Block Low-Rank Multifrontal Solvers: complexity, performance, and scalability

P. Amestoy^{*,1} A. Buttari^{*,2} J.-Y. L'Excellent^{†,3} <u>T. Mary</u>^{*,4} *Université de Toulouse [†]ENS Lyon ¹INPT-IRIT ²CNRS-IRIT ³INRIA-LIP ⁴UPS-IRIT Sparse Days, 6-8 Sep. 2017, Toulouse

Introduction

Multifrontal Factorization with Nested Dissection

Take a dense matrix *B* of size $b \times b$ and compute its SVD B = XSY:

Take a dense matrix *B* of size $b \times b$ and compute its SVD B = XSY:

 $B = X_1 S_1 Y_1 + X_2 S_2 Y_2 \quad \text{with} \quad S_1(k,k) = \sigma_k > \varepsilon, \ S_2(1,1) = \sigma_{k+1} \le \varepsilon$

Take a dense matrix *B* of size $b \times b$ and compute its SVD B = XSY:

$$\begin{split} B &= X_1 S_1 Y_1 + X_2 S_2 Y_2 \quad \text{with} \quad S_1(k,k) = \sigma_k > \varepsilon, \ S_2(1,1) = \sigma_{k+1} \le \varepsilon \\ \text{If } \tilde{B} &= X_1 S_1 Y_1 \quad \text{then} \quad \|B - \tilde{B}\|_2 = \|X_2 S_2 Y_2\|_2 = \sigma_{k+1} \le \varepsilon \end{split}$$

Take a dense matrix *B* of size $b \times b$ and compute its SVD B = XSY:

 $B = X_1 S_1 Y_1 + X_2 S_2 Y_2 \quad \text{with} \quad S_1(k,k) = \sigma_k > \varepsilon, \ S_2(1,1) = \sigma_{k+1} \le \varepsilon$

If $\tilde{B} = X_1 S_1 Y_1$ then $\|B - \tilde{B}\|_2 = \|X_2 S_2 Y_2\|_2 = \sigma_{k+1} \le \varepsilon$

If the singular values of *B* decay very fast (e.g. exponentially) then $k \ll b$ even for very small ε (e.g. 10^{-14}) \Rightarrow memory and CPU consumption can be reduced considerably with a controlled loss of accuracy ($\leq \varepsilon$) if \tilde{B} is used instead of *B*

Frontal matrices are not low-rank but in some applications they exhibit low-rank blocks

A block *B* represents the interaction between two subdomains σ and τ . If they have a small diameter and are far away their interaction is weak \Rightarrow rank is low.

Frontal matrices are not low-rank but in some applications they exhibit low-rank blocks

A block *B* represents the interaction between two subdomains σ and τ . If they have a small diameter and are far away their interaction is weak \Rightarrow rank is low.

Frontal matrices are not low-rank but in some applications they exhibit low-rank blocks

A block *B* represents the interaction between two subdomains σ and τ . If they have a small diameter and are far away their interaction is weak \Rightarrow rank is low.

Frontal matrices are not low-rank but in some applications they exhibit low-rank blocks

A block *B* represents the interaction between two subdomains σ and τ . If they have a small diameter and are far away their interaction is weak \Rightarrow rank is low.

Frontal matrices are not low-rank but in some applications they exhibit low-rank blocks

A block *B* represents the interaction between two subdomains σ and τ . If they have a small diameter and are far away their interaction is weak \Rightarrow rank is low.

Frontal matrices are not low-rank but in some applications they exhibit low-rank blocks

A block *B* represents the interaction between two subdomains σ and τ . If they have a small diameter and are far away their interaction is weak \Rightarrow rank is low.

Frontal matrices are not low-rank but in some applications they exhibit low-rank blocks

A block *B* represents the interaction between two subdomains σ and τ . If they have a small diameter and are far away their interaction is weak \Rightarrow rank is low.

${\cal H}$ and BLR matrices

 $\mathcal H ext{-matrix}$

BLR matrix

${}^{\prime}\mathcal{H}$ and BLR matrices

 $\mathcal H ext{-matrix}$

- Theoretical complexity can be as low as O(n)
- Complex, hierarchical structure

BLR matrix

- Theoretical complexity? $\Rightarrow O(n^{4/3})$, as we will prove
- Simple structure

${\cal H}$ and BLR matrices

 $\mathcal H\text{-matrix}$

- Theoretical complexity can be as low as O(n)
- Complex, hierarchical structure

BLR matrix

- Theoretical complexity? $\Rightarrow O(n^{4/3})$, as we will prove
- Simple structure

Find a good comprise between complexity and performance

${\cal H}$ and BLR matrices

 $\mathcal H ext{-matrix}$

- Theoretical complexity can be as low as O(n)
- Complex, hierarchical structure

BLR matrix

- Theoretical complexity? $\Rightarrow O(n^{4/3})$, as we will prove
- Simple structure

Find a good comprise between complexity and performance

⇒ Ongoing collaboration with STRUMPACK team (LBNL) to compare BLR and hierarchical formats

Applications

Experimental Setting: Matrices (1/3)

3D Seismic Modeling Helmholtz equation Single complex (c) arithmetic Unsymmetric LU factorization Required accuracy: $\varepsilon = 10^{-3}$ Credits: SEISCOPE

matrix	n	nnz	flops	storage		
5Hz	2.9M	70M	65.0 TF	59.7 GB		
7Hz	7.2M	177M	404.2 TF	205.0 GB		
10Hz	17.2M	446M	2.6 PF	710.8 GB		
Full-Rank statistics						

Amestoy, Brossier, Buttari, L'Excellent, Mary, Métivier, Miniussi, and Operto. Fast 3D frequency-domain full waveform inversion with a parallel Block Low-Rank multifrontal direct solver: application to OBC data from the North Sea, Geophysics, 2016.

Experimental Setting: Matrices (2/3)

 E_{\star} , BLR STRATEGY 2, IR = 0, $\varepsilon_{RIR} = 10^{-7}$

3D Electromagnetic Modeling Maxwell equation Double complex (z) arithmetic Symmetric LDL^{T} factorization Required accuracy: $\varepsilon = 10^{-7}$ Credits: EMGS

#emgs

matrix	n	nnz	flops	storage
E3	2.9M	37M	57.9 TF	77.5 GB
E4	17M	226M	1.8 PF	1.7 TB
S3	3.3M	43M	78.0 TF	94.6 GB
S4	21M	266M	2.5 PF	2.1 TB
S4	21M	266M	2.5 PF	2.1

Full-Rank statistics

Shantsev, Jaysaval, de la Kethulle de Ryhove, Amestoy, Buttari, L'Excellent, and Mary. Large-scale 3D EM modeling with a Block Low-Rank multifrontal direct solver, Sparse Days, 6-8 Sep. 2017, Toulouse

Geophysical Journal International, 2017.

Experimental Setting: Matrices (3/3)

3D Structural Mechanics

Double real (d) arithmetic Symmetric LDL^{T} factorization Required accuracy: $\varepsilon = 10^{-9}$ Credits: Code_Aster (EDF)

matrix	n	nnz	flops	storage
perf008d	1.9M	81M	101.0 TF	52.6 GB
perf008ar	3.9M	159M	377.5 TF	129.8 GB
perf008cr	7.9M	321M	1.6 PF	341.1 GB
perf009ar	5.4M	209M	23.4 TF	40.2 GB

Full-Rank statistics

The Block-Low Rank Factorization

• FSCU

• FSCU (Factor,

• FSCU (Factor, Solve,

• FSCU (Factor, Solve, Compress,

• FSCU (Factor, Solve, Compress, Update)

• FSCU (Factor, Solve, Compress, Update)

• FSCU (Factor, Solve, Compress, Update)

• FSCU (Factor, Solve, Compress, Update)

• FSCU (Factor, Solve, Compress, Update)

Sparse Days, 6-8 Sep. 2017, Toulouse

• FSCU (Factor, Solve, Compress, Update)

Sparse Days, 6-8 Sep. 2017, Toulouse

• FSCU (Factor, Solve, Compress, Update)

• FSCU (Factor, Solve, Compress, Update)

Sparse Days, 6-8 Sep. 2017, Toulouse

- FSCU (Factor, Solve, Compress, Update)
- FSCU+LUAR

- FSCU (Factor, Solve, Compress, Update)
- FSCU+LUAR
 - Better granularity in Update operations

- FSCU (Factor, Solve, Compress, Update)
- FSCU+LUAR
 - Better granularity in Update operations
 - Potential recompression \Rightarrow complexity reduction: $O(n^{\frac{5}{3}}) \rightarrow O(n^{\frac{11}{6}})$ \Rightarrow Collaboration with LSTC to design efficient recompression strategies

- FSCU (Factor, Solve, Compress, Update)
- FSCU+LUAR
 - Better granularity in Update operations
 - Potential recompression \Rightarrow complexity reduction: $O(n^{\frac{5}{3}}) \rightarrow O(n^{\frac{11}{6}})$ \Rightarrow Collaboration with LSTC to design efficient recompression strategies

- FSCU (Factor, Solve, Compress, Update)
- FSCU+LUAR
 - Better granularity in Update operations
 - Potential recompression \Rightarrow complexity reduction: $O(n^{\frac{5}{3}}) \rightarrow O(n^{\frac{11}{6}})$ \Rightarrow Collaboration with LSTC to design efficient recompression strategies

- FSCU (Factor, Solve, Compress, Update)
- FSCU+LUAR
 - Better granularity in Update operations
 - Potential recompression \Rightarrow complexity reduction: $O(n^{\frac{5}{3}}) \rightarrow O(n^{\frac{11}{6}})$ \Rightarrow Collaboration with LSTC to design efficient recompression strategies
- FCSU(+LUAR)

- FSCU (Factor, Solve, Compress, Update)
- FSCU+LUAR
 - Better granularity in Update operations
 - Potential recompression \Rightarrow complexity reduction: $O(n^{\frac{5}{3}}) \rightarrow O(n^{\frac{11}{6}})$ \Rightarrow Collaboration with LSTC to design efficient recompression strategies
- FCSU(+LUAR)
 - Restricted pivoting, e.g. to diagonal blocks

- FSCU (Factor, Solve, Compress, Update)
- FSCU+LUAR
 - Better granularity in Update operations
 - Potential recompression \Rightarrow complexity reduction: $O(n^{\frac{5}{3}}) \rightarrow O(n^{\frac{11}{6}})$ \Rightarrow Collaboration with LSTC to design efficient recompression strategies
- FCSU(+LUAR)
 - Restricted pivoting, e.g. to diagonal blocks

- FSCU (Factor, Solve, Compress, Update)
- FSCU+LUAR
 - Better granularity in Update operations
 - Potential recompression \Rightarrow complexity reduction: $O(n^{\frac{5}{3}}) \rightarrow O(n^{\frac{11}{6}})$ \Rightarrow Collaboration with LSTC to design efficient recompression strategies
- FCSU(+LUAR)
 - Restricted pivoting, e.g. to diagonal blocks
 - Low-rank Solve \Rightarrow complexity reduction: $O(n^{\frac{11}{6}}) \rightarrow O(n^{\frac{4}{3}})$

Complexity of the factorization

Until recently, BLR complexity was unknown. Can we use ${\cal H}$ theory on BLR matrices?

Until recently, BLR complexity was unknown. Can we use ${\cal H}$ theory on BLR matrices?

Until recently, BLR complexity was unknown. Can we use ${\cal H}$ theory on BLR matrices?

Complexity mainly depends on r_{max} , the maximal rank of the blocks With \mathcal{H} partitioning, r_{max} is small

Until recently, BLR complexity was unknown. Can we use ${\cal H}$ theory on BLR matrices?

Complexity mainly depends on r_{max} , the maximal rank of the blocks With \mathcal{H} partitioning, r_{max} is small

• Problem: in \mathcal{H} formalism, the maxrank of the blocks of a BLR matrix is $r_{max} = b$ (due to full-rank blocks)

Until recently, BLR complexity was unknown. Can we use ${\cal H}$ theory on BLR matrices?

Complexity mainly depends on r_{max} , the maximal rank of the blocks With \mathcal{H} partitioning, r_{max} is small

- Problem: in \mathcal{H} formalism, the maxrank of the blocks of a BLR matrix is $r_{max} = b$ (due to full-rank blocks)
- ${\mathcal H}$ theory applied to BLR does not give a satisfying result

Until recently, BLR complexity was unknown. Can we use ${\cal H}$ theory on BLR matrices?

Complexity mainly depends on r_{max} , the maximal rank of the blocks With \mathcal{H} partitioning, r_{max} is small

- Problem: in \mathcal{H} formalism, the maxrank of the blocks of a BLR matrix is $r_{max} = b$ (due to full-rank blocks)
- ${\mathcal H}$ theory applied to BLR does not give a satisfying result
- Solution: extend the theory by bounding the number of full-rank blocks
 - Amestoy, Buttari, L'Excellent, and Mary. On the Complexity of the Block Low-Rank Multifrontal Factorization, SIAM SISC, 2016.

Complexity of multifrontal BLR factorization

	operatio	ns (OPC)	factor size (NNZ)		
	r = O(1)	r = O(N)	r = O(1)	r = O(N)	
FR	$O(n^2)$	$O(n^2)$	$O(n^{\frac{4}{3}})$	$O(n^{\frac{4}{3}})$	
BLR	$O(n^{\frac{4}{3}}) - O(n^{\frac{5}{3}})$	$O(n^{\frac{5}{3}}) - O(n^{\frac{11}{6}})$	$O(n \log n)$	$O(n^{\frac{7}{6}}\log n)$	
H	$O(n \log n)$	$O(n^{\frac{4}{3}}\log n)$	$O(n \log n)$	$O(n^{\frac{7}{6}}\log n)$	
in the 3D case (similar analysis possible for 2D)					

Important properties: with both r = O(1) or r = O(N)

- Complexity depends on how the BLR factorization is performed
- The BLR complexity exponent is always lower than the FR one
- $\bullet\,$ The best BLR complexity is not so far from the $\mathcal H\text{-}\mathsf{case}\,$

Complexity of multifrontal BLR factorization

	operatio	ns (OPC)	factor size (NNZ)			
	r = O(1)	r = O(N)	r = O(1)	r = O(N)		
FR	$O(n^2)$	$O(n^2)$	$O(n^{\frac{4}{3}})$	$O(n^{\frac{4}{3}})$		
BLR	$O(n^{\frac{4}{3}}) - O(n^{\frac{5}{3}})$	$O(n^{\frac{5}{3}}) - O(n^{\frac{11}{6}})$	$O(n \log n)$	$O(n^{\frac{7}{6}}\log n)$		
H	$O(n \log n)$	$O(n^{\frac{4}{3}}\log n)$	$O(n \log n)$	$O(n^{\frac{7}{6}}\log n)$		
in the 3D case (similar analysis possible for 2D)						

Important properties: with both r = O(1) or r = O(N)

- Complexity depends on how the BLR factorization is performed
- The BLR complexity exponent is always lower than the FR one
- The best BLR complexity is not so far from the $\mathcal H$ -case

How to convert complexity reduction into performance gain?

Performance on Multicores

Experiments are done on the brunch shared-memory machine of the LIP laboratory of Lyon:

- Four Intel(r) 24-cores Broadwell @ 2,2 GHz
- Peak per core is 35.2 GF/s
- Total memory is 1.5 TB

Follow the FR/BLR ratio on matrix S3

• Flop: 7.7 ratio

- Flop: 7.7 ratio
- Time:
 - Sequential (1 thread): 3.3 ratio

- Flop: 7.7 ratio
- Time:
 - Sequential (1 thread): 3.3 ratio
 - Multithreaded (24 threads): 1.7 ratio

- Flop: 7.7 ratio
- Time:
 - Sequential (1 thread): 3.3 ratio
 - Multithreaded (24 threads): 1.7 ratio
- Tree-based multithreading is critical because the bottom of the assembly tree has a higher relative cost in BLR ⇒ 1.9 ratio

- Flop: 7.7 ratio
- Time:
 - Sequential (1 thread): 3.3 ratio
 - Multithreaded (24 threads): 1.7 ratio
- Tree-based multithreading is critical because the bottom of the assembly tree has a higher relative cost in BLR ⇒ 1.9 ratio
- Left-looking factorization reduces the volume of memory transfer in BLR ("communication-avoiding") ⇒ 2.4 ratio

- Flop: 7.7 ratio
- Time:
 - Sequential (1 thread): 3.3 ratio
 - Multithreaded (24 threads): 1.7 ratio
- Tree-based multithreading is critical because the bottom of the assembly tree has a higher relative cost in BLR ⇒ 1.9 ratio
- Left-looking factorization reduces the volume of memory transfer in BLR ("communication-avoiding") ⇒ 2.4 ratio
- Accumulation (LUA) \Rightarrow **2.5 ratio**

- Flop: 7.7 ratio
- Time:
 - Sequential (1 thread): 3.3 ratio
 - Multithreaded (24 threads): 1.7 ratio
- Tree-based multithreading is critical because the bottom of the assembly tree has a higher relative cost in BLR ⇒ 1.9 ratio
- Left-looking factorization reduces the volume of memory transfer in BLR ("communication-avoiding") ⇒ 2.4 ratio
- Accumulation (LUA) \Rightarrow **2.5 ratio**
- Recompression (LUAR) ⇒ **2.6 ratio**

- Flop: 7.7 ratio
- Time:
 - Sequential (1 thread): 3.3 ratio
 - Multithreaded (24 threads): 1.7 ratio
- Tree-based multithreading is critical because the bottom of the assembly tree has a higher relative cost in BLR ⇒ 1.9 ratio
- Left-looking factorization reduces the volume of memory transfer in BLR ("communication-avoiding") ⇒ 2.4 ratio
- Accumulation (LUA) \Rightarrow **2.5 ratio**
- Recompression (LUAR) ⇒ **2.6 ratio**
- Compress before Solve (FCSU) ⇒ **3.6 ratio**

Multicore performance results (24 threads)

Amestoy, Buttari, L'Excellent, and Mary. Performance and Scalability of the Block Low-Rank Multifrontal Factorization on Multicore Architectures, submitted to ACM TOMS, 2017.

Sparse Days, 6-8 Sep. 2017, Toulouse

21/30

- FSCU (Factor, Solve, Compress, Update)
- FSCU+LUAR
 - Better granularity in Update operations
 - Potential recompression \Rightarrow complexity reduction: $O(n^{\frac{5}{3}}) \rightarrow O(n^{\frac{11}{6}})$ \Rightarrow Collaboration with LSTC to design efficient recompression strategies
- FCSU(+LUAR)
 - Restricted pivoting, e.g. to diagonal blocks
 - $\circ~$ Low-rank Solve \Rightarrow complexity reduction: $O(n^{\frac{11}{6}}) \rightarrow O(n^{\frac{4}{3}})$

- FSCU (Factor, Solve, Compress, Update)
- FSCU+LUAR
 - Better granularity in Update operations
 - Potential recompression \Rightarrow complexity reduction: $O(n^{\frac{5}{3}}) \rightarrow O(n^{\frac{11}{6}})$ \Rightarrow Collaboration with LSTC to design efficient recompression strategies
- FCSU(+LUAR)
 - Restricted pivoting, e.g. to diagonal blocks ⇒ not acceptable in many applications
 - Low-rank Solve \Rightarrow complexity reduction: $O(n^{\frac{11}{6}}) \rightarrow O(n^{\frac{4}{3}})$

Compress before Solve + pivoting: CFSU variant

How to assess the quality of pivot k? We need to estimate $\|\widetilde{B}_{:,k}\|_{max}$: $\|\widetilde{B}_{:,k}\|_{max} \leq \|\widetilde{B}_{:,k}\|_2 = \|XY_{k;}^T\|_2 = \|Y_{k;}^T\|_2$, assuming X is orthonormal (e.g. RRQR, SVD).

matrix	residual			flops (% FR)		
	FSCU	FCSU	CFSU	FSCU	FCSU	CFSU
af_shell10	2e-06	5e-06	4e-06	29.9	22.7	22.7
Lin	4e-05	4e-05	4e-05	24.0	18.5	18.5
mario002	2e-06	fail	1e-06	82.8		72.2
perf009ar	3e-13	1e-01	9e-11	26.0	22.7	22.1
Distributed-memory BLR factorization

Strong scalability analysis

- Flops reduced by 12.8 but volume of communications only by $2.2 \Rightarrow$ higher relative weight of communications
- Load unbalance (ratio between most and less loaded processes) increases from 1.28 to 2.57

CB messages

- Volume of *LU* messages is reduced in BLR (compressed factors)
- Volume of CB messages can be reduced by compressing the CB \Rightarrow but it is an overhead cost

• FR case: LU messages dominate

- FR case: LU messages dominate
- BLR case: CB messages dominate ⇒ underwhelming reduction of comms.

- FR case: LU messages dominate
- BLR case: CB messages dominate ⇒ underwhelming reduction of comms.
- ⇒ CB compression allows for truly reducing the comms. Represents an overhead cost but may lead to speedups depending on network speed w.r.t. processor speed

Distributed performance results (90×10 cores)

 \Rightarrow promising preliminary results, much work left to do!

Sparse Days, 6-8 Sep. 2017, Toulouse

Conclusion

References and acknowledgements

Software

• MUMPS 5.1.0

Publications

- Amestoy, Buttari, L'Excellent, and Mary. On the Complexity of the Block Low-Rank Multifrontal Factorization, SIAM SISC, 2017.
- Amestoy, Buttari, L'Excellent, and Mary. Performance and Scalability of the Block Low-Rank Multifrontal Factorization on Multicore Architectures, submitted to ACM TOMS, 2017.
- Amestoy, Brossier, Buttari, L'Excellent, Mary, Métivier, Miniussi, and Operto. Fast 3D frequency-domain full waveform inversion with a parallel Block Low-Rank multifrontal direct solver: application to OBC data from the North Sea, Geophysics, 2016.
- Shantsev, Jaysaval, de la Kethulle de Ryhove, Amestoy, Buttari, L'Excellent, and Mary. Large-scale 3D EM modeling with a Block Low-Rank multifrontal direct solver, Geophysical Journal International, 2017.

Acknowledgements

- LIP and CALMIP for providing access to the machines
- EMGS, SEISCOPE, and EDF for providing the matrices

Thanks! Questions?

Backup Slides

Complexity experiments: problems

1. Poisson: N^3 grid with a 7-point stencil with u=1 on the boundary $\partial \Omega$

$$\Delta u = f$$

2. Helmholtz: N^3 grid with a 27-point stencil, ω is the angular frequency, v(x) is the seismic velocity field, and $u(x, \omega)$ is the time-harmonic wavefield solution to the forcing term $s(x, \omega)$.

$$\left(-\Delta - \frac{\omega^2}{v(x)^2}\right) u(x,\omega) = s(x,\omega)$$

 ω is fixed and equal to 4Hz.

Experimental MF flop complexity: Poisson ($arepsilon=10^{-10}$)

Nested Dissection ordering (geometric)

• good agreement with theoretical complexity $(O(n^2), O(n^{1.67}), O(n^{1.55}), \text{ and } O(n^{1.33}))$

Experimental MF flop complexity: Poisson ($arepsilon=10^{-10}$)

- good agreement with theoretical complexity $(O(n^2), O(n^{1.67}), O(n^{1.55}), \text{ and } O(n^{1.33}))$
- remains close to ND complexity with METIS ordering 30 Sparse Days, 6-8 Sep. 2017, Toulouse

Experimental MF flop complexity: Helmholtz ($arepsilon=10^{-4}$)

- good agreement with theoretical complexity $(O(n^2), O(n^{1.83}), O(n^{1.78}), \text{ and } O(n^{1.67}))$
- remains close to ND complexity with METIS ordering

Experimental MF complexity: factor size

 good agreement with theoretical complexity (FR: O(n^{1.33}); BLR: O(n log n) and O(n^{1.17} log n))

Sparse Days, 6-8 Sep. 2017, Toulouse

Experiments are done on the shared-memory machines of the LIP laboratory of Lyon:

1. brunch

- Four Intel(r) 24-cores Broadwell @ 2,2 GHz
- Peak per core is 35.2 GF/s
- Total memory is 1.5 TB

2. grunch

- Two Intel(r) 14-cores Haswell @ 2,3 GHz
- Peak per core is 36.8 GF/s
- Total memory is 768 GB

Performance of Outer Product with LUA(R) (24 threads)

benchmark of Outer Product				
<u></u>		50 40 9 20 10 10	Hanni	→ b=256 → b=512
		Size of Outer Pro	oduct	
		LL	LUA	LUAR*
average size of Outer Product		16.5	61.0	32.8
flops ($ imes 10^{12}$)	Outer Product Total	3.76 10.19	3.76 10.19	1.59 8.15
time (s)	Outer Product Total	21 175	14 167	6 160

* All metrics include the Recompression overhead

Double complex (z) performance

Performance of Outer Product with LUA(R) (24 threads)

benchmark of Outer Product				
\checkmark		50 40 998090 20 10 0	20 40 é Size of Outer Pro	
		LL	LUA	LUAR*
average size of Outer Product		16.5	61.0	32.8
flops ($ imes 10^{12}$)	Outer Product Total	3.76 10.19	3.76 10.19	1.59 8.15
time (s)	Outer Product Total	21 175	14 167	6 160

* All metrics include the Recompression overhead

Double complex (z) performance

Performance of Outer Product with LUA(R) (24 threads)

benchmark of Outer Product				
1		50 40 30 50 20 10	j juli (1919)	-b-256
		0	20 40 6 Size of Outer Pro	60 80 100
		LL	LUA	LUAR*
average size of Outer Product		16.5	61.0	32.8
flops ($ imes 10^{12}$)	Outer Product Total	3.76 10.19	3.76 10.19	1.59 8.15
time (s)	Outer Product Total	21 175	14 167	6 160

* All metrics include the Recompression overhead

Double complex (z) performance