A New Preconditioner for Low-Accuracy Block Low-Rank Multifrontal Solvers

Theo Mary, joint work with Nick Higham University of Manchester, School of Mathematics Sparse Days, Toulouse, 27-28 September 2018

Context

Objective

- Compute solution to linear system Ax = b
- $A \in \mathbb{R}^{n \times n}$ is ill conditioned

LU-based preconditioner

- 1. Compute approximate factorization $A = \widehat{L}\widehat{U} + \Delta A$
 - Half-precision factorization
 - Incomplete LU factorization
 - $\circ~$ Structured matrix factorization: Block Low-Rank, \mathcal{H}_{r} HSS,...
- 2. Solve $\prod_{LU}Ax = \prod_{LU}b$ with $\prod_{LU} = \hat{U}^{-1}\hat{L}^{-1}$ via some iterative method
 - Convergence to solution may be slow or fail

> Objective: accelerate convergence

1. A new preconditioner for approximate factorizations

N. J. Higham and T. Mary, A New Preconditioner that Exploits Low-Rank Approximations to Factorization Error, MIMS EPrint 2018.10.

2. Application to low-accuracy BLR multifrontal solvers

A new preconditioner for approximate factorizations

Matrix lund_a (n = 147, $\kappa(A) = 2.8e+06$)

- Often, A is ill conditioned due to a small number of small singular values
- Then, A^{-1} is numerically low-rank

Key idea

Factorization error might be low-rank?

Let the error
$$E = \widehat{U}^{-1}\widehat{L}^{-1}A - I = \widehat{U}^{-1}\widehat{L}^{-1}(\widehat{L}\widehat{U} + \Delta A) - I$$

= $\widehat{U}^{-1}\widehat{L}^{-1}\Delta A \approx A^{-1}\Delta A$

Does *E* retain the low-rank property of A^{-1} ?

A novel preconditioner

Consider the preconditioner

$$\Pi_{E_k} = (I + E_k)^{-1} \Pi_{LU}$$

with E_k a rank-k approximation to E.

• If
$$E = E_k$$
, $\prod_{E_k} = A^{-1}$

• If $E \approx E_k$ for some small k, Π_{E_k} can be computed cheaply

A New Preconditioner for Low-Accuracy BLR MF Solvers

A New Preconditioner for Low-Accuracy BLR MF Solvers

A New Preconditioner for Low-Accuracy BLR MF Solvers

We did **not** specifically select matrices for which A^{-1} is low-rank!

A New Preconditioner for Low-Accuracy BLR MF Solvers

7/18

We need to compute a rank-k approximation of

$$E = \widehat{U}^{-1}\widehat{L}^{-1}A - I$$

E cannot be built explicitly! \Rightarrow use **randomized** method

Algorithm 1 Randomized SVD via direct SVD of $V^T E$.

- 1: Sample E: $S = E\Omega$, with Ω a $n \times (k + p)$ random matrix.
- 2: Orthonormalize S: V = qr(S). $\{\Rightarrow E \approx VV^T E.\}$
- 3: Compute truncated SVD $V^T E \approx X_k \Sigma_k Y_k^T$.
- 4: $E_k \approx (VX_k)\Sigma_k Y_k^T$.

- Three types of approximate LU factorization:
 - Half-precision
 - $\,\circ\,$ Incomplete LU with drop tolerance $10^{-5} \leq \tau \leq 10^{-1}$
 - $\circ~$ Block Low-Rank with low-rank threshold $10^{-9} \leq \tau \leq 10^{-1}$

- Three types of approximate LU factorization:
 - Half-precision
 - $\,\circ\,$ Incomplete LU with drop tolerance $10^{-5} \leq \tau \leq 10^{-1}$
 - $\circ~$ Block Low-Rank with low-rank threshold $10^{-9} \leq \tau \leq 10^{-1}$
- Iterative solver is GMRES-based iterative refinement (Carson & Higham, 2017, 2018) with three precisions
 - FP64 working precision and residual is computed in FP128
 - Max nb of GMRES iterations per IR step is 100
 - Max nb of IR steps is 10

- Three types of approximate LU factorization:
 - Half-precision
 - $\,\circ\,$ Incomplete LU with drop tolerance $10^{-5} \leq \tau \leq 10^{-1}$
 - $\circ~$ Block Low-Rank with low-rank threshold $10^{-9} \leq \tau \leq 10^{-1}$
- Iterative solver is GMRES-based iterative refinement (Carson & Higham, 2017, 2018) with three precisions
 - $\circ~$ FP64 working precision and residual is computed in FP128
 - Max nb of GMRES iterations per IR step is 100
 - Max nb of IR steps is 10
- Large set of real-life but small matrices
 - $\circ~53 \leq {\it n} \leq 494$ and $10^3 \leq \kappa({\rm A}) \leq 10^{14}$
 - Most come from SuiteSparse collection, but treated as dense
 - 149 tests on 40 different matrices

- Three types of approximate LU factorization:
 - Half-precision
 - $\circ~$ Incomplete LU with drop tolerance $10^{-5} \leq \tau \leq 10^{-1}$
 - $\circ~$ Block Low-Rank with low-rank threshold $10^{-9} \leq \tau \leq 10^{-1}$
- Iterative solver is GMRES-based iterative refinement (Carson & Higham, 2017, 2018) with three precisions
 - $\circ~$ FP64 working precision and residual is computed in FP128
 - Max nb of GMRES iterations per IR step is 100
 - Max nb of IR steps is 10
- Large set of real-life but small matrices
 - $\circ~53 \leq {\it n} \leq 494$ and $10^3 \leq \kappa({\rm A}) \leq 10^{14}$
 - $\circ~$ Most come from SuiteSparse collection, but treated as dense
 - 149 tests on 40 different matrices
- MATLAB code running on laptop
 - We only measure number of iterations

Black-box setting: use p = 10 and $\varepsilon = 10^{-7}$

10/18

A New Preconditioner for Low-Accuracy BLR MF Solvers

Application to low-accuracy BLR multifrontal solvers

BLR matrices

Key principle: build approximated factorization $\mathbf{A}_{\varepsilon} = \mathbf{L}_{\varepsilon} \mathbf{U}_{\varepsilon}$ at accuracy ε controlled by the user

Each off-diagonal block *B* is approximated by a low-rank matrix \widetilde{B} :

$$\|B - \widetilde{B}\| \leq \varepsilon$$
 with $\operatorname{rank}(\widetilde{B}) = k_{\varepsilon}$

If $k_{\varepsilon} \ll \text{size}(B) \Rightarrow \text{memory and flops}$ can be reduced with a controlled loss of accuracy ($\leq \varepsilon$)

Block Low-Rank (BLR) matrix

Applicative contexts: integral equations, discretized PDEs, covariance matrices, ...

/18 A New P

Multifrontal factorization with nested dissection

Two operations:

- Partial factorization of fronts
- Assembly of contribution blocks

Low-accuracy BLR solver: classical preconditioner

Results with the **BLR-MUMPS** solver

Time includes preconditioner setup (factorization) and iterative solve with GMRES (with relative stopping tolerance 10^{-9})

Matrix	n	Time (s)		Storage (GB)	
		$\varepsilon = 10^{-2}$	$\varepsilon = 10^{-8}$	$\varepsilon = 10^{-2}$	$\varepsilon = 10^{-8}$
audikw_1	1.0M	1163	69	5	10
Bump_2911	2.9M	_	282	34	56
Emilia_923	0.9M	304	63	7	12
Fault_639	0.6M	_	45	5	9
Ga41As41H72	0.3M	_	76	12	17
Hook_1498	1.5M	902	75	6	11
Si87H76	0.2M	_	62	10	14

Low-accuracy BLR solvers:

- ③ are slower and less robust
- ③ but require much less storage

14/18

Results with new preconditioner

Results for $\varepsilon = 10^{-2}$:

Matrix	Π_{LU}		Π_{E_k}	
	lter.	Time	lter.	Time
audikw_1	691	1163	331	625
Bump_2911	—	_	284	1708
Emilia_923	174	304	136	267
Fault_639	_	_	294	345
Ga41As41H72	—	_	135	143
Hook_1498	417	902	356	808
Si87H76	—	_	131	116

 \Rightarrow performance and robustness improvement

Results with new preconditioner

Results for $\varepsilon = 10^{-2}$:

Matrix	Π_{LU}		Π_{E_k}	
	lter.	Time	lter.	Time
audikw_1	691	1163	331	625
Bump_2911	—	_	284	1708
Emilia_923	174	304	136	267
Fault_639	_	_	294	345
Ga41As41H72	_	_	135	143
Hook_1498	417	902	356	808
Si87H76	—	_	131	116

 \Rightarrow performance and robustness improvement

But what about storage?

What is the storage overhead of the Π_{E_k} preconditioner?

We need to store E_k : two dense $n \times k$ matrices \Rightarrow but only needed after factorization

We need to store E_k : two dense $n \times k$ matrices \Rightarrow but only needed after factorization

Traditional multifrontal storage is $S_A + S_{LU} + S_{CB}$

- S_A = storage for matrix A
- S_{LU} = storage for (BLR) LU factors
- S_{CB} = storage for contribution blocks ⇒ temporary storage during factorization

We need to store E_k : two dense $n \times k$ matrices \Rightarrow but only needed after factorization

Traditional multifrontal storage is $S_A + S_{LU} + S_{CB}$

- S_A = storage for matrix A
- S_{LU} = storage for (BLR) LU factors
- S_{CB} = storage for contribution blocks ⇒ temporary storage during factorization

Thus, S_{CB} and S_{E_k} do not overlap!

- Factorization storage: $S_A + S_{LU} + S_{CB}$
- Solution storage: $S_A + S_{LU} + S_{E_k}$
- \Rightarrow Total storage: $S_A + S_{LU} + \max(S_{CB}, S_{E_k})$

We need to store E_k : two dense $n \times k$ matrices \Rightarrow but only needed after factorization

Traditional multifrontal storage is $S_A + S_{LU} + S_{CB}$

- S_A = storage for matrix A
- S_{LU} = storage for (BLR) LU factors
- S_{CB} = storage for contribution blocks ⇒ temporary storage during factorization

Thus, S_{CB} and S_{E_k} do not overlap!

- Factorization storage: $S_A + S_{LU} + S_{CB}$
- Solution storage: $S_A + S_{LU} + S_{E_k}$
- \Rightarrow Total storage: $S_A + S_{LU} + \max(S_{CB}, S_{E_k})$

If $S_{E_k} \leq S_{CB}$, zero storage overhead!

Storage overhead: results

Storage overhead: results

\Rightarrow zero storage overhead on all matrices

A New Preconditioner for Low-Accuracy BLR MF Solvers

Theo Mary

17/18

Conclusion

A new preconditioner

- Ill-conditioned matrices often have a numerically low-rank inverse
- Novel preconditioner based on a low-rank approximation to the error to accelerate linear systems solution

Application to BLR low-accuracy preconditioners

- Low-accuracy BLR solvers require very little storage
- Our new preconditioner improves both their performance and robustness, with zero storage overhead in the multifrontal context

Slides and paper available here

bit.ly/theomary

References

- N. J. Higham and T. Mary, A New Preconditioner that Exploits Low-Rank Approximations to Factorization Error, MIMS EPrint 2018.10.
- N. J. Higham and T. Mary, Accelerating Linear Systems Solution by Exploiting Low-Rank Approximations to Factorization Error, IMA Conference on Numerical Linear Algebra and Optimization (2018).
- P. Amestoy, A. Buttari, J.-Y. L'Excellent, and T. Mary, Performance and Scalability of the BLR Multifrontal Factorization on Multicore Architectures, ACM Trans. Math. Soft. (2018).
- T. Mary, Block Low-Rank multifrontal solvers: complexity, performance, and scalability, PhD thesis (2017).
- E. Carson and N. J. Higham, A New Analysis of Iterative Refinement and Its Application to Accurate Solution of III-Conditioned Sparse Linear Systems, SIAM J. Sci. Comp. (2017).
- E. Carson and N. J. Higham, Accelerating the Solution of Linear Systems by Iterative Refinement in Three Precisions, SIAM J. Sci. Comp. (2018).