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Motivation

Growing size of models and datasets — approximate computing

@ Quantization to low precision floating-point arithmetic
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@ Low-rank, structured, data sparse matrices

BLR matrix - i
H-matrix Butterfly matrix
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Rank-one matrices

Goal: quantize the rank-one matrix
xyT = xyT (x eR™ y eR")
where the coefficients of X, y have t bits of mantissa

@ The standard approach uses round-to-nearest (RTN) and leads to an error of
order u =27 if X = round(x), ¥y = round(y) then

I} = x| < ulix]l
1y =yl < ullyll
=[xy —xy Tl < Qu+ u?)|xllyl

@ We will show this is far from optimal!
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An analogy
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e What we really care about is the accuracy of aj; = X;y;
@ Think of multiword arithmetic: a ~ X + y with X = round(a) and
y = round(a — X) — 2t-bit accuracy
e What about a = xy? (Which X,y yields the best approximation xy?)
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The set ]FtFt

o Let IF; be the set of t-bit floating-point numbers. We are interested in the set

FF: ={a=xy, xcF;, y € F¢}
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@ No closed form expression of its elements, but we can simply enumerate all of
them for small t
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The set ]FtFt

o Let IF; be the set of t-bit floating-point numbers. We are interested in the set

FFt ={a=xy, xcF;, y € Ft}

@ No closed form expression of its elements, but we can simply enumerate all of
them for small t

— Worst-case error of order 2~ 1:6¢
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A constrained combinatorial problem

t bits
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We don't just have one scalar, but a rank-one matrix = two issues:
@ We have constraints: X; must be the same in a;; = X;y; and ay = Xy«
@ How can we find the optimal quantization? Combinatorial problem!
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Characterization of the optimum

min ||xyT = )?j/\TH = min ||xyT — round(Ax) round(,u()\)y)TH
XeFP,yeR?, AER

The optimal quantization Xy’ is given by

where A € R and pu(\) = T%”g

e It suffices to find the optimal X to find the optimal Xy !
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How do we find the optimal A € R 7

The optimum is stable under sign flip and multiplication by powers of two —
restrict the search to A € [1, 2]

Only a finite number of values of A change the value of round(Ax). Denoting these
“breakpoints” as \Aj, we can enumerate the midpoints A; ;> = (Aj+Ajr1)/2
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How do we find the optimal A € R 7

The optimum is stable under sign flip and multiplication by powers of two —
restrict the search to A € [1, 2]

Only a finite number of values of A change the value of round(Ax). Denoting these
“breakpoints” as \Aj, we can enumerate the midpoints A; ;> = (Aj+Ajr1)/2

Algorithm:
e Build the set of midpoints
o For each midpoint \j 1 />:

Build X = round(\j;1/2x)
Compute u(X) = x"X/||X]|?
Build y = round(uy)

Test the accuracy of Xy’

Quantization error

* o Ajrye
:

(midpoints O(mn2") complexity = tractable for large

12 14 16 15 2 matrices and low precisions
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Butterfly matrices

@ Butterfly matrices are extremely sparse yet highly expressive, they appear in many
fast linear transforms

@ Butterfly factorization: decompose dense n x n matrix as By ... By, with
L = log, n = O(nlog n) complexity
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Optimal two-factor quantization

o Key property®: for any partial product XY T of consecutive factors

By...BiBjy1...BiBit1...ByBrsy... By

X YT
n
o, R AR
i=1
where the rank-one matrices x;y.” <~ W] < [ < [

have disjoint support.

'QT. Le, E. Riccietti, R. Gribonval, SIMAX (2023).
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Optimal two-factor quantization

o Key property®: for any partial product XY T of consecutive factors

By...BiBjy1...BiBit1...ByBrsy... By

X YT
n
o, R AR
i=1
where the rank-one matrices x;y.” <~ W] < [ < [

have disjoint support.

@ We can optimally quantize two factors X and Y by quantizing each x,-y,.T
optimally and independently: X; = round(\;x;), y; = round(u;y;) yields
X = round(XA), A = diag(\;)

Y =round(YM), M = diag(ui)

'QT. Le, E. Riccietti, R. Gribonval, SIMAX (2023).
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Heuristics for the L-factor quantization

When L > 2, need heuristics to decide how to order/group the factors

@ Pairwise heuristic:
Bi1B,B3B,...B
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Heuristics for the L-factor quantization

When L > 2, need heuristics to decide how to order/group the factors
o Pairwise heuristic: o R
B1B;B3B,... By
— 7 N— ~—

XyT XyT RTN

@ Left-to-right heuristic: IR - ~
Bl 82 B3 PR B[__]_ BL
"

X yT
~ — —
X YT
~—~
X YT

@ L2R more expensive because it densifies the factors
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Experimental results
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@ Randomly generated butterfly factors
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Experimental results
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—#— Pairwise (fit: O(27'%))
- —&— Left-to-right (fit: O(27"))
1 RTN (fit: O(271%))
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@ Randomly generated butterfly factors
@ Significant accuracy improvement. . .

@ ...or, equivalently, can reduce storage by about 30% with no loss of accuracy
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Conclusion

Key results:
o Characterized optimal quantization of xy " as round(\x) round(uy) "
@ Proposed algorithm to find the optimal A in O(mn2") complexity

@ Proposed two heuristics to apply method to butterfly factorization and obtained
storage reductions of 30% with no loss of accuracy

Butterfly matrices are only one possible application, many other perspectives:
rank-r matrices, tensors, DNNs, ...
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