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Context

SEISCOPE-MUMPS collaboration

• The SEISCOPE consortium investigates high-resolution seismic
imaging based on frequency-domain full waveform inversion

• MUMPS is a general purpose parallel sparse direct solver

Two talks

• FWI 6: Renormalization and Direct Nonlinear Inversion
Stephane Operto’s presentation (Room 206, 11:25 AM):
Efficient 3D frequency-domain full-waveform inversion of
ocean-bottom cable data with sparse block low-rank direct solver: A
real data case study from the North Sea

• This talk focuses on the linear algebra aspects of the work
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Introduction

Forward problem: a boundary-value (stationary) problem.(
ω2

c(x)2
+∆

)
p(x, ω) = s(x, ω)

⇒ a large and sparse system of linear equations with multiple
right-hand sides.

A(ω,m, x) [p1(ω, x)p2(ω, x)...pN(ω, x)] = [s1(ω, x)s2(ω, x)...sN(ω, x)] .

Use direct solver to factorize A and solve the system.
Advantages over iterative solvers:
• easy to use (push button→ get answer)
• numerically robust
• do one factorization and multiple bw/fw substitutions
• can be used to precondition iterative solvers
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The Multifrontal method



MF (Duff’83) ND (George’73)

..

N

.

n = Nd

..................................................................................................................................................................................................................................................................................................

2D problem cost ∝
Flops:O(N6), mem:O(N4)

→ Flops:O(N6/8), mem:O(N4/2)

→ Flops:O(N3), mem:O(N2log(N))

3D problem cost ∝
→ Flops:O(N6), mem:O(N4)
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Low-Rank property



Low-rank matrices

Take a dense matrix B of size n×n and compute its SVD B = XSY:
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Low-rank matrices

Take a dense matrix B of size n×n and compute its SVD B = XSY:

B = X1S1Y1 + X2S2Y2 with S1(k, k) = σk > ε, S2(1, 1) = σk+1 ≤ ε

If B̃ = X1S1Y1 then ∥B− B̃∥2 = ∥X2S2Y2∥2 = σk+1 ≤ ε

If the singular values of B decay very fast (e.g. exponentially) then
k≪ n even for very small ε (e.g. 10−14) ⇒ memory and CPU
consumption can be reduced considerably with a controlled loss
of accuracy (≤ ε) if B̃ is used instead of B
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Can we exploit low-rankness in frontal matrices?

Frontal matrices are usually not low-rank but in many applications
they exhibit low-rank blocks.
A block represents the interaction between two subdomains σ
and τ . If they have a small diameter and are far away the
interaction is weak ⇒ rank is low

.

1. compute a clustering of your domain (mesh)

2. permute the matrix accordingly

3. enjoy low-rankness
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Clustering



Clustering

We aim at a clustering which is such that each frontal matrix has a
maximum of low-rank blocks.
If the geometry of the domain, and of the separators is known, the
task would be relatively simple

.
large diameters
small distances

.
small diameters
large distances

• maximize the relative distance between clusters
• minimize their diameter…
• but not too much to achieve an acceptable BLAS efficiency
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Algebraic clustering/blocking

In a purely algebraic context, we don’t have the luxury of knowing
the geometry because we only know the matrix
→ use the adjacency graph instead of the domain geometry

For all the separators
- extract the adjacency graph
- extend it with halo
- pass it to a partitioning tool

End for

SCOTCH-partitioned SCOTCH
separator on a cubic domain of
size N = 128

→
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Low-rank formats



Low-rank approximations – representations

Once the blocking is defined, several low-rank formats are
possible.

We believe Block Low-Rank (BLR) aims at a good compromise
between complexity and performance/usability.
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Low-rank approximations – representations

Once the blocking is defined, several low-rank formats are
possible.
Some have a hierarchical format (H, H2, HSS, HODLR, …)

• Leads to very low complexity
(fact. is ∼ O(n), with a big
constant).

• Complex, hierarchical structure.
• Relatively inefficient and
expensive SVD/RRQR…(very T&S
blocks), unless randomization or
low-rank assembly is used.

• Parallelism is difficult to exploit.

We believe Block Low-Rank (BLR) aims at a good compromise
between complexity and performance/usability.
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Low-rank approximations – representations

Once the blocking is defined, several low-rank formats are
possible.
Another one (ours) is Block Low-Rank

• Very simple structure (very little
logic to handle).

• Cheap SVD/RRQR.
• Completely parallel.
• Complexity is a question under
investigation.

We believe Block Low-Rank (BLR) aims at a good compromise
between complexity and performance/usability.
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Factorization



BLR LU factorization

task operation type full-rank low-rank

Factor (F) B = LUT (2/3)b3 (2/3)b3

Solve (S) B = X(YL−1) b3 rb2

Compress (C) B = XY --- rb2

Update (U) B = B− X1(Y1X2)Y2 2b3 rb2

(b=block size, r=rank)

▶

_GETRF

▶

_TRSM

▶

_GEQP3/_GESVD

▶

_GEMM
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Experimental results



Experimental MF complexity

Setting:

1. Poisson: N3 grid with a 7-point stencil with u = 1 on the
boundary ∂Ω

∆u = f

2. Helmholtz: N3 grid with a 27-point stencil, ω is the angular
frequency, v(x) is the seismic velocity field, and u(x, ω) is the
time-harmonic wavefield solution to the forcing term s(x, ω).(

−∆− ω2

v(x)2

)
u(x, ω) = s(x, ω)
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Experimental MF complexity: entries in factor

108
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1010

64 96 128 160 192 224

Problem size N

Poisson entries in factors

56n1.07log(n)

62n1.04log(n)

BLR 10-14

BLR 10-10

Full Rank: O(n1.3)

108

109

1010

1011

64 96 128 160 192 224

Problem size N

Helmholtz entries for factors

18n1.20log(n)

BLR 10-4

Full Rank: O(n1.3)

• ε only plays a role in the constant factor
• good agreement with theory
• for Poisson a factor ∼ 3 gain with almost no loss of accuracy
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Experimental MF complexity: operations
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Problem size N
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1065n1.50
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Full Rank: O(n2)
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1016
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Problem size N

Helmholtz Flop

37n1.85

BLR 10-4

Full Rank: O(n2)

• ε only plays a role in the constant factor
• good agreement with theory
• for Poisson a factor ∼ 9 gain with almost no loss of accuracy
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Application to frequency-domain seismic modeling

• Credits: SEISCOPE project
• 3D VTI visco-acoustic Valhall model
• VTI visco-acoustic Helmholtz equation

Freq. n nnz factors flops time cores

5Hz 3M 70M 2.5GB 6.5E+13 80s 240
7Hz 7M 177M 6.4GB 4.1E+14 323s 320

10Hz 17M 446M 10.5GB 2.6E+15 1117s 680
Full-rank statistics

Experiments are done on the LICALLO supercomputer at the
OCA mesocenter:
• Two Intel(r) 10-cores Ivy Bridge 2,5 GHz and 64 GB memory
• Peak per core is 20.0 GF/s
• Infiniband FDR interconnect
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Application to frequency-domain seismic modeling
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Gains in execution time do not match those in Flops because of
the weaker efficiency of BLAS kernels due to the small granularity.
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Application to frequency-domain seismic modeling
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Due to the small size of blocks, multithreaded BLAS is inefficient.

We have added OpenMP directives to exploit multicores on BLR
computations
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Due to the small size of blocks, multithreaded BLAS is inefficient.
We have added OpenMP directives to exploit multicores on BLR
computations
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Valhall case study: modeling errors associated with BLR
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Valhall case study: FWI with FR MUMPS
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Valhall case study: FWI with MUMPS BLR ε = 10−5
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Valhall case study: FWI with MUMPS BLR ε = 10−4
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Valhall case study: Data fit - Receiver #1
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Solution Phase



Solution phase - more on performance issues

• 1280 Right Hand Sides
• Factorization time: 80s (FR) → 47s (LR)
• Solution time: 193s

General case LUX = B, (X,B centralized and dense)

Let NB be the block size
for each block do
Scatter B(1:NB) over all processors
Compute Fwd Y(1:NB): LY(1:NB) = B1:NB
Compute Bwd X(1:NB): UX1:NB = Y(1:NB)
Gather X(1:NB) on host processor and postprocess it

end for

29/34 SEG’15, New Orleans Oct. 18-23



Recent improvements of the solution phase

step

reference distributed sparse
solution RHS

scatter RHS

65.9 65.6 0.5

forward

18.1 18.2 6.6

backward

21.9 21.6 21.4

gather solution

75.6 0.0 0.0

total

192.7 128.5 45.7

FR LR

facto 80s 47s
solve 46s —
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Conclusion and
perspectives



Perspectives

• Further improvements of the solution phase:
◦ Block-Low-Rank solve
◦ Solve-driven scheduling and mapping
◦ Multithreading and locality issues with multiple RHS

• Further improvements of the factorization phase:
◦ Investigate other variants of BLR LU factorization with better

complexity/performance
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Inclusion model: modeling errors associated with BLR

1500m/s

1700m/s

4km

0

1

2

3
X(
km

)

0 1 2 3
Y(km)

0

1

2

3

X(
km

)

0 1 2 3
Y(km)

0

1

2

3

X(
km

)

0 1 2 3
Y(km)

0

1

2

3
X(
km

)

0 1 2 3
Y(km)

FR

FR-BLR10-5 (x100)
FR-BLR10-3 (x100)FR

-B
LR

10
-4

 (x
10

0)

Anisotropic model
Vp0=1.5km/s/1.7km/s
δ=0.05,ε=0.1

Transmission acquisition
7x7 shots on each face
41x41 receivers on the opposite face

Single frequency modeling/inversion
(4Hz)

34/34 SEG’15, New Orleans Oct. 18-23



Inclusion model: FWI with BLR MUMPS

• Single frequency inversion (4Hz). Transmission experiment (7 x
7 shots on each face; 41 x 41 receivers on the opposite face).

• Note line-search failure at iteration 22 for ε = 10−3.
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Valhall case study: Data fit - Receiver #1
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Complexity of BLR LU factorization

Depending on when and how the compression is done, different
variants are possible with different theoretical complexity:

operations memory

r = O(1) r = O(N) r = O(1) r = O(N)

FR O(n2) O(n2) O(n
4
3 ) O(n

4
3 )

BLR FSCU O(n
5
3 ) O(n

11
6 ) O(n log n) O(n

4
3 )

BLR FCSU O(n
14
9 ) O(n

16
9 ) O(n log n) O(n

4
3 )

BLR FSCU+LUA O(n
14
9 ) O(n

16
9 ) O(n log n) O(n

4
3 )

BLR FCSU+LUA O(n
4
3 ) O(n

5
3 log n) O(n log n) O(n

4
3 )

H O(n
4
3 ) O(n

5
3 ) O(n) O(n

7
6 )

H (fully struct.) O(n) O(n
4
3 ) O(n) O(n

7
6 )

in the 3D case (similar analysis possible for 2D)

If updates are accumulated and applied at once (LUA), a further
reduction can be achieved which leads to the same theoretical
complexity as H.
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Threshold partial pivoting with BLR

CB

current BLR panel

non-eliminated variables

to be updated with
BLAS 3 BLR operations

eliminated variables

planned BLR panel

Pivots are delayed panelwise and eventually to the parent node
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Threshold partial pivoting with BLR

CB

non-eliminated variables

to be updated with
BLAS 3 BLR operations

eliminated variables

FR

FR

actual current BLR panel

actual next BLR panel
(size has increased)

Pivots are delayed panelwise and eventually to the parent node
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Exploiting sparsity to reduce flops during solve

solve y← L \ b
L yb\

4

3

1

5

2

• In case of sparse RHS
only part of factors/operations needs
to be loaded/performed

• Objectives with sparse RHS
◦ Efficient use of the RHS sparsity
◦ Characterize L and U factors to be

loaded
◦ Characterize operations to be

performed

1. Predicting structure of the solution vector,
Gilbert-Liu, ’93

2. Note that solving with sparse RHS on irreducible matrices can
only impact the performance of the forward phase : Ly = b.
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