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Context

Objective

• Compute solution to linear system Ax = b
• A ∈ Rn×n is ill conditioned

LU-based preconditioner

1. Compute approximate factorization A = L̂Û+∆A
◦ Half-precision factorization
◦ Incomplete LU factorization
◦ Structured matrix factorization: Block Low-Rank, H, HSS,…

2. Solve ΠLUAx = ΠLUb with ΠLU = Û−1L̂−1 via some iterative
method

• Convergence to solution may be slow or fail

⇒ Objective: accelerate convergence
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Outline

1. A new preconditioner for approximate factorizations
N. J. Higham and T. Mary, A New Preconditioner that Exploits Low-Rank
Approximations to Factorization Error, MIMS EPrint 2018.10.

2. Application to low-accuracy BLR multifrontal solvers
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A new preconditioner for
approximate factorizations



Key observation

Matrix lund_a (n = 147, κ(A) = 2.8e+06)
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• Often, A is ill conditioned due to a small number of small
singular values

• Then, A−1 is numerically low-rank
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Key idea

Factorization error might be low-rank?

Let the error E = Û−1L̂−1A− I = Û−1L̂−1(L̂Û+∆A)− I

= Û−1L̂−1∆A ≈ A−1∆A
Does E retain the low-rank property of A−1?

A novel preconditioner

Consider the preconditioner
ΠEk = (I+ Ek)−1ΠLU

with Ek a rank-k approximation to E.
• If E = Ek, ΠEk = A−1

• If E ≈ Ek for some small k, ΠEk can be computed cheaply
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Typical SV distributions of A−1 and E
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Typical SV distributions of A−1 and E
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Typical SV distributions of A−1 and E
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Typical SV distributions of A−1 and E
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We did not specifically select matrices for which A−1 is low-rank!
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Computing Ek

We need to compute a rank-k approximation of

E = Û−1L̂−1A− I

E cannot be built explicitly! ⇒ use randomized method

Algorithm 1 Randomized SVD via direct SVD of VTE.
1: Sample E: S = EΩ, with Ω a n× (k+ p) random matrix.
2: Orthonormalize S: V = qr(S). {⇒ E ≈ VVTE.}
3: Compute truncated SVD VTE ≈ XkΣkYTk .
4: Ek ≈ (VXk)ΣkYTk .
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Preliminary experiments on small matrices

• Three types of approximate LU factorization:
◦ Half-precision
◦ Incomplete LU with drop tolerance 10−5 ≤ τ ≤ 10−1

◦ Block Low-Rank with low-rank threshold 10−9 ≤ τ ≤ 10−1

• Iterative solver is GMRES-based iterative refinement (Carson &
Higham, 2017, 2018) with three precisions
◦ FP64 working precision and residual is computed in FP128
◦ Max nb of GMRES iterations per IR step is 100
◦ Max nb of IR steps is 10

• Large set of real-life but small matrices
◦ 53 ≤ n ≤ 494 and 103 ≤ κ(A) ≤ 1014

◦ Most come from SuiteSparse collection, but treated as dense
◦ 149 tests on 40 different matrices

• MATLAB code running on laptop
◦ We only measure number of iterations
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Results with black-box setting

Black-box setting: use p = 10 and ε = 10−7
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Application to low-accuracy
BLR multifrontal solvers



BLR matrices

Key principle: build approximated factorization Aε = LεUε at
accuracy ε controlled by the user

Block Low-Rank (BLR) matrix

Each off-diagonal block B is
approximated by a low-rank matrix B̃:

∥B− B̃∥ ≤ ε with rank(B̃) = kε

If kε ≪ size(B) ⇒ memory and flops
can be reduced with a controlled loss
of accuracy (≤ ε)

Applicative contexts: integral equations, discretized PDEs,
covariance matrices, …
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Multifrontal factorization with nested dissection

N n = Nd
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Two operations:

• Partial factorization of fronts
• Assembly of contribution blocks
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Low-accuracy BLR solver: classical preconditioner

Results with the BLR-MUMPS solver
Time includes preconditioner setup (factorization) and iterative
solve with GMRES (with relative stopping tolerance 10−9)

Matrix n Time (s) Storage (GB)
ε = 10−2 ε = 10−8 ε = 10−2 ε = 10−8

audikw_1 1.0M 1163 69 5 10
Bump_2911 2.9M — 282 34 56
Emilia_923 0.9M 304 63 7 12
Fault_639 0.6M — 45 5 9
Ga41As41H72 0.3M — 76 12 17
Hook_1498 1.5M 902 75 6 11
Si87H76 0.2M — 62 10 14

Low-accuracy BLR solvers:/ are slower and less robust, but require much less storage
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Results with new preconditioner

Results for ε = 10−2:

Matrix ΠLU ΠEk
Iter. Time Iter. Time

audikw_1 691 1163 331 625
Bump_2911 — — 284 1708
Emilia_923 174 304 136 267
Fault_639 — — 294 345
Ga41As41H72 — — 135 143
Hook_1498 417 902 356 808
Si87H76 — — 131 116

⇒ performance and robustness improvement

But what about storage?
What is the storage overhead of the ΠEk preconditioner?
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Storage overhead: formula

We need to store Ek: two dense n× k matrices 
⇒ but only needed after factorization

Traditional multifrontal storage is SA + SLU + SCB
• SA = storage for matrix A
• SLU = storage for (BLR) LU factors
• SCB = storage for contribution blocks ⇒ temporary storage
during factorization

Thus, SCB and SEk do not overlap!
• Factorization storage: SA + SLU + SCB
• Solution storage: SA + SLU + SEk

⇒ Total storage: SA + SLU +max(SCB,SEk)

If SEk ≤ SCB, zero storage overhead!
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Storage overhead: results
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17/18 A New Preconditioner for Low-Accuracy BLR MF Solvers Theo Mary



Storage overhead: results

audi Fault Hook Emilia Si87 Ga41 Bump
0

5

10

15

20

25

30

35

⇒ zero storage overhead on all matrices

17/18 A New Preconditioner for Low-Accuracy BLR MF Solvers Theo Mary



Conclusion

A new preconditioner

• Ill-conditioned matrices often have a numerically low-rank
inverse

• Novel preconditioner based on a low-rank approximation to the
error to accelerate linear systems solution

Application to BLR low-accuracy preconditioners

• Low-accuracy BLR solvers require very little storage
• Our new preconditioner improves both their performance and
robustness, with zero storage overhead in the multifrontal
context

Slides and paper available here

bit.ly/theomary
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