Block Low-Rank Multifrontal Solvers: complexity, performance, and scalability

P. Amestoy, ${ }^{* 1}$ A. Buttari, ${ }^{* 2}$ J.-Y. L'Excellent $t^{\dagger, 3} \quad$ T. Mary, ${ }^{*}$,

\author{

* Université de Toulouse †ENS Lyon
 ${ }^{1}$ INPT-IRIT ${ }^{2}$ CNRS-IRIT ${ }^{3}$ INRIA-LIP ${ }^{4}$ UPS-IRIT
}

Sparse Days, 6-8 Sep. 2017, Toulouse

Introduction

Multifrontal Factorization with Nested Dissection

3D problem complexity
\rightarrow Flops: $O\left(n^{2}\right)$, mem: $O\left(n^{4 / 3}\right)$

Low-rank matrices

Take a dense matrix B of size $b \times b$ and compute its SVD $B=X S Y$:

Low-rank matrices

Take a dense matrix B of size $b \times b$ and compute its SVD $B=X S Y$:

$B=X_{1} S_{1} Y_{1}+X_{2} S_{2} Y_{2} \quad$ with $\quad S_{1}(k, k)=\sigma_{k}>\varepsilon, S_{2}(1,1)=\sigma_{k+1} \leq \varepsilon$

Low-rank matrices

Take a dense matrix B of size $b \times b$ and compute its SVD $B=X S Y$:

$B=X_{1} S_{1} Y_{1}+X_{2} S_{2} Y_{2} \quad$ with $\quad S_{1}(k, k)=\sigma_{k}>\varepsilon, S_{2}(1,1)=\sigma_{k+1} \leq \varepsilon$ If $\tilde{B}=X_{1} S_{1} Y_{1}$ then $\|B-\tilde{B}\|_{2}=\left\|X_{2} S_{2} Y_{2}\right\|_{2}=\sigma_{k+1} \leq \varepsilon$

Low-rank matrices

Take a dense matrix B of size $b \times b$ and compute its SVD $B=X S Y$:

S_{1}

$B=X_{1} S_{1} Y_{1}+X_{2} S_{2} Y_{2}$ with $S_{1}(k, k)=\sigma_{k}>\varepsilon, S_{2}(1,1)=\sigma_{k+1} \leq \varepsilon$ If $\tilde{B}=X_{1} S_{1} Y_{1}$ then $\|B-\tilde{B}\|_{2}=\left\|X_{2} S_{2} Y_{2}\right\|_{2}=\sigma_{k+1} \leq \varepsilon$

If the singular values of B decay very fast (e.g. exponentially) then $k \ll b$ even for very small ε (e.g. 10^{-14}) \Rightarrow memory and CPU consumption can be reduced considerably with a controlled loss of accuracy $(\leq \varepsilon)$ if \tilde{B} is used instead of B

Low-rank matrix formats

Frontal matrices are not low-rank but in some applications they exhibit low-rank blocks

A block B represents the interaction between two subdomains σ and τ.
If they have a small diameter and are far away their interaction is weak \Rightarrow rank is low.

Low-rank matrix formats

Frontal matrices are not low-rank but in some applications they exhibit low-rank blocks

A block B represents the interaction between two subdomains σ and τ. If they have a small diameter and are far away their interaction is weak \Rightarrow rank is low.

Low-rank matrix formats

Frontal matrices are not low-rank but in some applications they exhibit low-rank blocks

A block B represents the interaction between two subdomains σ and τ. If they have a small diameter and are far away their interaction is weak \Rightarrow rank is low.

Low-rank matrix formats

Frontal matrices are not low-rank but in some applications they exhibit low-rank blocks

A block B represents the interaction between two subdomains σ and τ. If they have a small diameter and are far away their interaction is weak \Rightarrow rank is low.

Low-rank matrix formats

Frontal matrices are not low-rank but in some applications they exhibit low-rank blocks

A block B represents the interaction between two subdomains σ and τ. If they have a small diameter and are far away their interaction is weak \Rightarrow rank is low.

Low-rank matrix formats

Frontal matrices are not low-rank but in some applications they exhibit low-rank blocks

τ

A block B represents the interaction between two subdomains σ and τ. If they have a small diameter and are far away their interaction is weak \Rightarrow rank is low.

Low-rank matrix formats

Frontal matrices are not low-rank but in some applications they exhibit low-rank blocks

A block B represents the interaction between two subdomains σ and τ. If they have a small diameter and are far away their interaction is weak \Rightarrow rank is low.

\mathcal{H} and BLR matrices

\mathcal{H}-matrix

BLR matrix

\mathcal{H} and BLR matrices

\mathcal{H}-matrix

- Theoretical complexity can be as low as $O(n)$
- Complex, hierarchical structure

BLR matrix

- Theoretical complexity? $\Rightarrow O\left(n^{4 / 3}\right)$, as we will prove
- Simple structure

\mathcal{H} and BLR matrices

\mathcal{H}-matrix

BLR matrix

- Theoretical complexity can be as low as $O(n)$
- Complex, hierarchical structure
- Theoretical complexity? $\Rightarrow O\left(n^{4 / 3}\right)$, as we will prove
- Simple structure

Find a good comprise between complexity and performance

\mathcal{H} and BLR matrices

\mathcal{H}-matrix

BLR matrix

- Theoretical complexity can be as low as $O(n)$
- Complex, hierarchical structure

Find a good comprise between complexity and performance
\Rightarrow Ongoing collaboration with STRUMPACK team (LBNL) to compare BLR and hierarchical formats

- Theoretical complexity? $\Rightarrow O\left(n^{4 / 3}\right)$, as we will prove
- Simple structure

Applications

Experimental Setting: Matrices (1/3)

3D Seismic Modeling Helmholtz equation Single complex (c) arithmetic Unsymmetric LU factorization Required accuracy: $\varepsilon=10^{-3}$ Credits: SEISCOPE

matrix	n	$n n z$	flops	storage
5 Hz	2.9 M	70 M	65.0 TF	59.7 GB
7 Hz	7.2 M	177 M	404.2 TF	205.0 GB
1 OHz	17.2 M	446 M	2.6 PF	710.8 GB

Full-Rank statistics

- Amestoy, Brossier, Buttari, L’Excellent, Mary, Métivier, Miniussi, and Operto. Fast 3D frequency-domain full waveform inversion with a parallel Block Low-Rank multifrontal direct solver: application to OBC data from the North Sea, Geophysics, 2016.

Experimental Setting: Matrices $(2 / 3)$

$E_{x}, B L R$ STRATEGY 2, $I R=0, \varepsilon_{B L R}=10^{-7}$

3D Electromagnetic Modeling Maxwell equation
Double complex (z) arithmetic Symmetric $L D L^{\top}$ factorization Required accuracy: $\varepsilon=10^{-7}$ Credits: EMGS

matrix	n	$n n z$	flops	storage
E3	2.9 M	37 M	57.9 TF	77.5 GB
E4	17 M	226 M	1.8 PF	1.7 TB
S3	3.3 M	43 M	78.0 TF	94.6 GB
S4	21 M	266 M	2.5 PF	2.1 TB
Full-Rank statistics				

- Shantsev, Jaysaval, de la Kethulle de Ryhove, Amestoy, Buttari, L'Excellent, and Mary. Large-scale 3D EM modeling with a Block Low-Rank multifrontal direct solver,

Experimental Setting: Matrices $(3 / 3)$

3D Structural Mechanics Double real (d) arithmetic Symmetric $L D L^{\top}$ factorization Required accuracy: $\varepsilon=10^{-9}$ Credits: Code_Aster (EDF)

matrix	n	$n n z$	flops	storage
perf008d	1.9 M	81 M	101.0 TF	52.6 GB
perf008ar	3.9 M	159 M	377.5 TF	129.8 GB
perf008cr	7.9 M	321 M	1.6 PF	341.1 GB
perf009ar	5.4 M	209 M	23.4 TF	40.2 GB

Full-Rank statistics

The Block-Low Rank Factorization

Standard BLR factorization: FSCU

- FSCU

Standard BLR factorization: FSCU

- FSCU (Factor,

Standard BLR factorization: FSCU

- FSCU (Factor, Solve,

Standard BLR factorization: FSCU

- FSCU (Factor, Solve, Compress,

Standard BLR factorization: FSCU

- FSCU (Factor, Solve, Compress, Update)

Standard BLR factorization: FSCU

- FSCU (Factor, Solve, Compress, Update)

Standard BLR factorization: FSCU

- FSCU (Factor, Solve, Compress, Update)

Standard BLR factorization: FSCU

- FSCU (Factor, Solve, Compress, Update)

Standard BLR factorization: FSCU

- FSCU (Factor, Solve, Compress, Update)

Standard BLR factorization: FSCU

- FSCU (Factor, Solve, Compress, Update)

Standard BLR factorization: FSCU

- FSCU (Factor, Solve, Compress, Update)

Standard BLR factorization: FSCU

- FSCU (Factor, Solve, Compress, Update)

Standard BLR factorization: FSCU

- FSCU (Factor, Solve, Compress, Update)

Standard BLR factorization: FSCU

- FSCU (Factor, Solve, Compress, Update)

Standard BLR factorization: FSCU

- FSCU (Factor, Solve, Compress, Update)

Standard BLR factorization: FSCU

- FSCU (Factor, Solve, Compress, Update)

Standard BLR factorization: FSCU

- FSCU (Factor, Solve, Compress, Update)

LUAR variant: accumulation and recompression

- FSCU (Factor, Solve, Compress, Update)
- FSCU+LUAR

- FSCU (Factor, Solve, Compress, Update)
- FSCU+LUAR
- Better granularity in Update operations

- FSCU (Factor, Solve, Compress, Update)
- FSCU+LUAR
- Better granularity in Update operations
- Potential recompression \Rightarrow complexity reduction: $O\left(n^{\frac{5}{3}}\right) \rightarrow O\left(n^{\frac{11}{6}}\right)$
\Rightarrow Collaboration with LSTC to design efficient recompression strategies

- FSCU (Factor, Solve, Compress, Update)
- FSCU+LUAR
- Better granularity in Update operations
- Potential recompression \Rightarrow complexity reduction: $O\left(n^{\frac{5}{3}}\right) \rightarrow O\left(n^{\frac{11}{6}}\right)$
\Rightarrow Collaboration with LSTC to design efficient recompression strategies

- FSCU (Factor, Solve, Compress, Update)
- FSCU+LUAR
- Better granularity in Update operations
- Potential recompression \Rightarrow complexity reduction: $O\left(n^{\frac{5}{3}}\right) \rightarrow O\left(n^{\frac{11}{6}}\right)$
\Rightarrow Collaboration with LSTC to design efficient recompression strategies

- FSCU (Factor, Solve, Compress, Update)
- FSCU+LUAR
- Better granularity in Update operations
- Potential recompression \Rightarrow complexity reduction: $O\left(n^{\frac{5}{3}}\right) \rightarrow O\left(n^{\frac{11}{6}}\right)$
\Rightarrow Collaboration with LSTC to design efficient recompression strategies
- $\operatorname{FCSU}(+L U A R)$

- FSCU (Factor, Solve, Compress, Update)
- FSCU+LUAR
- Better granularity in Update operations
- Potential recompression \Rightarrow complexity reduction: $O\left(n^{\frac{5}{3}}\right) \rightarrow O\left(n^{\frac{11}{6}}\right)$
\Rightarrow Collaboration with LSTC to design efficient recompression strategies
- $\operatorname{FCSU}(+L U A R)$
- Restricted pivoting, e.g. to diagonal blocks

- FSCU (Factor, Solve, Compress, Update)
- FSCU+LUAR
- Better granularity in Update operations
- Potential recompression \Rightarrow complexity reduction: $O\left(n^{\frac{5}{3}}\right) \rightarrow O\left(n^{\frac{11}{6}}\right)$
\Rightarrow Collaboration with LSTC to design efficient recompression strategies
- FCSU(+LUAR)
- Restricted pivoting, e.g. to diagonal blocks

- FSCU (Factor, Solve, Compress, Update)
- FSCU+LUAR
- Better granularity in Update operations
- Potential recompression \Rightarrow complexity reduction: $O\left(n^{\frac{5}{3}}\right) \rightarrow O\left(n^{\frac{11}{6}}\right)$
\Rightarrow Collaboration with LSTC to design efficient recompression strategies
- FCSU(+LUAR)
- Restricted pivoting, e.g. to diagonal blocks
- Low-rank Solve \Rightarrow complexity reduction: $O\left(n^{\frac{11}{6}}\right) \rightarrow O\left(n^{\frac{4}{3}}\right)$

Complexity of the factorization

\mathcal{H} vs. BLR complexity

Until recently, BLR complexity was unknown.
Can we use \mathcal{H} theory on BLR matrices?

\mathcal{H} vs. BLR complexity

Until recently, BLR complexity was unknown.
Can we use \mathcal{H} theory on BLR matrices?

\mathcal{H} vs. BLR complexity

Until recently, BLR complexity was unknown.
Can we use \mathcal{H} theory on BLR matrices?

Complexity mainly depends on $r_{\text {max }}$, the maximal rank of the blocks With \mathcal{H} partitioning, $r_{\text {max }}$ is small

\mathcal{H} vs. BLR complexity

Until recently, BLR complexity was unknown.
Can we use \mathcal{H} theory on BLR matrices?

Complexity mainly depends on $r_{\text {max }}$ the maximal rank of the blocks With \mathcal{H} partitioning, $r_{\text {max }}$ is small

- Problem: in \mathcal{H} formalism, the maxrank of the blocks of a BLR matrix is $r_{\text {max }}=b$ (due to full-rank blocks)

\mathcal{H} vs. BLR complexity

Until recently, BLR complexity was unknown.
Can we use \mathcal{H} theory on BLR matrices?

Complexity mainly depends on $r_{\text {max }}$, the maximal rank of the blocks With \mathcal{H} partitioning, $r_{\text {max }}$ is small

- Problem: in \mathcal{H} formalism, the maxrank of the blocks of a BLR matrix is $r_{\text {max }}=b$ (due to full-rank blocks)
- \mathcal{H} theory applied to BLR does not give a satisfying result

\mathcal{H} vs. BLR complexity

Until recently, BLR complexity was unknown.
Can we use \mathcal{H} theory on BLR matrices?

Complexity mainly depends on $r_{\text {max }}$, the maximal rank of the blocks With \mathcal{H} partitioning, $r_{\text {max }}$ is small

- Problem: in \mathcal{H} formalism, the maxrank of the blocks of a BLR matrix is $r_{\text {max }}=b$ (due to full-rank blocks)
- \mathcal{H} theory applied to BLR does not give a satisfying result
- Solution: extend the theory by bounding the number of full-rank blocks
- Amestoy, Buttari, L'Excellent, and Mary. On the Complexity of the Block Low-Rank Multifrontal Factorization, SIAM SISC, 2016.

	operations (OPC)		factor size (NNZ)					
	$r=O(1)$	$r=O(N)$	$r=O(1)$	$r=O(N)$				
FR	$O\left(n^{2}\right)$	$O\left(n^{2}\right)$	$O\left(n^{\frac{4}{3}}\right)$	$O\left(n^{\frac{4}{3}}\right)$				
BLR	$O\left(n^{\frac{4}{3}}\right)-O\left(n^{\frac{5}{3}}\right)$	$O\left(n^{\frac{5}{3}}\right)-O\left(n^{\frac{11}{6}}\right)$	$O(n \log n)$	$O\left(n^{\frac{7}{6}} \log n\right)$				
\mathcal{H}	$O(n \log n)$	$O\left(n^{\frac{4}{3}} \log n\right)$	$O(n \log n)$	$O\left(n^{\frac{7}{6}} \log n\right)$				
in the 3D case (similar analysis possible for 2D)								

Important properties: with both $r=O(1)$ or $r=O(N)$

- Complexity depends on how the BLR factorization is performed
- The BLR complexity exponent is always lower than the FR one
- The best BLR complexity is not so far from the \mathcal{H}-case

Complexity of multifrontal BLR factorization

	operations (OPC)		factor size (NNZ)	
	$r=O(1)$	$r=O(N)$	$r=O(1)$	$r=O(N)$
FR	$O\left(n^{2}\right)$	$O\left(n^{2}\right)$	$O\left(n^{\frac{4}{3}}\right)$	$O\left(n^{\frac{4}{3}}\right)$
BLR	$O\left(n^{\frac{4}{3}}\right)-O\left(n^{\frac{5}{3}}\right)$	$O\left(n^{\frac{5}{3}}\right)-O\left(n^{\frac{11}{6}}\right)$	$O(n \log n)$	$O\left(n^{\frac{7}{6}} \log n\right)$
\mathcal{H}	$O(n \log n)$	$O\left(n^{\frac{4}{3}} \log n\right)$	$O(n \log n)$	$O\left(n^{\frac{7}{6}} \log n\right)$
in the 3D case (similar analysis possible for 2D)				

Important properties: with both $r=O(1)$ or $r=O(N)$

- Complexity depends on how the BLR factorization is performed
- The BLR complexity exponent is always lower than the FR one
- The best BLR complexity is not so far from the \mathcal{H}-case

How to convert complexity reduction into performance gain?

Performance on Multicores

Experimental Setting

Experiments are done on the brunch shared-memory machine of the LIP laboratory of Lyon:

- Four Intel(r) 24-cores Broadwell @ 2,2 GHz
- Peak per core is 35.2 GF/s
- Total memory is 1.5 TB

Getting Gflops/s out of the BLR factorization

Follow the FR/BLR ratio on matrix S3

- Flop: 7.7 ratio

Getting Gflops/s out of the BLR factorization

Follow the FR/BLR ratio on matrix S3

- Flop: 7.7 ratio
- Time:
- Sequential (1 thread): 3.3 ratio

Getting Gflops/s out of the BLR factorization

Follow the FR/BLR ratio on matrix S3

- Flop: 7.7 ratio
- Time:
- Sequential (1 thread): 3.3 ratio
- Multithreaded (24 threads): 1.7 ratio

Getting Gflops/s out of the BLR factorization

Follow the FR/BLR ratio on matrix S3

- Flop: 7.7 ratio
- Time:
- Sequential (1 thread): 3.3 ratio
- Multithreaded (24 threads): 1.7 ratio
- Tree-based multithreading is critical because the bottom of the assembly tree has a higher relative cost in $B L R \Rightarrow 1.9$ ratio

Getting Gflops/s out of the BLR factorization

Follow the FR/BLR ratio on matrix S3

- Flop: 7.7 ratio
- Time:
- Sequential (1 thread): 3.3 ratio
- Multithreaded (24 threads): 1.7 ratio
- Tree-based multithreading is critical because the bottom of the assembly tree has a higher relative cost in $B L R \Rightarrow 1.9$ ratio
- Left-looking factorization reduces the volume of memory transfer in BLR ("communication-avoiding") $\Rightarrow 2.4$ ratio

Getting Gflops/s out of the BLR factorization

Follow the FR/BLR ratio on matrix S3

- Flop: 7.7 ratio
- Time:
- Sequential (1 thread): 3.3 ratio
- Multithreaded (24 threads): 1.7 ratio
- Tree-based multithreading is critical because the bottom of the assembly tree has a higher relative cost in $B L R \Rightarrow 1.9$ ratio
- Left-looking factorization reduces the volume of memory transfer in BLR ("communication-avoiding") $\Rightarrow 2.4$ ratio
- Accumulation (LUA) $\Rightarrow 2.5$ ratio

Getting Gflops/s out of the BLR factorization

Follow the FR/BLR ratio on matrix S3

- Flop: 7.7 ratio
- Time:
- Sequential (1 thread): 3.3 ratio
- Multithreaded (24 threads): 1.7 ratio
- Tree-based multithreading is critical because the bottom of the assembly tree has a higher relative cost in $B L R \Rightarrow 1.9$ ratio
- Left-looking factorization reduces the volume of memory transfer in BLR ("communication-avoiding") $\Rightarrow 2.4$ ratio
- Accumulation (LUA) $\Rightarrow 2.5$ ratio
- Recompression (LUAR) $\Rightarrow 2.6$ ratio

Getting Gflops/s out of the BLR factorization

Follow the FR/BLR ratio on matrix S3

- Flop: 7.7 ratio
- Time:
- Sequential (1 thread): 3.3 ratio
- Multithreaded (24 threads): 1.7 ratio
- Tree-based multithreading is critical because the bottom of the assembly tree has a higher relative cost in $B L R \Rightarrow 1.9$ ratio
- Left-looking factorization reduces the volume of memory transfer in BLR ("communication-avoiding") $\Rightarrow 2.4$ ratio
- Accumulation (LUA) $\Rightarrow 2.5$ ratio
- Recompression (LUAR) $\Rightarrow 2.6$ ratio
- Compress before Solve (FCSU) $\Rightarrow 3.6$ ratio

Multicore performance results (24 threads)

- Amestoy, Buttari, L'Excellent, and Mary. Performance and Scalability of the Block Low-Rank Multifrontal Factorization on Multicore Architectures, submitted to ACM TOMS, 2017.

- FSCU (Factor, Solve, Compress, Update)
- FSCU+LUAR
- Better granularity in Update operations
- Potential recompression \Rightarrow complexity reduction: $O\left(n^{\frac{5}{3}}\right) \rightarrow O\left(n^{\frac{11}{6}}\right)$
\Rightarrow Collaboration with LSTC to design efficient recompression strategies
- FCSU(+LUAR)
- Restricted pivoting, e.g. to diagonal blocks
- Low-rank Solve \Rightarrow complexity reduction: $O\left(n^{\frac{11}{6}}\right) \rightarrow O\left(n^{\frac{4}{3}}\right)$

- FSCU (Factor, Solve, Compress, Update)
- FSCU+LUAR
- Better granularity in Update operations
- Potential recompression \Rightarrow complexity reduction: $O\left(n^{\frac{5}{3}}\right) \rightarrow O\left(n^{\frac{11}{6}}\right)$
\Rightarrow Collaboration with LSTC to design efficient recompression strategies
- FCSU(+LUAR)
- Restricted pivoting, e.g. to diagonal blocks \Rightarrow not acceptable in many applications
- Low-rank Solve \Rightarrow complexity reduction: $O\left(n^{\frac{11}{6}}\right) \rightarrow O\left(n^{\frac{4}{3}}\right)$

Compress before Solve + pivoting: CFSU variant

How to assess the quality of pivot k ?
We need to estimate $\left\|\widetilde{B}_{:, k}\right\|_{\text {max }}$:
$\left\|\widetilde{B}_{:, k}\right\|_{\max } \leq\left\|\widetilde{B}_{:, k}\right\|_{2}=\left\|X Y_{k,:}^{T}\right\|_{2}=\left\|Y_{k,:}^{T}\right\|_{2}$,
assuming X is orthonormal (e.g. RRQR, SVD).

matrix	residual			flops (\% FR)		
	FSCU	FCSU	CFSU	FSCU	FCSU	CFSU
af_shell10	$2 \mathrm{e}-06$	$5 \mathrm{e}-06$	4e-06	29.9	22.7	22.7
Lin	$4 \mathrm{e}-05$	4e-05	$4 \mathrm{e}-05$	24.0	18.5	18.5
māriō0̄-	$2 \mathrm{e}-06$	fail	$\overline{1} \overline{\mathrm{e}}-\overline{0} \overline{6}$	$\overline{8} \overline{2} . \overline{8}$	--	$\overline{72.2}$
perf009ar	$3 \mathrm{e}-13$	1e-01	$9 \mathrm{e}-11$	26.0	22.7	22.1

Distributed-memory BLR factorization

Strong scalability analysis

- Flops reduced by 12.8 but volume of communications only by $2.2 \Rightarrow$ higher relative weight of communications
- Load unbalance (ratio between most and less loaded processes) increases from 1.28 to 2.57

Communication analysis

Communication analysis

- Volume of $L U$ messages is reduced in BLR (compressed factors)
- Volume of CB messages can be reduced by compressing the $C B \Rightarrow$ but it is an overhead cost

Communication analysis

- FR case: LU messages dominate

Communication analysis

- FR case: $L U$ messages dominate
- BLR case: CB messages dominate \Rightarrow underwhelming reduction of comms.

Communication analysis

- FR case: $L U$ messages dominate
- BLR case: CB messages dominate \Rightarrow underwhelming reduction of comms.
\Rightarrow CB compression allows for truly reducing the comms. Represents an overhead cost but may lead to speedups depending on network speed w.r.t. processor speed

Distributed performance results (90×10 cores)

\Rightarrow promising preliminary results, much work left to do!

Conclusion

Software

- MUMPS 5.1.0

Publications

- Amestoy, Buttari, L'Excellent, and Mary. On the Complexity of the Block Low-Rank Multifrontal Factorization, SIAM SISC, 2017.
- Amestoy, Buttari, L'Excellent, and Mary. Performance and Scalability of the Block Low-Rank Multifrontal Factorization on Multicore Architectures, submitted to ACM TOMS, 2017.
- Amestoy, Brossier, Buttari, L'Excellent, Mary, Métivier, Miniussi, and Operto. Fast 3D frequency-domain full waveform inversion with a parallel Block Low-Rank multifrontal direct solver: application to OBC data from the North Sea, Geophysics, 2016.
- Shantsev, Jaysaval, de la Kethulle de Ryhove, Amestoy, Buttari, L'Excellent, and Mary. Large-scale 3D EM modeling with a Block Low-Rank multifrontal direct solver, Geophysical Journal International, 2017.

Acknowledgements

- LIP and CALMIP for providing access to the machines
- EMGS, SEISCOPE, and EDF for providing the matrices

Thanks! Questions?

Backup Slides

1. Poisson: N^{3} grid with a 7 -point stencil with $u=1$ on the boundary $\partial \Omega$

$$
\Delta u=f
$$

2. Helmholtz: N^{3} grid with a 27-point stencil, ω is the angular frequency, $v(x)$ is the seismic velocity field, and $u(x, \omega)$ is the time-harmonic wavefield solution to the forcing term $s(x, \omega)$.

$$
\left(-\Delta-\frac{\omega^{2}}{v(x)^{2}}\right) u(x, \omega)=s(x, \omega)
$$

ω is fixed and equal to 4 Hz .

Experimental MF flop complexity: Poisson $\left(\varepsilon=10^{-10}\right)$

Nested Dissection
ordering (geometric)

- good agreement with theoretical complexity $\left(O\left(n^{2}\right), O\left(n^{1.67}\right), O\left(n^{1.55}\right)\right.$, and $\left.O\left(n^{1.33}\right)\right)$

Experimental MF flop complexity: Poisson $\left(\varepsilon=10^{-10}\right)$

Nested Dissection ordering (geometric)

METIS ordering (purely algebraic)

- good agreement with theoretical complexity $\left(O\left(n^{2}\right), O\left(n^{1.67}\right), O\left(n^{1.55}\right)\right.$, and $\left.O\left(n^{1.33}\right)\right)$
- remains close to ND complexity with METIS ordering

Experimental MF flop complexity: Helmholtz $\left(\varepsilon=10^{-4}\right)$

Nested Dissection ordering (geometric)

METIS ordering

(purely algebraic)

- good agreement with theoretical complexity $\left(O\left(n^{2}\right), O\left(n^{1.83}\right), O\left(n^{1.78}\right)\right.$, and $\left.O\left(n^{1.67}\right)\right)$
- remains close to ND complexity with METIS ordering

Experimental MF complexity: factor size

NNZ (Poisson)

NNZ (Helmholtz)

- good agreement with theoretical complexity (FR: $O\left(n^{1.33}\right)$; BLR: $O(n \log n)$ and $O\left(n^{1.17} \log n\right)$)

Experiments are done on the shared-memory machines of the LIP laboratory of Lyon:

1. brunch

- Four Intel(r) 24-cores Broadwell @ 2,2 GHz
- Peak per core is 35.2 GF/s
- Total memory is 1.5 TB

2. grunch

- Two Intel(r) 14-cores Haswell @ 2,3 GHz
- Peak per core is $36.8 \mathrm{GF} / \mathrm{s}$
- Total memory is 768 GB

Double complex (z) performance benchmark of Outer Produc \dagger

		LL	LUA	LUAR*
average size of Outer Product	16.5	61.0	32.8	
	Outer Product	3.76	3.76	1.59
	Total	10.19	10.19	8.15
time (s)	Outer Product	21	14	6
	Total	175	167	160

* All metrics include the Recompression overhead

Double complex (z) performance benchmark of Outer Produc \dagger

		LL	LUA	LUAR
average size of Outer Product	16.5	61.0	32.8	
	Outer Product	3.76	3.76	1.59
	Total	10.19	10.19	8.15
time (s)	Outer Product	21	14	6
	Total	175	167	160

* All metrics include the Recompression overhead

Double complex (z) performance benchmark of Outer Produc \dagger

		LL	LUA	LUAR
average size of Outer Product	16.5	61.0	32.8	
	Outer Product	3.76	3.76	1.59
	Total	10.19	10.19	8.15
time (s)	Outer Product	21	14	6
	Total	175	167	160

* All metrics include the Recompression overhead

