace LU by GMRES solver: solve $\widetilde{A} d_{i}=\widetilde{r}_{i}$ with GMRES, where $\widetilde{A}=U^{-1} L^{-1} A$ is preconditioned by $L U$ factors
- Rationale:
- $\kappa(\widetilde{A})$ often smaller than $\kappa(A)$
- GMRES can be asked to converge to accuracy $\mathbf{u} \ll \mathbf{u}_{\mathrm{f}}$
$\Rightarrow \widetilde{A} d_{i}=\widetilde{r}_{i}$ is solved with accuracy $\phi_{i}=\kappa(\widetilde{A}) \mathbf{u}$
- Convergence condition improved from $\kappa(A) \mathbf{u}_{f}<1$ to $\kappa(\widetilde{A}) \mathbf{u}<1$
- The catch: the matrix-vector products are with $\widetilde{A}=U^{-1} L^{-1} A$, introduce an extra $\kappa(A)$ unless performed in higher precision

Solve $A x_{1}=b$ by LU factorization at precision u_{f} while Not converged do
$r_{i}=b-A x_{i}$ at precision u_{r}
Solve $U^{-1} L^{-1} A d_{i}=U^{-1} L^{-1} r_{i}$ by GMRES at precision \mathbf{u} with products with $U^{-1} L^{-1} A$ at precision \mathbf{u}^{2}
$x_{i+1}=x_{i}+d_{i}$ at precision u

LU-IR vs GMRES-IR

Using $\kappa(\widetilde{A}) \leq\left(1+\kappa(A) \mathbf{u}_{\mathbf{f}}\right)^{2}$ we determine the convergence condition on $\kappa(A)$

	u_{f}	u	u_{r}	$\max \kappa(A)$	Forward error
LU-IR	S	D	Q	10^{8}	10^{-16}
GMRES-IR	S	D	Q	10^{16}	10^{-16}
LU-IR	H	D	Q	10^{3}	10^{-16}
GMRES-IR	H	D	Q	10^{11}	10^{-16}

GMRES-IR can handle much more ill-conditioned matrices.

LU-IR vs GMRES-IR

Using $\kappa(\widetilde{A}) \leq\left(1+\kappa(A) \mathbf{u}_{\mathbf{f}}\right)^{2}$ we determine the convergence condition on $\kappa(A)$

	u_{f}	u	u_{r}	$\max \kappa(A)$	Forward error
LU-IR	S	D	Q	10^{8}	10^{-16}
GMRES-IR	S	D	Q	10^{16}	10^{-16}
LU-IR	H	D	Q	10^{3}	10^{-16}
GMRES-IR	H	D	Q	10^{11}	10^{-16}

GMRES-IR can handle much more ill-conditioned matrices.

However:

- LU solves are performed at precision \mathbf{u}^{2} instead of $\mathbf{u}_{\boldsymbol{f}}$ \Rightarrow practical limitation
- Increases cost per iteration
- If u is D, requires use of quad precision
- Practical implementations have relaxed this requirement by replacing u^{2} with u, with no theoretical guarantee
- Goal: solve $A d_{i}=r_{i}$ with GMRES and bound $\phi_{i}=\left\|\widehat{d}_{i}-d_{i}\right\| /\left\|d_{i}\right\|$
- In what precision do we really need to run GMRES?
- How much extra precision is really needed in the matvec products?

> Solve $A x_{1}=b$ by $L U$ factorization at precision \mathbf{u}_{f} for $i=1:$ nsteps do
> $\quad r_{i}=b-A x_{i}$ at precision $\mathbf{u}_{\mathbf{r}}$ Solve $A d_{i}=r_{i}$ with preconditioned GMRES at precision \mathbf{u} except matvecs at precision \mathbf{u}^{2} $x_{i+1}=x_{i}+d_{i}$ at precision \mathbf{u}
> end for

- Goal: solve $A d_{i}=r_{i}$ with GMRES and bound $\phi_{i}=\left\|\widehat{d}_{i}-d_{i}\right\| /\left\|d_{i}\right\|$
- In what precision do we really need to run GMRES?
- How much extra precision is really needed in the matvec products?

Solve $A x_{1}=b$ by LU factorization at precision u_{f} for $i=1$: nsteps do
$r_{i}=b-A x_{i}$ at precision u_{r}
Solve $A d_{i}=r_{i}$ with preconditioned GMRES at
precision \mathbf{u} except matvecs at precision \mathbf{u}^{2}
$x_{i+1}=x_{i}+d_{i}$ at precision u
end for

- Goal: solve $A d_{i}=r_{i}$ with GMRES and bound $\phi_{i}=\left\|\widehat{d}_{i}-d_{i}\right\| /\left\|d_{i}\right\|$
- In what precision do we really need to run GMRES?
- How much extra precision is really needed in the matvec products?

$$
\begin{aligned}
& \text { Solve } A x_{1}=b \text { by LU factorization at precision } \mathbf{u}_{\mathrm{f}} \\
& \text { for } i=1: n \text { nsteps do } \\
& \quad r_{i}=b-A x_{i} \text { at precision } \mathbf{u}_{\mathrm{r}} \\
& \text { Solve } A d_{i}=r_{i} \text { with preconditioned GMRES at } \\
& \quad \text { precision } \mathbf{u}_{\mathrm{g}} \text { except matvecs at precision } \mathbf{u}_{\mathrm{p}} \\
& x_{i+1}=x_{i}+d_{i} \text { at precision } \mathbf{u} \\
& \text { end for }
\end{aligned}
$$

Relax the requirements on the GMRES precisions: run at precision $\mathbf{u}_{\mathbf{g}} \leq \mathbf{u}$ with matvecs at precision $\mathbf{u}_{\mathbf{p}} \leq \mathbf{u}^{2}$
\Rightarrow FIVE precisions in total!
What can we say about the convergence of this GMRES-IR5?

Two precision GMRES

- Unpreconditioned GMRES in precision \mathbf{u} for $A x=b$:
- Backward error of order u 国 Paige, Rozloznik, Strakos (2006)
- Forward error of order $\kappa(A) \mathbf{u}$
- Two precision preconditioned GMRES for $\widetilde{A} x=b$:
- Backward error of order $\kappa(A) \mathbf{u}_{\mathrm{p}}+\mathbf{u}_{\mathrm{g}}$
- The matrix-vector products are performed with $\widetilde{A}=U^{-1} L^{-1} A$:

$$
y=U^{-1} L^{-1} A x \Rightarrow\|\hat{y}-y\| \lesssim \kappa(A) u_{p}\|\widetilde{A}\|\|x\|
$$

- The rest is at precision u_{g}
- Forward error of order $\kappa(\widetilde{A})\left(\kappa(A) \mathbf{u}_{\mathrm{p}}+\mathbf{u}_{\mathrm{g}}\right)$
- $\kappa(\widetilde{A}) \leq\left(1+\kappa(A) \mathbf{u}_{\mathbf{f}}\right)^{2} \Rightarrow \phi_{i} \sim \kappa(A)^{2} \mathbf{u}_{\mathbf{f}}{ }^{2}\left(\kappa(A) \mathbf{u}_{\mathbf{p}}+\mathbf{u}_{\mathbf{g}}\right)$

Side-result: generalization of the backward stability of GMRES to a preconditioned two-precision GMRES
目 Amestoy, Buttari, Higham, L'Excellent, M., Vieublé (2021)

```
Solve \(A x_{1}=b\) by LU factorization at precision \(u_{f}\)
for \(i=1\) : nsteps do
    \(r_{i}=b-A x_{i}\) at precision \(u_{r}\)
        Solve \(A d_{i}=r_{i}\) with preconditioned GMRES at
        precision \(u_{g}\) except matvecs at precision \(u_{p}\)
        \(x_{i+1}=x_{i}+d_{i}\) at precision \(\mathbf{u}\)
    end for
```


Theorem (convergence of GMRES-IR5)

Under the condition $\left(u_{g}+\kappa(A) \mathbf{u}_{p}\right) \kappa(A)^{2} \mathbf{u}_{f}{ }^{2}<1$, the forward error converges to its limiting accuracy

$$
\frac{\|\widehat{x}-x\|}{\|x\|} \leq \mathbf{u}_{\mathrm{r}} \kappa(A)+\mathbf{u}
$$

国 Amestoy, Buttari, Higham, L'Excellent, M., Vieublé (2021)

Meaningful combinations

With five arithmetics (fp16, bfloat16, fp32, fp64, fp128) there are over $\mathbf{3 0 0 0}$ different combinations of GMRES-IR5!

They are not all relevant!
Meaningful combinations: those where none of the precisions can be lowered without worsening either the limiting accuracy or the convergence condition.

Filtering rules

- $\mathbf{u}^{2} \leq \mathbf{u}_{\mathbf{r}} \leq \mathbf{u} \leq \mathbf{u}_{\mathbf{f}}$
- $\mathbf{u}_{\mathbf{p}}<\mathbf{u}, \mathbf{u}_{\mathbf{p}}=\mathbf{u}_{1} \mathbf{u}_{\mathbf{p}}>\mathbf{u}$ all possible
- $u_{p} \leq u_{g}$
- $\mathbf{u}_{\mathrm{p}}<\mathbf{u}_{\mathrm{f}}$
- $u_{g} \geq u$
- $\mathbf{u}_{\mathbf{g}}<\mathbf{u}_{\mathbf{f}} \mathbf{u}_{\mathbf{g}}=\mathbf{u}_{\mathbf{f}} \mathbf{u}_{\mathbf{g}}>\mathbf{u}_{\mathbf{f}}$ all possible

Theoretical results

Meaningful combinations of GMRES-IR5 for $\mathbf{u}_{\mathbf{f}}=H$ and $\mathbf{u}=D$.

$\mathbf{u}_{\mathbf{g}}$	$\mathbf{u}_{\mathbf{p}}$	Convergence Condition $\max (\kappa(A))$
LU-IR		2×10^{3}
B	S	3×10^{4}
H	S	4×10^{4}
H	D	9×10^{4}
S	D	8×10^{6}
D	D	3×10^{7}
D	Q	2×10^{11}

Five combinations between LU-IR and Carson \& Higham's GMRES-IR \Rightarrow More flexible precisions choice to fit at best the hardware constraints and the problem difficulty.

Experimental results

Take 100 random matrices with specified $\kappa(A)$ and measure the success rate: the percentage of matrices for which GMRES-IR5 converges to a small forward error

$$
u_{f}=H \quad u_{g}=D
$$

Experimental results

Take 100 random matrices with specified $\kappa(A)$ and measure the success rate: the percentage of matrices for which GMRES-IR5 converges to a small forward error

Experimental results

Take 100 random matrices with specified $\kappa(A)$ and measure the success rate: the percentage of matrices for which GMRES-IR5 converges to a small forward error

Experimental results

Take 100 random matrices with specified $\kappa(A)$ and measure the success rate: the percentage of matrices for which GMRES-IR5 converges to a small forward error

Experimental results

Take 100 random matrices with specified $\kappa(A)$ and measure the success rate: the percentage of matrices for which GMRES-IR5 converges to a small forward error

Experimental results

Take 100 random matrices with specified $\kappa(A)$ and measure the success rate: the percentage of matrices for which GMRES-IR5 converges to a small forward error

Similar picture on many types of matrices

Low precisions
Specialized hardware Sparsity

Low precisions
Specialized hardware Sparsity

NVIDIA GPU tensor cores

Tensor cores units available on NVIDIA GPUs V10O carry out a 4×4 matrix multiplication in 1 clock cycle:

- Performance boost: peaks at 125 TFLOPS ($8 \times$ speedup vs fp32, $16 \times$ on A100)

NVIDIA GPU tensor cores

Tensor cores units available on NVIDIA GPUs V10O carry out a 4×4 matrix multiplication in 1 clock cycle:

- Performance boost: peaks at 125 TFLOPS ($8 \times$ speedup vs fp32, $16 \times$ on A100)
- Accuracy boost: let $C=A B$, with $A \in \mathbb{R}^{m \times n}, B \in \mathbb{R}^{n \times p}$, the computed \widehat{C} satisfies

$$
|\widehat{C}-C| \lesssim c_{n}|A||B|, \quad c_{n}=\{
$$

16/29 国 Blanchard, Higham, Lopez, M., Pranesh (2020)

NVIDIA GPU tensor cores

Tensor cores units available on NVIDIA GPUs V10O carry out a 4×4 matrix multiplication in 1 clock cycle:

- Performance boost: peaks at 125 TFLOPS ($8 \times$ speedup vs fp32, $16 \times$ on A100)
- Accuracy boost: let $C=A B$, with $A \in \mathbb{R}^{m \times n}, B \in \mathbb{R}^{n \times p}$, the computed \widehat{C} satisfies

$$
|\widehat{C}-C| \lesssim c_{n}|A||B|, \quad c_{n}= \begin{cases}n u_{16} & \text { (fp16) } \\ n u_{32} & \text { (fp32) }\end{cases}
$$

16/29 目 Blanchard, Higham, Lopez, M., Pranesh (2020)

NVIDIA GPU tensor cores

Tensor cores units available on NVIDIA GPUs V10O carry out a 4×4 matrix multiplication in 1 clock cycle:

- Performance boost: peaks at 125 TFLOPS ($8 \times$ speedup vs fp32, $16 \times$ on A100)
- Accuracy boost: let $C=A B$, with $A \in \mathbb{R}^{m \times n}, B \in \mathbb{R}^{n \times p}$, the computed \widehat{C} satisfies

$$
|\widehat{C}-C| \lesssim c_{n}|A||B|, \quad c_{n}= \begin{cases}n u_{16} & \text { (fp16) } \\ 2 u_{16}+n u_{32} & \text { (tensor cores) } \\ n u_{32} & \text { (fp32) }\end{cases}
$$

16/29 且 Blanchard, Higham, Lopez, M., Pranesh (2020)

Block LU factorization

- Block version to use matrix-matrix operations

```
for k}=1:n/b d
    Factorize L}\mp@subsup{L}{kk}{}\mp@subsup{U}{kk}{}=\mp@subsup{A}{kk}{}\quad\mathrm{ (with unblocked alg.)
        for i=k+1:n/b do
        Solve Lik}\mp@subsup{U}{kk}{}=\mp@subsup{A}{ik}{}\mathrm{ and }\mp@subsup{L}{kk}{}\mp@subsup{U}{ki}{}=\mp@subsup{A}{ki}{}\mathrm{ for Lik and }\mp@subsup{U}{ki}{
        end for
        for i=k+1:n/b do
        for j=k+1:n/b do
            A ij}\leftarrow\mp@subsup{A}{ij}{}-\mp@subsup{\widetilde{L}}{ik}{}\mp@subsup{\widetilde{U}}{kj}{
        end for
    end for
end for
```

- Block version to use matrix-matrix operations
- $O\left(n^{3}\right)$ part of the flops done with tensor cores

$$
\begin{aligned}
& \text { for } k=1: n / b \text { do } \\
& \text { Factorize } L_{k k} U_{k k}=A_{k k} \quad \text { (with unblocked alg.) } \\
& \text { for } i=k+1: n / b \text { do } \\
& \text { Solve } L_{i k} U_{k k}=A_{i k} \text { and } L_{k k} U_{k i}=A_{k i} \text { for } L_{i k} \text { and } U_{k i} \\
& \text { end for } \\
& \text { for } i=k+1: n / b \text { do } \\
& \quad \text { for } j=k+1: n / b \text { do } \\
& \left.\widetilde{L}_{i k} \leftarrow f\right|_{16}\left(L_{i k}\right) \text { and } \widetilde{U}_{k i} \leftarrow \mathrm{fl}_{16}\left(U_{k i}\right) \\
& \quad A_{i j} \leftarrow A_{i j}-\widetilde{L}_{i k} \widetilde{U}_{k j} \text { using tensor cores } \\
& \text { end for } \\
& \text { end for } \\
& \text { end for }
\end{aligned}
$$

LU factorization with tensor cores

Error analysis for LU follows from matrix multiplication analysis and gives same bounds to first order 国 Blanchard et al. (2020) Standard fp16 Tensor cores Standard fp32

$n u_{16}$	$2 u_{16}+n u_{32}$	$n u_{32}$

Impact on iterative refinement

Results from 国 Haidar et al. (2018)

- TC accuracy boost can be critical!
- TC performance suboptimal here

Impact on iterative refinement

Results from 国 Haidar et al. (2018)

- TC accuracy boost can be critical!
- TC performance suboptimal here \Rightarrow why?
- LU factorization is traditionally a compute-bound operation...
- With Tensor Cores, flops are $8 \times$ faster
- Matrix is stored in $\mathrm{fp} 32 \Rightarrow$ data movement is unchanged!
\Rightarrow LU with tensor cores becomes memory-bound!

- LU factorization is traditionally a compute-bound operation...
- With Tensor Cores, flops are $8 \times$ faster
- Matrix is stored in $\mathrm{fp} 32 \Rightarrow$ data movement is unchanged !
\Rightarrow LU with tensor cores becomes memory-bound!

- Idea: store matrix in fp16
- Problem: huge accuracy loss, tensor cores accuracy boost completely negated

Reducing data movement

Two ingredients to reduce data movement with no accuracy loss:

Reducing data movement

Two ingredients to reduce data movement with no accuracy loss:

1. Mixed fp16/fp32 representation

Matrix after 2 steps:

\square

Reducing data movement

Two ingredients to reduce data movement with no accuracy loss:

1. Mixed fp16/fp32 representation

Matrix after 2 steps:

\square fp16
\square fp32
\square read
write

Reducing data movement

Two ingredients to reduce data movement with no accuracy loss:

1. Mixed fp16/fp32 representation
2. Right-looking \rightarrow left-looking factorization Matrix after 2 steps:

$$
O\left(n^{3}\right) f p 32+O\left(n^{2}\right) f p 16 \rightarrow O\left(n^{2}\right) f p 32+O\left(n^{3}\right) f p 16
$$

Experimental results

Nearly 50 TFLOPS without significantly impacting accuracy
国 Lopez and M. (2020)

Low precisions
Specialized hardware Sparsity

Low precisions
Specialized hardware Sparsity

Sparsity and data sparsity

- Sparse matrices: exploit exact zeros
- Data sparse matrices: exploit numerical zeros

- A block B represents the interaction between two subdomains \Rightarrow low numerical rank for far away subdomains

Block low rank (BLR) matrices use a flat 2D block partitioning 융 Amestoy et al. (2015) 듕 Amestoy et al. (2019)

- Diagonal blocks are full rank
- Off-diagonal blocks $A_{i j}$ are approximated by low-rank blocks $T_{i j}$ satisfying $\left\|A_{i j}-T_{i j}\right\| \leq \varepsilon\|A\|$
- ε controls the backward error of BLR LU 国 Higham and M. (2021)

Complexity of LU factorization

- Crucial to exploit sparsity to tackle large scale problems

	Flops	Storage
Dense	$O\left(n^{3}\right)$	$O\left(n^{2}\right)$
Sparse (3D domain)	$O\left(n^{2}\right)$	$O\left(n^{4 / 3}\right)$
BLR (constant ranks)	$O\left(n^{2}\right)$	$O\left(n^{3 / 2}\right)$
Sparse+BLR	$O\left(n^{4 / 3}\right)$	$O(n \log n)$
目 Amestoy, Buttari, L'Excellent, M. (2017)		

Complexity of LU factorization

- Crucial to exploit sparsity to tackle large scale problems

	Flops	Storage
Dense	$O\left(n^{3}\right)$	$O\left(n^{2}\right)$
Sparse (3D domain)	$O\left(n^{2}\right)$	$O\left(n^{4 / 3}\right)$
BLR (constant ranks)	$O\left(n^{2}\right)$	$O\left(n^{3 / 2}\right)$
Sparse+BLR	$O\left(n^{4 / 3}\right)$	$O(n \log n)$
目 Amestoy, Buttari, L'Excellent, M. (2017)		

- In mixed precision, is sparsity a challenge or an opportunity?
\Rightarrow A little bit of both
Challenge: ratio LU factorization cost / LU solve cost

$$
\begin{aligned}
& \text { Dense } \rightarrow \text { Sparse } \rightarrow \text { Sparse+BLR } \\
& O(n) \rightarrow O\left(n^{2 / 3}\right) \rightarrow O\left(n^{1 / 3}\right)
\end{aligned}
$$

\Rightarrow less room to amortize iterations
fp32 LU (MUMPS) + IR on large sparse ill-conditioned matrices Time (\%) w.r.t. fp64 MUMPS solver

- Often more than 25% acceleration, up to $2 \times$
- GMRES-IR slower than LU-IR but more robust

Mixed precision low rank compression

- Low-rank compress based on, e.g., SVD: $\Rightarrow\left\|B-U \Sigma V^{\top}\right\| \leq \varepsilon$, everything stored in double precision

Mixed precision low rank compression

- Low-rank compress based on, e.g., SVD: $\Rightarrow\left\|B-U \Sigma V^{\top}\right\| \leq \varepsilon$, everything stored in double precision
- Mixed precision compression: partition the SVD into several groups of different precision
- Converting U_{i} and V_{i} to precision u_{i} introduces error proportional $u_{i}\left\|\Sigma_{i}\right\|$

Mixed precision low rank compression

- Low-rank compress based on, e.g., SVD: $\Rightarrow\left\|B-U \Sigma V^{\top}\right\| \leq \varepsilon$, everything stored in double precision
- Mixed precision compression: partition the SVD into several groups of different precision
- Converting U_{i} and V_{i} to precision u_{i} introduces error proportional $u_{i}\left\|\Sigma_{i}\right\|$
\Rightarrow Need to partition Σ such that $\left\|\Sigma_{i}\right\| \leq \varepsilon / u_{i}$

Mixed precision BLR matrices

Double 100\%

Mixed precision BLR matrices

(Poisson, $\varepsilon=10^{-12}$)																	
															-		
																	0.9
																	0.8
																	0.7
																	0.6
																	0.6
																	0.5
																	0.4
																	0.3
																	0.2
																	0.1

$\begin{array}{cc}\text { Double } & \text { Single } \\ 26 \% & 74 \%\end{array}$

Mixed precision BLR matrices

$$
\begin{array}{ccc}
\text { Double } & \text { Single } & \text { Half } \\
26 \% & 44 \% & 30 \%
\end{array}
$$

Most entries can be stored in precision much lower than ε !
[-⽟ㅣ Amestoy, Boiteau, Buttari, Gerest, Jézéquel, L'Excellent, M. (2021)

Conclusions

- Emerging low precisions provide new opportunities for high performance NLA
- Mixed precision algorithms have proven highly successful at $A x=b$, even for ill-conditioned A
- Specialized hardware helps, both for speed and accuracy
- Sparsity can make things more challenging... but data sparsity creates new mixed precision opportunities!

Slides available at https://bit.ly/la21mix
(references on next slides)

References (mixed precision algorithms)

- E. Carson and N. J. Higham. Accelerating the Solution of Linear Systems by Iterative Refinement in Three Precisions. SIAM J. Sci. Comput., 4O(2), A817-A847 (2018)
- E. Carson and N. J. Higham. A New Analysis of Iterative Refinement and Its Application to Accurate Solution of III-Conditioned Sparse Linear Systems. SIAM J. Sci. Comput., 39(6), A2834-A2856 (2017).
- P. R. Amestoy, A. Buttari, N. J. Higham, J.-Y. L'Excellent, T. Mary, and B. Vieublé. Five-precision GMRES-based Iterative Refinement. MIMPS EPrint 2021.5.
- A. Haidar, S. Tomov, J. Dongarra, and N. J. Higham. Harnessing GPU Tensor Cores for Fast FP16 Arithmetic to Speed up Mixed-Precision Iterative Refinement Solvers. SC'18.
- P. Blanchard, N. J. Higham, F. Lopez, T. Mary, and S. Pranesh. Mixed Precision Block Fused Multiply-Add: Error Analysis and Application to GPU Tensor Cores. SIAM J. Sci. Comput. 42(3), C124-C141 (2020).
- F. Lopez and T. Mary. Mixed Precision LU Factorization on GPU Tensor Cores: Reducing Data Movement and Memory Footprint. MIMS EPrint 2020.20.

References (BLR matrices)

- P. R. Amestoy, C. Ashcraft, O. Boiteau, A. Buttari, J.-Y. L'Excellent, and C. Weisbecker. Improving Multifrontal Methods by Means of Block Low-Rank Representations SIAM J. Sci. Comput., 37(3), A1451-A1474 (2015).
- P. R. Amestoy, A. Buttari, J.-Y. L'Excellent, and T. Mary. On the Complexity of the Block Low-Rank Multifrontal Factorization. SIAM J. Sci. Comput., 39(4), A1710-A1740 (2017).
- P. R. Amestoy, A. Buttari, J.-Y. L'Excellent, and T. Mary. Performance and Scalability of the Block Low-Rank Multifrontal Factorization on Multicore Architectures. ACM Trans. Math. Softw., 45(1), 2:1-2:26 (2019).
- N. J. Higham and T. Mary. Solving Block Low-Rank Linear Systems by LU Factorization is Numerically Stable. IMA J. Numer. Anal., drabO2O (2021).
- P. R. Amestoy, O. Boiteau, A. Buttari, M. Gerest, F. Jézéquel, J.-Y. L'Excellent, and T. Mary. Mixed Precision Low Rank Approximations and their Application to Block Low Rank Matrix Factorization. In preparation.

