On the Complexity of the Block Low-Rank Multifrontal Factorization

P. Amestoy^{*,1} A. Buttari^{*,2} J.-Y. L'Excellent^{†,3} *Université de Toulouse [†]ENS Lyon ¹INPT-IRIT ²CNRS-IRIT ³INRIA-LIP ⁴UPS-IRIT

Introduction

 $\mathcal H ext{-matrix}$

BLR matrix

A block *B* represents the interaction between two subdomains σ and τ . If they have a small diameter and are far away their interaction is weak \Rightarrow rank is low.

$\mathcal{H} ext{-matrix}$

BLR matrix

A block *B* represents the interaction between two subdomains σ and τ . If they have a small diameter and are far away their interaction is weak \Rightarrow rank is low.

Block-admissibility condition

 $\sigma \times \tau$ is admissible $\Leftrightarrow \max(\operatorname{diam}(\sigma), \operatorname{diam}(\tau)) \leq \eta \operatorname{dist}(\sigma, \tau)$

 $\eta = \eta_{\max} \Rightarrow \; \mathrm{admissibility} \; \mathrm{condition} \; \mathrm{becomes} \; \frac{\mathrm{dist}(\sigma, au) > 0}{\mathrm{dist}(\sigma, au)} > 0$

 $\mathcal{H} ext{-matrix}$

$$\tilde{B} = XY^T$$
 such that rank $(\tilde{B}) = k_{\varepsilon}$ and $\|B - \tilde{B}\| \leq \varepsilon$

If $k_{\varepsilon} \ll \text{size}(B) \Rightarrow$ memory and flops can be reduced with a controlled loss of accuracy ($\leq \varepsilon$)

 $\mathcal H ext{-matrix}$

- Very low theoretical complexity
- Complex, hierarchical structure

BLR matrix

- Simple structure
- Theoretical complexity?

 $\mathcal H$ -matrix

• Very low theoretical complexity

- Simple structure
- Theoretical complexity?

- Complex, hierarchical structure
- Our hope is to find a good comprise between theoretical complexity and performance/usability
 Sparse Days 2016, Toulouse Jun. 30 Jul. 1

4/27

Questions that will be answered in this talk

- What theoretical bound on the ranks of the blocks can we derive? How does it compare to the \mathcal{H} case?
- What is the complexity of the BLR factorization? In particular, is it asymptotically better than the full-rank one? (i.e., in $O(n^{\alpha})$, with $\alpha < 2$ and where *n* is the number of unknowns)
- What are the different variants of the BLR factorization? Do they improve its complexity?
- Can we validate these theoretical results with experimental ones? In particular, does the theory hold in a purely algebraic context?
- How does the low-rank threshold ε influence the complexity? How about the block size b?

FSCU

• FSCU (Factor,

• FSCU (Factor, Solve,

• FSCU (Factor, Solve, Compress,

• FSCU (Factor, Solve, Compress, Update)

• FSCU (Factor, Solve, Compress, Update)

• FSCU (Factor, Solve, Compress, Update)

• FSCU (Factor, Solve, Compress, Update)

• FSCU (Factor, Solve, Compress, Update)

• FSCU (Factor, Solve, Compress, Update)

• FSCU (Factor, Solve, Compress, Update)

• FSCU (Factor, Solve, Compress, Update)

• FSCU (Factor, Solve, Compress, Update)

- FSCU (Factor, Solve, Compress, Update)
- FSCU+LUAR

- FSCU (Factor, Solve, Compress, Update)
- FSCU+LUAR

- FSCU (Factor, Solve, Compress, Update)
- FSCU+LUAR
 - Potential for recompression \Rightarrow better complexity?

- FSCU (Factor, Solve, Compress, Update)
- FSCU+LUAR
 - Potential for recompression \Rightarrow better complexity?

- FSCU (Factor, Solve, Compress, Update)
- FSCU+LUAR
 - Potential for recompression \Rightarrow better complexity?

- FSCU (Factor, Solve, Compress, Update)
- FSCU+LUAR

• Potential for recompression \Rightarrow better complexity?

• FCSU(+LUAR)

- FSCU (Factor, Solve, Compress, Update)
- FSCU+LUAR

- FCSU(+LUAR)
 - Restricted pivoting, e.g. to diagonal blocks

- FSCU (Factor, Solve, Compress, Update)
- FSCU+LUAR

- FCSU(+LUAR)
 - Restricted pivoting, e.g. to diagonal blocks

- FSCU (Factor, Solve, Compress, Update)
- FSCU+LUAR

- FCSU(+LUAR)
 - Restricted pivoting, e.g. to diagonal blocks
 - Low-rank Solve \Rightarrow better complexity?

- FSCU (Factor, Solve, Compress, Update)
- FSCU+LUAR

- FCSU(+LUAR)
 - Restricted pivoting, e.g. to diagonal blocks
 - Low-rank Solve \Rightarrow better complexity?

Theoretical complexity of the BLR factorization

${\cal H}$ -admissibility and sparsity constant

${\mathcal H}$ -admissibility condition

A partition $P \in \mathcal{P}(\mathcal{I} \times \mathcal{I})$ is admissible iff

 $\forall \sigma \times \tau \in P, \ \sigma \times \tau \text{ is admissible or } \min(\#\sigma, \#\tau) \leq c_{\min} (Adm_{\mathcal{H}})$

Sparse Days 2016, Toulouse Jun. 30 - Jul. 1

$\mathcal H$ -admissibility and sparsity constant

 c_{sp} is the max number of blocks of the same size on the same row/column (here, $c_{sp} = 6$)

\mathcal{H} -admissibility condition

A partition $P \in \mathcal{P}(\mathcal{I} \times \mathcal{I})$ is admissible iff

 $\forall \sigma \times \tau \in P, \ \sigma \times \tau \text{ is admissible or } \min(\#\sigma, \#\tau) \leq c_{\min} \ (Adm_{\mathcal{H}})$

The so-called sparsity constant c_{sp} is defined by:

$$c_{sp} = \max(\max_{\sigma \subset \mathcal{I}} \#\{\tau; \sigma \times \tau \in P\}, \max_{\tau \subset \mathcal{I}} \#\{\sigma; \sigma \times \tau \in P\})$$

Dense factorization complexity

Complexity: $\mathcal{C}_{facto} = O(mc_{sp}^2 r_{\mathcal{H}}^2)$ (best case)

m matrix size

c_{sp} sparsity constant

 $r_{\mathcal{H}}$ bound on the maxrank of all blocks

Dense factorization complexity

Complexity: $\mathcal{C}_{facto} = O(mc_{sp}^2 r_{\mathcal{H}}^2)$ (best case)

m matrix size

c_{sp} sparsity constant

 $r_{\mathcal{H}}$ bound on the maxrank of all blocks

	${\cal H}$	BLR
c_{sp} r $_{\mathcal{H}}$ \mathcal{C}_{facto}		

Dense factorization complexity

Complexity: $\mathcal{C}_{facto} = O(mc_{sp}^2 r_{\mathcal{H}}^2)$ (best case)

m matrix size

c_{sp} sparsity constant

 $r_{\mathcal{H}}$ bound on the maxrank of all blocks

	${\cal H}$	BLR
\mathcal{C}_{sp} r $_{\mathcal{H}}$ \mathcal{C}_{facto}	<i>O</i> (1)*	

*Grasedyck & Hackbusch, 2003

Dense factorization complexity

Complexity: $\mathcal{C}_{facto} = O(mc_{sp}^2 r_{\mathcal{H}}^2)$ (best case)

m matrix size

c_{sp} sparsity constant

 $r_{\mathcal{H}}$ bound on the maxrank of all blocks

	${\cal H}$	BLR
\mathcal{C}_{sp} $\mathcal{T}_{\mathcal{H}}$ \mathcal{C}_{facto}	O(1)* small**	

*Grasedyck & Hackbusch, 2003

**Bebendorf & Hackbusch, 2003

Dense factorization complexity

Complexity: $C_{facto} = O(mc_{sp}^2 r_{\mathcal{H}}^2)$ (best case)

m matrix size

c_{sp} sparsity constant

 $r_{\mathcal{H}}$ bound on the maxrank of all blocks

	${\cal H}$	BLR
${\mathcal C}_{sp}$ r $_{\mathcal H}$ ${\mathcal C}_{facto}$	$O(1)^*$ small ^{**} $O(r_{\mathcal{H}}^2 m)$	

*Grasedyck & Hackbusch, 2003

**Bebendorf & Hackbusch, 2003

Dense factorization complexity

Complexity: $C_{facto} = O(mc_{sp}^2 r_{\mathcal{H}}^2)$ (best case)

m matrix size

c_{sp} sparsity constant

 $r_{\mathcal{H}}$ bound on the maxrank of all blocks

	${\cal H}$	BLR
${\mathcal C}_{sp}$ r $_{\mathcal H}$ ${\mathcal C}_{facto}$	$O(1)^*$ small ^{**} $O(r_{\mathcal{H}}^2 m)$	m/b

*Grasedyck & Hackbusch, 2003

**Bebendorf & Hackbusch, 2003

Sparse Days 2016, Toulouse Jun. 30 - Jul. 1

Dense factorization complexity

Complexity: $C_{facto} = O(mc_{sp}^2 r_{\mathcal{H}}^2)$ (best case)

m matrix size

c_{sp} sparsity constant

 $r_{\mathcal{H}}$ bound on the maxrank of all blocks

	\mathcal{H}	BLR
${\mathcal C}_{sp}$ r ${\mathcal H}$ ${\mathcal C}_{facto}$	$O(1)^*$ small ^{**} $O(r_{\mathcal{H}}^2 m)$	m/b b

*Grasedyck & Hackbusch, 2003

**Bebendorf & Hackbusch, 2003

Dense factorization complexity

Complexity: $C_{facto} = O(mc_{sp}^2 r_{\mathcal{H}}^2)$ (best case)

m matrix size

c_{sp} sparsity constant

 $r_{\mathcal{H}}$ bound on the maxrank of all blocks

	${\cal H}$	BLR
C _{sp}	$O(1)^*$	m/b
rH	small ^{**}	b
C _{facto}	$O(r_{\mathcal{H}}^2 m)$	O(m ³)

*Grasedyck & Hackbusch, 2003

**Bebendorf & Hackbusch, 2003

Dense factorization complexity

Complexity: $\mathcal{C}_{facto} = O(mc_{sp}^2 r_{\mathcal{H}}^2)$ (best case)

m matrix size

c_{sp} sparsity constant

 $r_{\mathcal{H}}$ bound on the maxrank of all blocks

	H	BLR
${\mathcal C}_{sp}$ r $_{\mathcal H}$ ${\mathcal C}_{facto}$	$O(1)^*$ small ^{**} $O(r_{\mathcal{H}}^2 m)$	m/b b O(m ³)
÷ -		

*Grasedyck & Hackbusch, 2003

**Bebendorf & Hackbusch, 2003

BLR: a particular case of \mathcal{H} ?

Problem: in \mathcal{H} formalism, the maxrank of the blocks of a BLR matrix is $r_{\mathcal{H}} = b$ (due to the non-admissible blocks) Solution: bound the rank of the admissible blocks only, and make sure the non-admissible blocks are in small number

BLR-admissibility condition of a partition \mathcal{P}_{1}

 \mathcal{P} is admissible $\Leftrightarrow N_{na} = \#\{\sigma \times \tau \in \mathcal{P}, \sigma \times \tau \text{ is not admissible}\} \le q$

Non-Admissible

Admissible

Sparse Days 2016, Toulouse Jun. 30 - Jul. 1

BLR-admissibility condition of a partition ${\cal P}$

 \mathcal{P} is admissible $\Leftrightarrow N_{na} = \#\{\sigma \times \tau \in \mathcal{P}, \sigma \times \tau \text{ is not admissible}\} \le q$

(

Non-Admissible

Admissible

Main result

There exists an admissible \mathcal{P} for q = O(1), s.t. the maxrank of the admissible blocks of A is $r = O(r_{\mathcal{H}})$ (Amestoy, Buttari, L'Excellent & Mary, 2016). The best case dense factorization complexity thus becomes $C_{facto} = O(r^2m^3/b^2 + mb^2q^2) = O(r^2m^3/b^2 + mb^2) = O(rm^2)$ (for $b = O(\sqrt{rm})$)

Element of proof 1: boundedness of N_{na}

The computations can be divided in two parts:

- FR part: Factor, Solve (if FSCU), and Update for non-admissible blocks
- LR part: Compress, Solve (if FCSU), and Update for admissible blocks

The relative weight of these two parts changes with the variant \Rightarrow choose for each variant the optimal block size b^* that minimizes the total

variant	FR part	LR part	b*	\mathcal{C}_{facto}
FSCU	$O(m^2b)$	$O(rm^3/b)$	\sqrt{rm}	$O(\sqrt{rm^{2.5}})$
FSCU+LUAR	$O(m^2b)$	$O(r^2m^3/b^2)$	∛r²m	$O(\sqrt[3]{r^2m^{2.33}})$
FCSU+LUAR	$O(mb^2)$	$O(r^2m^3/b^2)$	\sqrt{rm}	$O(rm^2)$

Complexity of multifrontal BLR factorization

Under a nested dissection assumption, the sparse (multifrontal) complexity is directly obtained from the dense complexity

	operations (OPC)		factor s	ize (NNZ)
	r = O(1)	r = O(N)	r = O(1)	r = O(N)
FR	$O(n^2)$	$O(n^2)$	$O(n^{\frac{4}{3}})$	$O(n^{\frac{4}{3}})$
BLR FSCU BLR FSCU+LUAR BLR FCSU+LUAR	$\begin{array}{c} O(n^{\frac{5}{3}}) \\ O(n^{\frac{14}{9}}) \\ O(n^{\frac{4}{3}}) \end{array}$	$O(n^{\frac{11}{6}}) O(n^{\frac{16}{9}}) O(n^{\frac{5}{3}})$	$O(n \log n)$ $O(n \log n)$ $O(n \log n)$	$O(n^{\frac{7}{6}}\log n)$ $O(n^{\frac{7}{6}}\log n)$ $O(n^{\frac{7}{6}}\log n)$
${\cal H}$ ${\cal H}$ (fully struct.)	$\begin{vmatrix} O(n^{\frac{4}{3}}) \\ O(n) \end{vmatrix}$	$O(n^{rac{5}{3}}) \\ O(n^{rac{4}{3}})$	O(n) O(n)	$\begin{array}{c}O(n^{\frac{7}{6}})\\O(n^{\frac{7}{6}})\end{array}$

in the 3D case (similar analysis possible for 2D)

Important properties: with both r = O(1) or r = O(N)

- The complexity of the standard BLR variant (FSCU) has a lower exponent than the full-rank one
- Each variant further improves the complexity, with the best one (FCSU+LUAR) being not so far from the \mathcal{H} -case

Experimental complexity of the BLR factorization

Experimental Setting: Matrices

1. Poisson: N^3 grid with a 7-point stencil with u=1 on the boundary $\partial\Omega$

 $\Delta u = f$

2. Helmholtz: N^3 grid with a 27-point stencil, ω is the angular frequency, v(x) is the seismic velocity field, and $u(x, \omega)$ is the time-harmonic wavefield solution to the forcing term $s(x, \omega)$.

$$\left(-\Delta - \frac{\omega^2}{v(x)^2}\right) u(x,\omega) = s(x,\omega)$$

 ω is fixed and equal to 4Hz.

Experimental MF flop complexity: Poisson ($arepsilon=10^{-10}$)

Nested Dissection ordering (geometric)

• good agreement with theoretical complexity $(O(n^2), O(n^{1.67}), O(n^{1.55}), \text{ and } O(n^{1.33}))$

Experimental MF flop complexity: Poisson ($arepsilon=10^{-10}$)

- good agreement with theoretical complexity $(O(n^2), O(n^{1.67}), O(n^{1.55}), \text{ and } O(n^{1.33}))$
- remains close to ND complexity with METIS ordering

Experimental MF flop complexity: Helmholtz ($arepsilon=10^{-4}$)

- good agreement with theoretical complexity $(O(n^2), O(n^{1.83}), O(n^{1.78}), \text{ and } O(n^{1.67}))$
- remains close to ND complexity with METIS ordering

Experimental MF complexity: factor size

• good agreement with theoretical complexity (FR: $O(n^{1.33})$; BLR: $O(n \log n)$ and $O(n^{1.17} \log n)$)

Sparse Days 2016, Toulouse Jun. 30 - Jul. 1

20/27

- theory states arepsilon should only play a role in the constant factor
- true for Helmholtz, but not Poisson \Rightarrow why?

Influence of zero-rank blocks on the complexity

		64	128	N 192	256	320
$\varepsilon = 10^{-14}$	N _{FR}	40.8	31.3	26.4	23.6	13.4
	N _{LR}	59.2	68.6	73.6	76.4	86.6
	N _{ZR}	0.0	0.1	0.0	0.0	0.0
$\varepsilon = 10^{-10}$	N _{FR}	21.3	16.6	14.6	12.8	5.8
	N _{LR}	78.6	83.4	85.4	87.1	94.2
	N _{ZR}	0.0	0.1	0.0	0.0	0.0
$\varepsilon = 10^{-6}$	N _{FR}	2.9	3.0	2.5	2.1	0.6
	N _{LR}	97.0	96.7	96.4	95.3	93.3
	N _{ZR}	0.1	0.3	1.0	2.5	6.1
$\varepsilon = 10^{-2}$	N _{FR}	0.0	0.0	0.0	0.0	0.0
	N _{LR}	26.2	12.2	7.6	5.5	3.0
	N _{ZR}	73.8	87.8	92.4	94.5	97.0

Number of full-rank/low-rank/zero-rank blocks in percentage of the total number of blocks (Poisson problem).

Influence of zero-rank blocks on the complexity

		64	128	N 192	256	320
$\varepsilon = 10^{-14}$	N _{FR}	40.8	31.3	26.4	23.6	13.4
	N _{LR}	59.2	68.6	73.6	76.4	86.6
	N _{ZR}	0.0	0.1	0.0	0.0	0.0
$\varepsilon = 10^{-10}$	N _{FR}	21.3	16.6	14.6	12.8	5.8
	N _{LR}	78.6	83.4	85.4	87.1	94.2
	N _{ZR}	0.0	0.1	0.0	0.0	0.0
$\varepsilon = 10^{-6}$	N _{FR}	2.9	3.0	2.5	2.1	0.6
	N _{LR}	97.0	96.7	96.4	95.3	93.3
	N _{ZR}	0.1	0.3	1.0	2.5	6.1
$\varepsilon = 10^{-2}$	N _{FR}	0.0	0.0	0.0	0.0	0.0
	N _{LR}	26.2	12.2	7.6	5.5	3.0
	N _{ZR}	73.8	87.8	92.4	94.5	97.0

Number of full-rank/low-rank/zero-rank blocks in percentage of the total number of blocks (Poisson problem).

• N_{FR} decreases with N: asymptotically negligible

Influence of zero-rank blocks on the complexity

		64	128	N 192	256	320
$\varepsilon = 10^{-14}$	N _{FR}	40.8	31.3	26.4	23.6	13.4
	N _{LR}	59.2	68.6	73.6	76.4	86.6
	N _{ZR}	0.0	0.1	0.0	0.0	0.0
$\varepsilon = 10^{-10}$	N _{FR}	21.3	16.6	14.6	12.8	5.8
	N _{LR}	78.6	83.4	85.4	87.1	94.2
	N _{ZR}	0.0	0.1	0.0	0.0	0.0
$\varepsilon = 10^{-6}$	N _{FR}	2.9	3.0	2.5	2.1	0.6
	N _{LR}	97.0	96.7	96.4	95.3	93.3
	N _{ZR}	0.1	0.3	1.0	2.5	6.1
$\varepsilon = 10^{-2}$	N _{FR}	0.0	0.0	0.0	0.0	0.0
	N _{LR}	26.2	12.2	7.6	5.5	3.0
	N _{ZR}	73.8	87.8	92.4	94.5	97.0

Number of full-rank/low-rank/zero-rank blocks in percentage of the total number of blocks (Poisson problem).

- N_{FR} decreases with N: asymptotically negligible
- N_{ZR} increases with ε (as one would expect) but also with N: asymptotically dominant

Influence of the block size *b* on the complexity

- large range of acceptable block sizes around the optimal b^{*}
 ⇒ flexibility to tune block size for performance
- that range increases with the size of the matrix
 ⇒ necessity to have variable block sizes
- necessity to adjust b^{*} for each new variant

Sparse Days 2016, Toulouse Jun. 30 - Jul. 1

Conclusion and perspectives

Summary

- BLR matrices are a particular kind of *H*-matrices but *H*-matrix theory does not provide satisfying results for BLR matrices
- Extended theory to compute complexity bounds of the BLR (multifrontal) factorization
- Theoretical complexity of the BLR (multifrontal) factorization is asymptotically better than FR
- Studied BLR variants to further reduce complexity by achieving higher compression
- Numerical experiments show experimental complexity in agreement with theoretical one
- Identified and analyzed the importance of zero-rank blocks and variable block sizes on the complexity

Perspectives

- Efficient strategies to recompress accumulators
- Pivoting strategies compatible with the BLR variants
- Influence of the BLR variants on the accuracy of the factorization

Acknowledgements

- CALMIP for providing access to the machines
- SEISCOPE for providing the Helmholtz Generator
- LSTC members for scientific discussions

Thanks! Questions?
Backup Slides

- Weight recompression on $\{C_i\}_i$ \Rightarrow With absolute threshold ε_i each C_i can be compressed separately
- Redundancy recompression on $\{Q_i\}_i$

 \Rightarrow Bigger recompression overhead, when is it worth it?

Complexity and performance of the Block Low-Rank multifrontal factorization and its variants SIAM PP'16, April 12-15, Paris (Overview of preliminary work on both complexity and performance aspects)

On the complexity of the Block Low-Rank multifrontal factorization Sparse Days 2016 June 30-July 1, Toulouse (A detailed complexity study with both theoretical and experimental results) Performance and scalability of a Block Low-Rank multifrontal solver PMAA'16 July 6-8, Bordeaux (A detailed performance analysis on real-life applications)

→ Based on the paper of the same name (submitted to SIAM SISC)