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Motivation

Growing size of models and datasets → approximate computing

Quantization to low precision floating-point arithmetic
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exponent

sign

Low-rank, structured, data sparse matrices

BLR matrix H-matrix
Butterfly matrix
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Rank-one matrices

Goal: quantize the rank-one matrix

xyT → x̂ ŷT (x ∈ Rm, y ∈ Rn)

where the coefficients of x̂ , ŷ have t bits of mantissa

The standard approach uses round-to-nearest (RTN) and leads to an error of
order u = 2−t : if x̂ = round(x), ŷ = round(y) then

∥x̂ − x∥ ≤ u∥x∥
∥ŷ − y∥ ≤ u∥y∥

⇒ ∥x̂ ŷT − xyT∥ ≤ (2u + u2)∥x∥∥y∥

We will show this is far from optimal!
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An analogy

x̂i

ŷj

âij

t bits

t bits

What we really care about is the accuracy of âij = x̂i ŷj

Think of multiword arithmetic: a ≈ x̂ + ŷ with x̂ = round(a) and
ŷ = round(a− x̂) → 2t-bit accuracy

What about a = xy? (Which x̂ ,ŷ yields the best approximation x̂ ŷ?)
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The set FtFt

Let Ft be the set of t-bit floating-point numbers. We are interested in the set

FtFt = {a = xy , x ∈ Ft , y ∈ Ft}

1 1.2 1.4 1.6 1.8 2

Ft FtFt F2t

No closed form expression of its elements, but we can simply enumerate all of
them for small t

⇒ Worst-case error of order 2−1.6t
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A constrained combinatorial problem

x̂i

ŷj

âij ∈ FtFt

t bits

t bits

We don’t just have one scalar, but a rank-one matrix ⇒ two issues:

We have constraints: x̂i must be the same in âij = x̂i ŷj and âik = x̂i ŷk
How can we find the optimal quantization? Combinatorial problem!

min
x̂∈Fm

t ,ŷ∈Fn
t

∥xyT − x̂ ŷT∥
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Characterization of the optimum

Theorem

min
x̂∈Fm

t ,ŷ∈Fn
t

∥xyT − x̂ ŷT∥ = min
λ∈R

∥xyT − round(λx) round(µ(λ)y)T∥

The optimal quantization x̂ ŷT is given by

x̂ = round(λx)

ŷ = round(µ(λ)yT )

where λ ∈ R and µ(λ) = xT x̂
∥x̂∥2 .

It suffices to find the optimal λ to find the optimal x̂ ŷT !
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Finding λ

How do we find the optimal λ ∈ R ?

The optimum is stable under sign flip and multiplication by powers of two →
restrict the search to λ ∈ [1, 2]

Only a finite number of values of λ change the value of round(λx). Denoting these
“breakpoints” as λj , we can enumerate the midpoints λj+1/2 = (λj + λj+1)/2

1 1.2 1.4 1.6 1.8 2
6

0.012

0.014

0.016

0.018

0.02

0.022

0.024

0.026

0.028

0.03

0.032

Quantization error
6j+1=2 (midpoints)

Algorithm:

Build the set of midpoints

For each midpoint λj+1/2:

Build x̂ = round(λj+1/2x)
Compute µ(x̂) = xT x̂/∥x̂∥2
Build ŷ = round(µy)
Test the accuracy of x̂ ŷT

O(mn2t) complexity ⇒ tractable for large
matrices and low precisions
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Butterfly matrices

Butterfly matrices are extremely sparse yet highly expressive, they appear in many
fast linear transforms

Butterfly factorization: decompose dense n × n matrix as B1 . . .BL, with
L = log2 n ⇒ O(n log n) complexity
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Optimal two-factor quantization

Key property1: for any partial product XY T of consecutive factors

B1 . . .Bj Bj+1 . . .Bk︸ ︷︷ ︸
X

Bk+1 . . .Bℓ︸ ︷︷ ︸
Y T

Bℓ+1 . . .BL

XY T =
n∑

i=1

xiy
T
i

where the rank-one matrices xiy
T
i

have disjoint support.

We can optimally quantize two factors X and Y by quantizing each xiy
T
i

optimally and independently: x̂i = round(λixi ), ŷi = round(µiyi ) yields

X̂ = round(XΛ), Λ = diag(λi )

Ŷ = round(YM), M = diag(µi )

1QT. Le, E. Riccietti, R. Gribonval, SIMAX (2023).
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Heuristics for the L-factor quantization

When L > 2, need heuristics to decide how to order/group the factors

Pairwise heuristic:
B1 B2 B3 B4 . . .BL

Left-to-right heuristic:

L2R more expensive because it densifies the factors
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Experimental results

Randomly generated butterfly factors

Significant accuracy improvement. . .

. . . or, equivalently, can reduce storage by about 30% with no loss of accuracy
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Conclusion

Key results:

Characterized optimal quantization of xyT as round(λx) round(µy)T

Proposed algorithm to find the optimal λ in O(mn2t) complexity

Proposed two heuristics to apply method to butterfly factorization and obtained
storage reductions of 30% with no loss of accuracy

Butterfly matrices are only one possible application, many other perspectives:
rank-r matrices, tensors, DNNs, . . .
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