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Introduction



Multifrontal (Duff & Reid ’83) with Nested Dissection (George ’73)

N n = Nd

3D problem cost ∝

→ Flops:O(n2), mem:O(n4/3)

3/27 Sparse Days 2016, Toulouse Jun. 30 - Jul. 1



Multifrontal (Duff & Reid ’83) with Nested Dissection (George ’73)

N n = Nd

D1

D2

D3

D4

D1

D2

D3

D4

S

3D problem cost ∝
→ Flops:O(n2), mem:O(n4/3)

3/27 Sparse Days 2016, Toulouse Jun. 30 - Jul. 1



H and BLR matrices

H-matrix BLR matrix

⇒ Our hope is to find a good comprise between theoretical
complexity and performance/usability
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H and BLR matrices

H-matrix BLR matrix

A block B represents the interaction between two subdomains σ
and τ . If they have a small diameter and are far away their
interaction is weak ⇒ rank is low.
Block-admissibility condition

σ × τ is admissible ⇔ max(diam(σ),diam(τ)) ≤ η dist(σ, τ)

η = ηmax ⇒ admissibility condition becomes dist(σ, τ) > 0

⇒ Our hope is to find a good comprise between theoretical
complexity and performance/usability
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H and BLR matrices

H-matrix BLR matrix

B̃ = XYT such that rank(B̃) = kε and ∥B− B̃∥ ≤ ε

If kε ≪ size(B) ⇒ memory and flops can be reduced with a
controlled loss of accuracy (≤ ε)

⇒ Our hope is to find a good comprise between theoretical
complexity and performance/usability
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H and BLR matrices

H-matrix BLR matrix

• Very low theoretical
complexity

• Complex, hierarchical
structure

• Simple structure
• Theoretical complexity?

⇒ Our hope is to find a good comprise between theoretical
complexity and performance/usability
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Questions that will be answered in this talk

• What theoretical bound on the ranks of the blocks can we
derive? How does it compare to the H case?

• What is the complexity of the BLR factorization? In particular, is
it asymptotically better than the full-rank one? (i.e., in O(nα),
with α < 2 and where n is the number of unknowns)

• What are the different variants of the BLR factorization? Do
they improve its complexity?

• Can we validate these theoretical results with experimental
ones? In particular, does the theory hold in a purely algebraic
context?

• How does the low-rank threshold ε influence the complexity?
How about the block size b?
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Variants of the BLR
factorization



Variants of the BLR LU factorization

++

• FSCU

(Factor,

Solve,

Compress,

Update)

• FSCU+LUAR

◦ Potential for recompression ⇒ better complexity?

7/27 Sparse Days 2016, Toulouse Jun. 30 - Jul. 1



Variants of the BLR LU factorization

++

• FSCU (Factor,

Solve,

Compress,

Update)

• FSCU+LUAR

◦ Potential for recompression ⇒ better complexity?

7/27 Sparse Days 2016, Toulouse Jun. 30 - Jul. 1



Variants of the BLR LU factorization

++

• FSCU (Factor, Solve,

Compress,

Update)

• FSCU+LUAR

◦ Potential for recompression ⇒ better complexity?

7/27 Sparse Days 2016, Toulouse Jun. 30 - Jul. 1



Variants of the BLR LU factorization

++

• FSCU (Factor, Solve, Compress,

Update)
• FSCU+LUAR

◦ Potential for recompression ⇒ better complexity?

7/27 Sparse Days 2016, Toulouse Jun. 30 - Jul. 1



Variants of the BLR LU factorization

++

• FSCU (Factor, Solve, Compress, Update)

• FSCU+LUAR

◦ Potential for recompression ⇒ better complexity?

7/27 Sparse Days 2016, Toulouse Jun. 30 - Jul. 1



Variants of the BLR LU factorization

++

• FSCU (Factor, Solve, Compress, Update)

• FSCU+LUAR

◦ Potential for recompression ⇒ better complexity?

7/27 Sparse Days 2016, Toulouse Jun. 30 - Jul. 1



Variants of the BLR LU factorization

++

• FSCU (Factor, Solve, Compress, Update)

• FSCU+LUAR

◦ Potential for recompression ⇒ better complexity?

7/27 Sparse Days 2016, Toulouse Jun. 30 - Jul. 1



Variants of the BLR LU factorization

++

• FSCU (Factor, Solve, Compress, Update)

• FSCU+LUAR

◦ Potential for recompression ⇒ better complexity?

7/27 Sparse Days 2016, Toulouse Jun. 30 - Jul. 1



Variants of the BLR LU factorization

++

• FSCU (Factor, Solve, Compress, Update)

• FSCU+LUAR

◦ Potential for recompression ⇒ better complexity?

7/27 Sparse Days 2016, Toulouse Jun. 30 - Jul. 1



Variants of the BLR LU factorization

++

• FSCU (Factor, Solve, Compress, Update)

• FSCU+LUAR

◦ Potential for recompression ⇒ better complexity?

7/27 Sparse Days 2016, Toulouse Jun. 30 - Jul. 1



Variants of the BLR LU factorization

++

• FSCU (Factor, Solve, Compress, Update)

• FSCU+LUAR

◦ Potential for recompression ⇒ better complexity?

7/27 Sparse Days 2016, Toulouse Jun. 30 - Jul. 1



Variants of the BLR LU factorization

++

• FSCU (Factor, Solve, Compress, Update)

• FSCU+LUAR

◦ Potential for recompression ⇒ better complexity?

7/27 Sparse Days 2016, Toulouse Jun. 30 - Jul. 1



Variants of the BLR LU factorization

++

• FSCU (Factor, Solve, Compress, Update)

• FSCU+LUAR

◦ Potential for recompression ⇒ better complexity?

7/27 Sparse Days 2016, Toulouse Jun. 30 - Jul. 1



Variants of the BLR LU factorization

++

• FSCU (Factor, Solve, Compress, Update)

• FSCU+LUAR

◦ Potential for recompression ⇒ better complexity?

7/27 Sparse Days 2016, Toulouse Jun. 30 - Jul. 1



Variants of the BLR LU factorization

++

• FSCU (Factor, Solve, Compress, Update)

• FSCU+LUAR

◦ Potential for recompression ⇒ better complexity?

7/27 Sparse Days 2016, Toulouse Jun. 30 - Jul. 1



Variants of the BLR LU factorization

+

+

• FSCU (Factor, Solve, Compress, Update)

• FSCU+LUAR

◦ Potential for recompression ⇒ better complexity?

7/27 Sparse Days 2016, Toulouse Jun. 30 - Jul. 1



Variants of the BLR LU factorization

+

+

• FSCU (Factor, Solve, Compress, Update)

• FSCU+LUAR

◦ Potential for recompression ⇒ better complexity?

7/27 Sparse Days 2016, Toulouse Jun. 30 - Jul. 1



Variants of the BLR LU factorization

++

• FSCU (Factor, Solve, Compress, Update)

• FSCU+LUAR

◦ Potential for recompression ⇒ better complexity?

7/27 Sparse Days 2016, Toulouse Jun. 30 - Jul. 1



Variants of the BLR LU factorization

+

+

• FSCU (Factor, Solve, Compress, Update)
• FSCU+LUAR

◦ Potential for recompression ⇒ better complexity?

7/27 Sparse Days 2016, Toulouse Jun. 30 - Jul. 1



Variants of the BLR LU factorization

++

• FSCU (Factor, Solve, Compress, Update)
• FSCU+LUAR

◦ Potential for recompression ⇒ better complexity?

7/27 Sparse Days 2016, Toulouse Jun. 30 - Jul. 1



Variants of the BLR LU factorization

++

• FSCU (Factor, Solve, Compress, Update)
• FSCU+LUAR

◦ Potential for recompression ⇒ better complexity?

7/27 Sparse Days 2016, Toulouse Jun. 30 - Jul. 1



Variants of the BLR LU factorization

++

• FSCU (Factor, Solve, Compress, Update)
• FSCU+LUAR

◦ Potential for recompression ⇒ better complexity?

7/27 Sparse Days 2016, Toulouse Jun. 30 - Jul. 1



Variants of the BLR LU factorization

++

• FSCU (Factor, Solve, Compress, Update)
• FSCU+LUAR

◦ Potential for recompression ⇒ better complexity?

7/27 Sparse Days 2016, Toulouse Jun. 30 - Jul. 1



Variants of the BLR LU factorization

• FSCU (Factor, Solve, Compress, Update)
• FSCU+LUAR

◦ Potential for recompression ⇒ better complexity?

• FCSU(+LUAR)

◦ Restricted pivoting, e.g. to diagonal blocks
◦ Low-rank Solve ⇒ better complexity?
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Theoretical complexity
of the BLR factorization



H-admissibility and sparsity constant

cmin

H-admissibility condition

A partition P ∈ P(I × I) is admissible iff

∀σ×τ ∈ P, σ×τ is admissible or min(#σ,#τ) ≤ cmin (AdmH)
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H-admissibility and sparsity constant

cmin

csp is the max number of blocks
of the same size on the same
row/column (here, csp = 6)

H-admissibility condition

A partition P ∈ P(I × I) is admissible iff

∀σ×τ ∈ P, σ×τ is admissible or min(#σ,#τ) ≤ cmin (AdmH)

The so-called sparsity constant csp is defined by:

csp = max(max
σ⊂I

#{τ ;σ × τ ∈ P},max
τ⊂I

#{σ;σ × τ ∈ P})
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H vs. BLR complexity

Dense factorization complexity
Complexity: Cfacto = O(mc2spr2H) (best case)

m matrix size
csp sparsity constant
rH bound on the maxrank of all blocks

H BLR

csp

O(1)∗ m/b

rH

small∗∗ b

Cfacto

O(r2Hm) O(m3)
∗Grasedyck & Hackbusch, 2003

∗∗Bebendorf & Hackbusch, 2003

BLR: a particular case of H?
Problem: in H formalism, the maxrank of the blocks of a BLR matrix is rH = b
(due to the non-admissible blocks)
Solution: bound the rank of the admissible blocks only, and make sure the
non-admissible blocks are in small number
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Complexity of dense BLR factorization

BLR-admissibility condition of a partition P
P is admissible ⇔ Nna = #{σ × τ ∈ P, σ × τ is not admissible} ≤ q

Non-Admissible Admissible

Main result
There exists an admissible P for q = O(1), s.t. the maxrank of the admissible
blocks of A is r = O(rH) (Amestoy, Buttari, L’Excellent & Mary, 2016).
The best case dense factorization complexity thus becomes
Cfacto = O(r2m3/b2 +mb2q2) = O(r2m3/b2 +mb2) = O(rm2) (for b = O(

√
rm))
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Element of proof 1: boundedness of Nna

cmin b

csp = 6 = O(1)
Nna = 4 ≤ csp

csp = m/b ̸= O(1)
Nna = 3 = O(1)

Secondary result (Amestoy et al., 2016)

(a) N(BLR)
na ≤ N(H)

na

(b) Nna ≤ csp

(c) c(H)
sp = O(1) (Grasedyck & Hackbusch, 2003)

Corollary: N(BLR)
na = O(1)
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Element of proof 2: dense BLR factorization complexity

The computations can be divided in two parts:
• FR part: Factor, Solve (if FSCU), and Update for
non-admissible blocks

• LR part: Compress, Solve (if FCSU), and Update for admissible
blocks

The relative weight of these two parts changes with the variant ⇒
choose for each variant the optimal block size b∗ that minimizes
the total

variant FR part LR part b∗ Cfacto
FSCU O(m2b) O(rm3/b)

√
rm O(

√
rm2.5)

FSCU+LUAR O(m2b) O(r2m3/b2) 3
√
r2m O( 3

√
r2m2.33)

FCSU+LUAR O(mb2) O(r2m3/b2)
√
rm O(rm2)
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Complexity of multifrontal BLR factorization
Under a nested dissection assumption, the sparse (multifrontal) complexity is
directly obtained from the dense complexity

operations (OPC) factor size (NNZ)

r = O(1) r = O(N) r = O(1) r = O(N)

FR O(n2) O(n2) O(n
4
3 ) O(n

4
3 )

BLR FSCU O(n
5
3 ) O(n

11
6 ) O(n log n) O(n

7
6 log n)

BLR FSCU+LUAR O(n
14
9 ) O(n

16
9 ) O(n log n) O(n

7
6 log n)

BLR FCSU+LUAR O(n
4
3 ) O(n

5
3 ) O(n log n) O(n

7
6 log n)

H O(n
4
3 ) O(n

5
3 ) O(n) O(n

7
6 )

H (fully struct.) O(n) O(n
4
3 ) O(n) O(n

7
6 )

in the 3D case (similar analysis possible for 2D)

Important properties: with both r = O(1) or r = O(N)

• The complexity of the standard BLR variant (FSCU) has a lower exponent
than the full-rank one

• Each variant further improves the complexity, with the best one
(FCSU+LUAR) being not so far from the H-case



Experimental complexity
of the BLR factorization



Experimental Setting: Matrices

1. Poisson: N3 grid with a 7-point stencil with u = 1 on the
boundary ∂Ω

∆u = f

2. Helmholtz: N3 grid with a 27-point stencil, ω is the angular
frequency, v(x) is the seismic velocity field, and u(x, ω) is the
time-harmonic wavefield solution to the forcing term s(x, ω).(

−∆− ω2

v(x)2

)
u(x, ω) = s(x, ω)

ω is fixed and equal to 4Hz.
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Experimental MF flop complexity: Poisson (ε = 10−10)

Nested Dissection
ordering (geometric)

Mesh size N
64 96 128 160 192 224 256 320

F
lo

p 
co

un
t

10 11

10 12

10 13

10 14

10 15

FR

fit: 5 n 2.02

FSCU

fit: 2244 n 1.45

FSCU+LUAR

fit: 4283 n 1.38

FCSU+LUAR

fit: 14385 n 1.27

METIS ordering
(purely algebraic)

Mesh size N
64 96 128 160 192 224 256 320

F
lo

p 
co

un
t

10 11

10 12

10 13

10 14

10 15

FR

fit: 3 n 2.05

FSCU

fit: 1344 n 1.48

FSCU+LUAR

fit: 2927 n 1.40

FCSU+LUAR

fit: 6066 n 1.33

• good agreement with theoretical complexity
(O(n2), O(n1.67), O(n1.55), and O(n1.33))

• remains close to ND complexity with METIS ordering
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Experimental MF flop complexity: Helmholtz (ε = 10−4)

Nested Dissection
ordering (geometric)

Mesh size N
64 96 128 160 192 224 256 320

F
lo

p 
co

un
t

10 12

10 13

10 14

10 15

10 16
FR

fit: 12 n 2.01

FSCU

fit: 32 n 1.84

FSCU+LUAR

fit: 50 n 1.79

FCSU+LUAR

fit: 63 n 1.76

METIS ordering
(purely algebraic)

Mesh size N
64 96 128 160 192 224 256 320

F
lo

p 
co

un
t

10 12

10 13

10 14

10 15

10 16
FR

fit: 9 n 2.03

FSCU

fit: 25 n 1.86

FSCU+LUAR

fit: 42 n 1.81

FCSU+LUAR

fit: 38 n 1.79

• good agreement with theoretical complexity
(O(n2), O(n1.83), O(n1.78), and O(n1.67))

• remains close to ND complexity with METIS ordering
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Experimental MF complexity: factor size

NNZ (Poisson)

Mesh size N
64 96 128 160 192 224 256 320

F
ac

to
rs

 s
iz

e

10 8

10 9

10 10

10 11

FR

fit: 3 n 1.40

BLR

fit: 16 n 1.04  log n

NNZ (Helmholtz)

Mesh size N
64 96 128 160 192 224 256 320

F
ac

to
rs

 s
iz

e

10 9

10 10
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FR

fit: 15 n 1.36

BLR

fit: 6 n 1.19  log n

• good agreement with theoretical complexity
(FR: O(n1.33); BLR: O(n logn) and O(n1.17 logn))
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Experimental MF complexity: low-rank threshold ε

OPC (Poisson)

Mesh size N
64 96 128 160 192 224 256 320

F
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10 14
0=10 -14

fit: 938 n 1.55

0=10 -10

fit: 1344 n 1.48

0=10 -6

fit: 988 n 1.45

0=10 -2

fit: 2019 n 1.32

OPC (Helmholtz)

Mesh size N
64 96 128 160 192 224 256 320

F
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10 14
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0=10 -5

fit: 26 n 1.88

0=10 -4

fit: 25 n 1.86

0=10 -3

fit: 16 n 1.88

• theory states ε should only play a role in the constant factor
• true for Helmholtz, but not Poisson ⇒ why?
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Influence of zero-rank blocks on the complexity
N

64 128 192 256 320

NFR 40.8 31.3 26.4 23.6 13.4
ε = 10−14 NLR 59.2 68.6 73.6 76.4 86.6

NZR 0.0 0.1 0.0 0.0 0.0

NFR 21.3 16.6 14.6 12.8 5.8
ε = 10−10 NLR 78.6 83.4 85.4 87.1 94.2

NZR 0.0 0.1 0.0 0.0 0.0

NFR 2.9 3.0 2.5 2.1 0.6
ε = 10−6 NLR 97.0 96.7 96.4 95.3 93.3

NZR 0.1 0.3 1.0 2.5 6.1

NFR 0.0 0.0 0.0 0.0 0.0
ε = 10−2 NLR 26.2 12.2 7.6 5.5 3.0

NZR 73.8 87.8 92.4 94.5 97.0

Number of full-rank/low-rank/zero-rank blocks
in percentage of the total number of blocks (Poisson problem).

• NFR decreases with N: asymptotically negligible
• NZR increases with ε (as one would expect) but also with N:
asymptotically dominant
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Influence of the block size b on the complexity

Analysis on the root node (of size m = N2):
FSCU

Block size b
128 192 256 320 384 448 512 576 640
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FSCU+LUAR

Block size b
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FCSU+LUAR

Block size b
128 192 256 320 384 448 512 576 640
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ed
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• large range of acceptable block sizes around the optimal b∗

⇒ flexibility to tune block size for performance
• that range increases with the size of the matrix
⇒ necessity to have variable block sizes

• necessity to adjust b∗ for each new variant
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Conclusion and
perspectives



Summary

• BLR matrices are a particular kind of H-matrices but H-matrix
theory does not provide satisfying results for BLR matrices

• Extended theory to compute complexity bounds of the BLR
(multifrontal) factorization

• Theoretical complexity of the BLR (multifrontal) factorization is
asymptotically better than FR

• Studied BLR variants to further reduce complexity by achieving
higher compression

• Numerical experiments show experimental complexity in
agreement with theoretical one

• Identified and analyzed the importance of zero-rank blocks and
variable block sizes on the complexity
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Perspectives

• Efficient strategies to recompress accumulators
• Pivoting strategies compatible with the BLR variants
• Influence of the BLR variants on the accuracy of the
factorization
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? Thanks!
Questions?
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Accumulator recompression
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• Weight recompression on {Ci}i
⇒ With absolute threshold ε, each Ci can be compressed separately

• Redundancy recompression on {Qi}i
⇒ Bigger recompression overhead, when is it worth it?
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Scope of the talk

Complexity and performance
of the Block Low-Rank multifrontal

factorization and its variants
SIAM PP’16, April 12-15, Paris

(Overview of preliminary work on both
complexity and performance aspects)

On the complexity
of the Block Low-Rank
multifrontal factorization

Sparse Days 2016
June 30-July 1, Toulouse

(A detailed complexity study with both
theoretical and experimental results)

Performance and scalability
of a Block Low-Rank
multifrontal solver

PMAA’16
July 6-8, Bordeaux

(A detailed performance analysis
on real-life applications)

Based on the paper of the same name
(submitted to SIAM SISC)
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