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ABSTRACT
A low-rank approximation of a dense matrix plays an im-
portant role in many applications. To compute such an ap-
proximation, a common approach uses the QR factorization
with column pivoting (QRCP). Though the reliability and
efficiency of QRCP have been demonstrated, this determin-
istic approach requires costly communication at each step
of the factorization. Since such communication is becoming
increasingly expensive on modern computers, an alternative
approach based on random sampling, which can be imple-
mented using communication-optimal kernels, is becoming
attractive. To study its potential, in this paper, we compare
the performance of random sampling with that of QRCP on
an NVIDIA Kepler GPU. Our performance results demon-
strate that random sampling can be up to 12.8× faster than
the deterministic approach for computing the approximation
of the same accuracy. We also present the parallel scaling of
the random sampling over multiple GPUs on a single com-
pute node, showing a speedup of 3.8× over three Kepler
GPUs. These results demonstrate the potential of the ran-
dom sampling as an excellent computational tool for many
applications, and its potential is likely to grow on the emerg-
ing computers with the increasing communication costs.

1. INTRODUCTION
A low-rank approximation of a dense matrix plays an im-

portant role in many areas of study, including theoretical
computer science, numerical linear algebra, applied mathe-
matics, statistics, data analysis, machine learning, and phys-
ical and biological sciences. In many cases, by taking advan-
tage of the low-rank properties of the matrix or of its subma-
trices, we can reduce the computational and storage costs of
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manipulating the matrix, or reduce the complexity of ana-
lyzing the given dataset. One standard algorithm to extract
a low-rank approximation of a dense matrix A is based on
the QR factorization with column pivoting (QRCP) [3]. Af-
ter k steps of QRCP, we obtain a rank-k approximation of A:

AP ≈ Q R,
m× n m× k k × n

(1)

where Q has orthonormal columns, R is an upper triangular
matrix, and the pivots P are selected to reveal the numerical
rank of A. Though QRCP has been shown to be efficient
and reliable in practice, this deterministic approach requires
significant communication at each step of the factorization,
where the communication includes the synchronization and
the data transfer between the parallel processing units, as
well as the data movement through the local memory hier-
archy. In comparison to arithmetic operations, such com-
munication has become significantly more expensive on the
modern computers, and it is expected to become increasingly
more so on the emerging computers. It is critical to consider
this hardware trend when designing high-performance soft-
ware.

To address these recent hardware trends, the algorithms
based on random sampling have been gaining attention [12,
19, 15, 9, 13]. These algorithms first sample a subspace
which approximates the range of the matrix A, and then ex-
tract the approximation of A from a low-rank approximation
of the sampled matrix. The algorithms have been gaining
attention because the sampled matrix can be computed us-
ing standard lower-level libraries like BLAS and FFT which
can be implemented in communication-optimal fashions and
whose highly-optimized implementations are often available
on the specific target architecture. In addition, the dimen-
sion of the sampled matrix is typically much smaller than
the dimension of A and computing its low-rank approxima-
tion, even using a standard deterministic algorithm, requires
only marginal computational and communication costs. As
a result, compared to the deterministic approach, random
sampling may better utilize the modern architecture, espe-
cially of a large-scale parallel computer with a high commu-
nication cost.

In this paper, we first study the numerical reliability of
the random sampling. In our numerical experiments, we use



Notation Description
m× n dimension of the input matrix A

k target rank of A
p oversampling dimension
� total sampling dimension (i.e. � = k + p)
q number of power iterations

ng number of available GPUs
A(i) submatrix of A distributed on the i-th GPU

Aj and Aj1:j2 j-th and j1-th through j2-th columns of A

Figure 1: Notations used in this paper.

a wide range of input parameters and a variety of matri-
ces with different distributions of singular values in order to
provide insights into the reliability. Based on these results,
we hope to provide to the user enough information to infer
the expected reliability of the algorithm for a specific appli-
cation. In addition, we show results using a matrix from the
International Hapmap Project [1] to show the effectiveness
of our algorithm in a practical setting for an important real
world application.

Then, to further investigate the potential of the random
sampling, we compare its performance with that of QRCP
on a GPU and study its parallel scaling on shared-memory
multicore CPUs with multiple GPUs. Our performance re-
sults demonstrate that the random sampling can be up to
12.8× faster than QRCP with one GPU, while obtaining
good parallel scaling over the multiple GPUs. Although the
algorithm is not novel, to the best of our knowledge, there
is no previous report on the detailed implementation or per-
formance of the random sampling. Hence, this paper with
detailed description of our implementation choices (e.g., or-
thogonalization kernels) may provide insights to many users.
We also focus on improving the robustness of the algorithm
in practice (e.g., integrating power iterations and adaptive
step sizes into the adaptive scheme) such that it can be ro-
bustly used in many applications. The GPU kernels de-
veloped for these studies will be released as a part of the
numerical linear algebra software package MAGMA1.

The rest of the paper is organized as follows: first, in Sec-
tions 2 and 3, we review the QRCP and random sampling
algorithms, respectively. Then, in Section 4, we describe our
GPU implementations of the algorithms and an extension to
utilize multiple GPUs. Next, in Section 5, we provide the
performance model of the algorithms to discuss the poten-
tial of the algorithms in more general contexts. Finally, after
discussing the experimental setups in Section 6, we present
our numerical results, GPU kernel performance, and the per-
formance of the random sampling with static and adaptive
sampling sizes in Sections 7 through 10. We provide our fi-
nal remarks in Section 11. Figure 1 lists the notations that
will be used in the rest of this paper.

2. QR WITH COLUMN PIVOTING
To compute the low-rank approximation (1), the most-

widely used algorithms are the variants of the QR factoriza-
tion with column pivoting (QRCP) [3]. In this algorithm,
the column with the largest norm is selected as a pivot at
each step of the Householder QR factorization. Though the
algorithm is not guaranteed to reveal the numerical rank, it
is widely used because of its algorithmic simplicity and its

1http://icl.utk.edu/magma/

efficiency and reliability in practice. In addition, it is possi-
ble to cheaply downdate the column norms at each step of
the factorization, reducing its computational overhead over
the standard Householder QR factorization.

A column-based QRCP uses BLAS-2 matrix-vector op-
erations to update each column of A. On modern com-
puters, the data movement is expensive, and the BLAS-2
kernels obtain only a small fraction of the hardware’s peak
performance, limiting the performance of the column-based
QRCP. To improve the data locality, a block-based QRCP [17]
first factors a subset of the remaining columns of A (referred
to as a panel), and then updates the trailing submatrix using
the accumulated transformations at once. Since the trailing
submatrix can be updated using BLAS-3 matrix-matrix op-
erations, the block-based algorithm can exploit better data
locality and obtain higher performance. This BLAS-3 based
QRCP is implemented in LAPACK2, referred to as QP3, and
widely used in practice. It is also possible to compute a
truncated version of QP3 by returning after factoring the k
columns of A, as it is done in our experiments.

Unfortunately, QP3 still performs about half of its floating-
point operations (flops) using BLAS-2, and requires a syn-
chronization to select a pivot at each step of the panel fac-
torization. In addition, the round-off errors could accumu-
late and the downdated column norms could significantly
diverge from the actual norms [17]. When this occurs, the
trailing submatrix is immediately updated using the current
Householder transformations and the column norms are re-
computed. If the column norms need to be frequently re-
computed, then the computational overhead could become
significant. In addition, the frequent norm recomputation
leads to poorer data locality since the column norms are
computed using BLAS-1 vector-vector operations, and the
trailing submatrix is updated using the smaller blocks.

3. RANDOM SAMPLING
Random sampling first samples a subspace that approx-

imately spans the range of A and generates its orthogonal

basis vectors Q̂. Then, the low-rank approximation of A

is given by A ≈ BQ̂, where B = AQ̂T . It is also possi-
ble to compute the low-rank approximation of the form (1)
based on the QRCP of the sampled matrix B. Specifically,
the random sampling algorithm for computing (1) takes the
following three steps:

1. Sampling (Step 1): Generate the sampled matrix B:

B = Ω A,
�× n �×m m× n

where Ω is referred to as an �×m sampling matrix. A
popular sampling matrix Ω includes a Gaussian ran-
dom matrix and a FFT matrix [9].

2. QRCP (Step 2): Compute a QRCP factorization of
the sampled matrix B:

BP ≈ Q̂
(
R̂1:k R̂k+1:n

)
= Q̂R̂1:k

(
Ik R̂−1

1:kR̂k+1:n

)
= BP1:k

(
Ik R̂−1

1:kR̂k+1:n

)
.

2http://www.netlib.org/lapack/



Thus, we have

AP ≈ AP1:k

(
Ik R̂−1

1:kR̂k+1:n

)
. (2)

3. QR (Step 3): Compute the QR factorization of AP1:k:

AP1:k = QR̄. (3)

Thus, combining (2) and (3), we obtain

AP ≈ Q R,
m× n m× k k × n

where R = R̄
(
Ik R̂−1

1:kR̂k+1:n

)
.

In practice, oversampling the matrix improves the robust-
ness of the algorithm, and hence, the dimension of the sam-
pled matrix B is given by � = k + p, where p is a small
constant known as an oversampling parameter. In addition,
the dimension of B is often much smaller than that of A (i.e.,
� � m, e.g., � = 64 and m = 50, 000 in our experiments),
and the cost of the deterministic QRCP factorization of B
is marginal to the total cost. Hence, the overall cost of the
algorithm is typically dominated by the first step of com-
puting the sampled matrix B, which can be computed using
communication-optimal kernels that also exhibit high data
locality and parallelism.

When the singular values of the matrix A decay slowly, the
sampled matrix generated by the above algorithm may con-
tain a significant amount of noise. To reduce the amount of
noise, q iterations of the power method may be applied [16]:

B = ΩA (ATA)q.

This yields the following error bound on the approximation,

‖AP −QR‖ ≤ c(p,Ω)1/(2q+1) σk+1,

where σk+1 denotes the (k+1)-th largest singular value of A,
and c(p,Ω) is a constant that depends on the oversampling
parameter p and the sampling matrix Ω [9]. Since the condi-
tion number of B increases exponentially with q, to maintain
the numerical stability in practice, the sampled matrix is or-
thogonalized after each application of A and AT . Figure 2
shows the pseudocode of the resulting algorithm.

In this paper, we focus on the fixed-rank problem to com-
pute a rank-k approximation for a user-specified input pa-
rameter k. Alternatively, the fixed-accuracy problem seeks
for a low-rank approximation whose approximation error is
less than a user-specified tolerance ε. Figure 3 shows the
pseudocode of an adaptive sample size scheme (adaptive-�),
which integrates the power iteration into the adaptive scheme
for solving the fixed-accuracy problem by gradually increas-
ing the size of the sampled subspace [9]. At each step of the
adaptive-� scheme, the sampled subspace is expanded by
adding a new set of orthogonal basis vectors B�+1:k which
are generated by the power iteration. To maintain the nu-
merical stability, during each power iteration, after perform-
ing the matrix-matrix multiplication with A (or AT ), the
new vectors Bj:k (or Cj:k) are orthogonalized against the
previous vectors B1:j−1 (or C1:j−1) by a block orthogonal-
ization (BOrth) based on the Classical or Modified Gram
Schmidt [8]), in addition to being orthogonalized against
each other (e.g., using the Householder QR [8] or Cholesky
QR [18]).

To reduce the cost of computing the approximation er-
ror, ‖A − ABT

1:�B1:�‖, where B1:� stores the orthonormal

1: � POWER(A,B,C, j, k, q)
2: for 1, 2, . . . , q do
3: � Orthogonalization
4: Bj:k := BOrth(B1:j−1, Bj:k)
5: Bj:k := QR(Bj:k)
6: � Matrix-matrix multiply
7: Cj:k := Bj:kA

T

8: � Orthogonalization
9: Cj:k := BOrth(C1:j−1, Cj:k)
10: Cj:k := QR(Cj:k)
11: � Matrix-matrix multiply
12: Bj:k := Cj:kA
13: end for
14: return B and C.
(a) Power Method with the matrix A on the
initial vectors B.

1: � Step 1: Gaussian sampling
2: Ω := PRNG(�,m), where � = k + p
3: B := ΩA , C := [ ]
4: B := POWER(A,B,C, 1, �, q)
5: � Step 2: QRCP

6: [Q̂, R̂, P ] := QRCP(B)
7: � Step 3: QR
8: [Q, R̄] := QR(AP1:k)

9: T := R̂−1
1:kR̂k+1:n

10: R := R̄
(
Ik T

)
11: return Q,R, P such that AP ≈ QR.

(b) Random Sampling to compute a low-rank
approximation of an m× n matrix A.

Figure 2: Random sampling algorithm, where
PRNG(�,m) returns an �×m Gaussian random ma-
trix, [Q,R] := QR(B) and [Q,R, P ] := QRCP(B) re-
turn the QR and QRCP factors of B (i.e., QR = B
and BP = QR), respectively, and V := BOrth(B,Q)
orthogonalizes B against Q (i.e., V TQ = 0).

basis vectors of the current sampling subspace, on Line 15,
the adaptive-� scheme estimates the error by ε̃ = ‖Ω(A −
ABT

1:�B1:�)‖. This error estimate satisfies the following bound,

‖A−ABT
1:�B1:�‖ ≤ cad

√
2

π
ε̃, (4)

with probability 1 − min(m,n)c−�inc
ad , where cad is a fixed

constant [9]. Once the sampled matrixB is computed through
the adaptive-� scheme, the low-rank approximation can be
computed by Steps 2 and 3 of random sampling.

Since the computed error ε̃ is pessimistic, though the fi-
nal approximation error is less than the user-specified ε,
the adaptive scheme generally generates a sampled subspace
whose dimension is greater than necessary. This induces
the computational and storage overheads. In addition, com-
pared to performing the matrix-matrix multiply with the fi-
nal subspace all at once (e.g., fixed-rank problem), incremen-
tally performing the matrix-matrix multiply with a smaller
subspace at each step of the adaptive scheme often obtains
lower performance. We study the performance of this adap-
tive scheme in Section 10.



Require: Input: m× n matrix A.
1: Initialize:

� := 0, Q := [ ], and �inc := f(�, �init)
e.g., f(�, �inc) = �inc or �init + �

2: Ω := PRNG(�inc,m)
3: B := ΩA, and C := [ ]
4: repeat
5: � Expand sampled subspace
6: k := �+ �inc

7: [B,C] := POWER(A,B,C, �+ 1, k, q)
8: B�+1:k := QR(B�+1:k)
9: � := k
10: � Generate new vectors
11: �inc := f(�, �inc)
12: Ω := PRNG(�inc,m)
13: B�+1:k := ΩA, where k := �+ �inc

14: � Compute approximation error
15: ε̃ := ‖B�+1:k −B�+1:kB

T
1:�B1:�‖

such that ε̃ ≈ ‖A−ABT
1:�B1:�‖

16: until ε̃ ≤ ε
17: return B := B1:�

Figure 3: Adaptive scheme to compute sampling
subspace.

4. IMPLEMENTATION
We now describe our GPU implementation of the random

sampling algorithm of Figure 2. For Step 1 of the algorithm,
we experimented with two types of sampling:

• Gaussian sampling: For Line 2 of Figure 2, we used
NVIDIA’s cuRAND library to generate a Gaussian ma-
trix Ω (matrix whose entries follow the standard nor-
mal distribution N (0, 1) with a mean of 0 and a stan-
dard deviation of 1). The sampling step then takes
the form of a matrix-matrix multiply which is im-
plemented using the general matrix-matrix multiply
(GEMM) kernel from NVIDIA’s cuBLAS.

• FFT sampling: We used NVIDIA’s cuFFT library to
generate the sampled matrix B by applying an FFT
transformation to A. Like many other FFT imple-
mentations, cuFFT obtains better performance for data
sizes that are powers of two. Hence, in our experi-
ments, we padded the matrix A with zeroes such that
its leading dimension becomes the next power of two.

The sampling step B = ΩA consists of two steps, projection
and selection:

B = S Π A
�× n �×m m×m m× n

where Π represents the projection matrix, S is the row se-
lection matrix which randomly selects � rows from Π or ΠA,
and hence the sampling matrix Ω is given by Ω = SΠ. There
are two sampling schemes, full and pruned sampling, which
lead to different computational costs. In the full sampling
scheme, the projected matrix ΠA is first computed (e.g.,
full FFT), and then � rows are selected, while in the pruned
sampling scheme, the sampling matrix Ω is first computed,
and then applied to A, or the � rows are directly sampled
from A (e.g., pruned FFT). Since only a small number of
rows are selected through random sampling, compared to

the full sampling scheme, the pruned sampling scheme may
significantly reduce the computational cost. For Gaussian
sampling, the random sampling matrix Ω is also Gaussian.
Hence, we implement the pruned sampling scheme by first
generating an �-by-m Gaussian matrix Ω using cuRAND, and
then computing the sampled matrix B through a matrix-
matrix multiply (i.e., B = ΩA). The flop count of this
pruned sampling is O(mn�), while O(m2n) flops are needed
for a full Gaussian sampling.

The pruned FFT only computes the � selected rows and re-
quires a fewer flops compared to the full FFT (i.e., O(mn log(�))
instead of O(mn log(m))). However, compared to the Gaus-
sian sampling, the reduction in the flop count is less (i.e.,
a factor of O(log(m)/ log(�)) instead of O(m/�)). In ad-
dition, since the execution time of FFT is not a function
of only flop count (e.g., data access), the reduction in the
execution time using the pruned FFT could be much less
than O(log(m)/ log(�)), or the execution time could even
increase. Though we provide a performance comparison of
Gaussian and FFT sampling in Section 9, cuFFT does not
support pruned FFT, and in this paper, we focus on Gaus-
sian sampling, for which more theoretical work has been
established [9].

Previously, the performance of several tall-skinny orthog-
onalization schemes on GPUs have been studied [20]. The
results of the studies can be applied on Lines 3 and 5 of
the power iteration in Figure 2 to orthogonalize the � × n
and � × m short-wide matrices B and C, respectively (i.e.,
� < min(m,n)). In this paper, we focus on the Cholesky QR
(CholQR) factorization [18] that obtains high performance
based on BLAS-3 operations and can be implemented with
minimum communication [5]. Specifically, CholQR com-
putes the QR factorization of a matrix B in the following
three steps3:

(i) Form a Gram matrix G; i.e., G = BBT .

(ii) Compute the Cholesky factor R̄ of the Gram matrix G;
i.e., R̄T R̄ := G, where R̄ is upper-triangular with non-
negative diagonal.

(iii) Compute the orthogonal matrix Q by the backward-
substitutions; i.e., Q = R̄−TB.

Similarly, on Line 10, CholQR is used to compute the QR
factorization of the short-wide matrix C.

Classical and modified Gram Schmidt procedures (CGS
and MGS, respectively) [8] are other well-known orthogo-
nalization algorithms. While CGS orthogonalizes each col-
umn of the matrix against the previous columns one at a
time, MGS orthogonalizes each column against all the pre-
vious columns at once. Hence, MGS and CGS are based
on BLAS-1 and BLAS-2 operations, respectively, and their
performance is often lower than the BLAS-3 based CholQR.
In addition, though the Householder QR (HHQR) [8] is an
unconditionally accurate orthogonalization scheme, its per-
formance is limited by the BLAS-1 and BLAS-2 operations,
which obtain only a fraction of the GPU peak performance.
In Section 8, we study the performance of these orthogonal-
ization schemes. Though CholQR was stable in our experi-
ments, it can be unstable for an ill-conditioned matrix A or

3This is the adaptation of CholQR to compute the LQ fac-
torization of the short-wide matrix B.
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T

Figure 4: Illustration of CholQR on two GPUs,
where the dashed lines show the matrix distribu-
tion.

for other choices of the parameters (e.g., k and p). This nu-
merical issue may be overcome by reorthogonalizing the ma-
trices, using HHQR for orthogonalizing B or when CholQR
fails, using the Communication-Avoiding HHQR [5, 2], or
using mixed-precision arithmetic in CholQR [23]. Orthog-
onalization procedures for a stable and efficient implemen-
tation of the random sampling algorithm are part of our
current research focus.

At Step 2, QRCP of the sampled matrix B is computed
using the truncated QP3 on a GPU (on Line 6). Then, the
tall-skinny QR factorization of the matrix AP1:k is computed
using CholQR on the GPU (on Line 8). Finally, the upper-
triangular matrix R is generated by the triangular solve and
triangular matrix-multiply on the GPU (Lines 9 and 10).
Since the dimension of the sampled subspace is much smaller
than that of A, the computational and communication costs
at Steps 2 and 3 are of lower order than that of the first step
to generate the sampled subspace. We list the computation
and communication costs of each step in Section 5.

Finally, to utilize multiple GPUs, the matrix A is dis-
tributed in a 1D block row format among the GPUs such
that each GPU owns about the same number of rows (i.e.,
the i-th GPU owns the block row A(i) of size c-by-n, where
c ≈ m/ng and ng is the number of available GPUs). Both
matrices Ω and C are distributed in the same 1D block col-
umn format as that of AT . Then, on Line 3 of random
sampling or on Line 12 of the power iteration, the i-th GPU
computes the partial result B(i) of the sampled matrix B by
performing the local matrix-matrix multiplication of Ω(i) or
C(i) with A(i), respectively (e.g., B(i) := C(i)A(i)). Next,
the CPU accumulates the partial results B(i) to form the

� × n sampled matrix B (i.e., B :=
∑ng

i B(i)). Since the
dimension of B is small (i.e., � < n � m), we compute the
QR factorization of B on the CPU (using either CholQR or
HHQR), and the resulting orthogonal matrix is copied to the
GPU such that it is duplicated on each GPU. Finally, each
GPU performs its local matrix-matrix multiply to compute
the sampled matrix C which is distributed in the same 1D
block column format as that of AT (i.e., C(i) := BAT

(i)).
Now, to perform CholQR of C on multiple GPUs, each

GPU first computes the local matrix-matrix multiply, G(i) :=

C(i)C
T
(i), and then sends the result to the CPU, where the

Gram matrix G :=
∑ng

i=1 G(i) is computed. The Cholesky
factor R̄ of the matrix G is then computed on CPU. Fi-
nally, the CPU broadcasts the Cholesky factor R̄ to all the
GPUs, and each GPU independently performs the substitu-
tion, Q̄(i) := R̄−TC(i) (i.e., Q̄R̄ = C). Figure 4 illustrates
our multi-GPU CholQR implementation.

Finally, for Steps 2 and 3 of random sampling, the trun-
cated QP3 of the sampled matrix B, and the triangular solve
and multiply to compute R are performed on a GPU (on
Lines 6, 9, and 10), while the QR factorization of AP1:k is
computed based on the multi-GPU CholQR (on Line 8).

#flops #words
Random sampling

Sampling (Gaussian) O(mn�) O(mn�/M1/2)
Sampling (FFT) O(mn log(m)) O(mn log(m)/ log(M))

Iter. (mult.) O(mn�q) O(mn�q/M1/2)

Iter. (orth.) O((m+ n)�2q) O((m+ n)�2q/M1/2)
QRCP O(n�2) O(n�2)

QR O(m�2) O(m�2/M1/2)

Total O(mn�(1 + 2q)) O(mn�(1 + 2q)/M1/2)
QP3 O(mnk) O(mnk)

CAQP3 O(mn(m+ n)) O(mn2/M1/2)

Figure 5: Computation and communication costs on
one GPU.

5. PERFORMANCE MODEL
Figure 5 compares the computational and communication

costs of our random sampling implementation on one GPU
with those of QP3 and its communication-avoiding vari-
ant [4]. Here, the computational and communication costs
are measured, respectively, based on the flop count and the
words transferred between the two levels of the local memory
hierarchy, where the the size of the fast memory is M .

• Sampling (Step 1): The sampling is either based on a
FFT or a matrix-matrix multiply, and both can use a
communication-optimal kernel [11].

• Power iteration (Step 1): Each iteration performs two
matrix-matrix multiplies and orthogonalization of two
matrices, one with the dimension �×m and the other
with the dimension �×n. Communication-optimal or-
thogonalization procedures [5, 18] exist, which can be
used for this step.

• QRCP (Step 2): Since the sampled subspace is small
compared to the global space (i.e., � � m), this step
only has a marginal computational and communication
costs. Our implementation is based on the standard
QP3 algorithm, but a communication-optimal variant
of QP3 [4] can be used for this step.

• QR (Step 3): Just as for the power iteration, a communication-
optimal orthogonalization procedure can be used for
this step.

Thus, both the computation and communication costs
on one GPU are dominated by the matrix-multiply kernel.
The performance model can be extended to multiple GPUs,
where the matrix-multiply kernel remains the bottleneck

with #flops =O(mn�(1+2q)
ng

) and #words =O(mn�(1+2q)

ngM1/2 ) [10].

6. EXPERIMENTAL SETUPS
In the following four sections, we studied the accuracy

and performance of random sampling using three different
matrices A. The first two matrices A were generated by
A := XΣY with randomly generated orthogonal matrices X
and Y , and a diagonal matrix Σ shown in Table 1. The last
matrix comes from the International Hapmap Project [1].
We used the latest bulk release (as of August 1, 2014). Each
row of A corresponds to a specific nucleotide basis and a
column corresponds to an individual from a specific popula-
tion. We extracted the data using the first five chromosomes



Matrix Name
power exponent hapmap

σi (i+ 1)−3 10−i/10 −−
σ0 1 1 9.9e+03
σk+1 8e-06 1.3e-05 5e+02
κ(A) 1.3e+05 7.9e+04 2e+01
m 500,000 500,000 503,783
n 500 500 506
k 50 50 50
p 10 10 10
� 60 60 60

Table 1: Test matrices.

QP3 q = 0 q = 1 q = 2
power 4.47e-05 9.08e-05 4.59e-05 4.45e-05
exponent 2.69e-05 5.18e-05 2.69e-05 2.69e-05
hapmap 5.99e-01 9.86e-01 8.74e-01 8.18e-01

Figure 6: Approximation error norm ‖AP−QR‖/‖A‖.

and from four different populations: Utah residents with
Northern and Western European ancestry, Gujarati Indians
in Houston, Texas, Japanese in Tokyo, Japan, and Yoruban
in Ibadan, Nigeria. Computing a low-rank approximation
on such data can be used for population clustering [6, 14].

In Section 7, we first compare the approximation errors of
QP3 and random sampling using the fixed parameters shown
in Table 1. Then, in Section 8, we study the performance of
the GPU kernels, and in Section 9, we study the performance
of random sampling over a range of parameters (i.e., m =
2, 500 ∼ 50, 000, n = 500 ∼ 5, 000, � = 32 ∼ 512, and q =
0 ∼ 12). Finally in Section 10, we discuss the performance of
the adaptive scheme for solving the fixed-accuracy problem.
To the best of our knowledge, this is the first experimental
study of the adaptive scheme. All the experiments were
conducted in 64-bit double precision.

Since the condition numbers of the sampled matrices B
and C increase exponentially with q, the approximation er-
ror diverged without orthogonalization. To avoid the nu-
merical issue, in our experiments, we orthogonalized both
sampled matrices using CholQR with one full reorthogo-
nalization, which made the sampling algorithm stable. All
the codes were compiled using the C++ GNU compiler gcc
(version 4.4.7) and the NVIDIA compiler nvcc (CUDA ver-
sion 6.0.1), with the optimization flag -O3, and linked to
threaded MKL (version 10.3). We conducted our experi-
ments on two eight-core Genuine Intel(R) 2.60GHz CPUs
and three NVIDIA Tesla K40c GPUs.

7. NUMERICAL RESULTS
In Figure 6, we compare the approximation errors of the

deterministic QP3 and the random sampling using the fixed
values of the parameters shown in Table 1. Though the ap-
proximation error decreased with the number of iterations,
random sampling without power iteration (i.e., q = 0) ob-
tained the approximation with the same order of error as
QP3. These results were obtained for an oversampling equal
to p = 10. Without oversampling (i.e., p = 0), the error
norm was about an order of magnitude greater. In addition,
a greater oversampling (e.g., p = 20 or 50) could further
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Figure 7: Performance of QP3 and tall-skinny QR.

improve the accuracy, but with a smaller factor (i.e., the

constant factor C(Ω, p) is roughly proportional to p−1/2 [9]).
These numbers are reported for Gaussian sampling, but FFT
sampling gave the approximation errors of the same order.

8. KERNEL PERFORMANCE
Before studying the performance of random sampling in

the next section, in this section, we study the performance
of our GPU kernels which are used for our implementation
of the random sampling. First, to study the cost of the QP3
factorization, in Figure 7, we compare the QP3 performance
with the performance of other orthogonalization algorithms
on the GPU, i.e., Householder QR (HHQR), Cholesy QR
(CholQR), and the classical and modified Gram Schmidt
(CGS and MGS). For our performance studies, we focused
on the tall-skinny matrices (i.e., m � n), and varied the
number of rows while fixing the number of columns in A
(i.e., m = 2, 500 ∼ 50, 000 while n = 64). In the figure,
we see that HHQR was about 5× faster than QP3, indi-
cating the cost of column pivoting. In addition, BLAS-3
based CholQR obtained the speedups of up to 33.2× and an
average speedup of 30.5× over HHQR, demonstrating the
cost of the intra GPU communication associated with the
BLAS-1 and BLAS-2 operations required by HHQR. The
figure also shows that due to the intra GPU communica-
tion, HHQR, which uses both BLAS-1 and BLAS-2, was
faster than MGS but slower than CGS because our MGS and
CGS perform most of their flops using BLAS-1 and BLAS-2,
respectively [23].

Next, in Figure 8, we compare the performance of the full
FFT sampling with the performance of the matrix-matrix
multiply (GEMM) used for the pruned Gaussian sampling.
For the row sampling in Figure 8(a) (i.e., B = Ω A), we
varied the dimension of the sampled matrix B from � =
32 to 512 for a fixed 50, 000 × 2, 500 input matrix A (i.e.,
sampling about 0.06 to 1.02% of the rows of A). In the
figure, we also show the peak performance for the double-
precision flop (i.e., 1, 430 Gflop/s) and the peak performance
based on the memory bandwidth (i.e., 288 GB/s, assuming
blocksize of 512). The matrix-matrix multiply used for the
pruned Gaussian sampling exhibits a regular memory access
pattern and a high level of data parallelism. Hence, it can
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(a) Row sampling.
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Figure 8: Performance of pruned Gaussian and full FFT sampling.

be optimized for the intra GPU communication and obtain
a near peak performance (i.e., about 1, 200 Gflop/s). As a
result, since the multiplication requires O(mn�) flops, for
a large enough sampling size, the sampling time increases
linearly with the sampling size �. On the other hand, the
full FFT sampling performs only O(mn log(m)) flops (e.g.,
log(m) ≈ 15.6 when m = 50, 000). As a result, compared
to the matrix-matrix multiply, though its performance is
often lower (e.g., about 135 Gflop/s in our experiments),
the full FFT sampling can be as fast as the pruned Gaussian
sampling, and it was faster when � > 192. This can be seen
in the figure as the Gflop/s of the pruned Gaussian sampling
becomes greater than the “effective”Gflop/s of the full FFT
sampling, which is computed as the ratio of the number of
flops required for the pruned Gaussian sampling over the full
FFT sampling time. The figure also shows that the matrix-
vector multiply (GEMV), which is used to implement CGS,
HHQR, and QP3, obtains much lower performance than the
matrix-matrix multiply.

Similarly, Figure 8(b) compares the performance of the
full FFT column sampling with the pruned Gaussian col-
umn sampling (i.e., B = Ω AT ). Again, the Gaussian sam-
pling obtained near peak performance, but the full FFT was
faster when � > 128. For the rest of the paper, we focus on
the pruned Gaussian (row) sampling with a small sampling
size since more theoretical work has been established for the
Gaussian sampling [9].

Besides sampling, computing the orthogonal basis vec-
tors of the sampled subspace during the power iteration can
become expensive. Specifically, on Lines 5 and 10 of Fig-
ure 2(a), we compute the QR factorization of the short-wide
matrices B and C, respectively. While Figure 7 shows the
performance of CholQR for tall-skinny matrices, Figure 9
shows the performance for the short-wide matrices with the
same number of rows but with different numbers of columns
(i.e., m = 64 and n = 2, 500 ∼ 50, 000). Again, CholQR
showed excellent performance, obtaining speedups of up to
106.4 and the average speedup of 72.9 over HHQR.

Since the execution time of the random sampling is domi-
nated by the sampling and orthogonalization phases, we can
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Figure 9: Performance of short-wide QR.

estimate the performance based on the performance results
in Figures 7 through 9. This allows us to evaluate the perfor-
mance of random sampling on a target computer before im-
plementing the algorithm or to verify the performance of the
existing implementation. For instance, Figure 10 shows the
estimated performance of the random sampling and that of
the truncated QP3 for m = 2, 500 ∼ 50, 000 with n = 2, 500
and (�; p) = (64; 10). We see that due to its communication
costs, QP3 could not fully utilize the computational power of
the GPU, and its performance was limited under 29 Gflop/s.
On the other hand, random sampling can better utilize the
hardware and it is expected to reach 676 Gflop/s for q = 1
and 489 Gflop/s for q = 0. Hence, we expect random sam-
pling to obtain 23.8 or 17.1 times higher Gflop/s than QP3
when q = 1 or 0, respectively. In addition, random sam-
pling performs roughly 3.6× or 1.2× more flops than QP3
when q = 1 or 0, respectively. Therefore, we expect the
random sampling to obtain the speedup of 23.8/3.6 = 6.7 or
17.1/1.2 = 14.3 over QP3.
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9. PERFORMANCE RESULTS
We now study the performance of random sampling on two

eight-core Intel SandyBridge CPUs with an NVIDIA K40c
GPU. First, Figure 11 shows the total execution time of ran-
dom sampling and QP3 with the same number of columns
but with different numbers of rows in A (i.e., n = 2, 500 and
m = 2, 500 ∼ 50, 000 with (k; p; q) = (54; 10; 1)). Both com-
putational and communication costs of both random sam-
pling and QP3 depend linearly on the number of rows, m (see
Figure 5), and their execution time also increased linearly
with m. However, the QP3 factorization time increased at
a faster rate (i.e., QP3 time ≈ 9.34m10−6 + 0.0098, while
random sampling time ≈ 1.15m10−6 +0.0162). As a result,
random sampling obtained speedups of up to 6.6× and the
average speedup of 5.1× over QP3. For these experiments,
we performed one power iteration (i.e., q = 1). We saw in
Figure 6 that even without power iteration (i.e., q = 0), the
approximation error norm of random sampling was already
in the same order of magnitude as that of QP3. Without
power iteration, the random sampling obtained speedups of
up to 12.8× and the average speedup of 8.8×. The speedup
of 6.6× obtained for q = 1 agrees with our estimate in Fig-
ure 10.

Figure 11 also shows that for a small m, the QRCP step
remained the bottleneck. However, for a large enough m,
the overall run time of random sampling was dominated by
the first step of computing the sampled matrix B. For exam-
ple, when m = 50, 000, about 78% of the total run time was
spent in the first step, which includes the generation of the
sampling matrix Ω, the sampling time, the matrix-matrix
multiply in the power iteration, and the orthogonalization
(0.9, 28.3, 47.3, and 1.4% of the overall time, respectively).
The run time of random sampling was thus dominated by
the matrix-matrix multiply (i.e., about 75% of the overall
time). This is one of the main attractive properties of ran-
dom sampling since this BLAS-3 operation can be tuned to
exploit high data locality and parallelism, while QP3 per-
forms a half of its total flops using BLAS-2 that obtains
much lower performance (around 30 Gflop/s).

Figure 12 shows the QP3 and random sampling time with
different numbers of columns in A (i.e., n = 500 ∼ 5, 000

0 10000 20000 30000 40000 50000
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

Number of rows (m)

Ti
m

e 
(s

)

PRNG
Sampling
GEMM (Iter)
Orth (Iter)
QRCP
QR
QP3

Figure 11: Random sampling and QP3 time with
different numbers of rows, where “Sampling” and
“GEMM (iter)” in the legends corresponds to the
matrix-matrix multiply with the initial sampling
matrix Ω and the matrix-matrix multiplies during
the power iterations, respectively.

with m = 50, 000 and (�; p; q) = (64; 10; 1)). Again, com-
pared to the random sampling, the QP3 time increased much
quicker with the increase in the number of columns (i.e., QP3
time ≈ 1.80n10−4 + 181.77, while random sampling time
≈ 0.2119n10−2 + 239.7). Similarly, Figure 13 shows the ex-
ecution time with varying target rank k (i.e., � = 32 ∼ 512
with (m;n) = (50, 000; 2, 500) and (p; q) = (10; 1)). The
QP3 time also increased quicker with the increase in the tar-
get rank (i.e., QP3 time ≈ 0.81�10−2−0.0235, while random
sampling time ≈ 0.10�10−2 + 0.0227). At the end, random
sampling outperformed QP3 over large ranges of parameters.

Figure 14 compares the QP3 run time with that of the
random sampling with different numbers of power iterations
(i.e., q = 0 ∼ 12). As expected, we see that the run time
of random sampling increases linearly with q, and that ran-
dom sampling outperforms QP3 for up to twelve iterations
(i.e., q ≤ 12). We note that for our test matrices, the ran-
dom sampling without iteration (i.e., q = 0) computed an
approximation whose error norm is in the same order of
magnitude as QP3.

Finally, Figure 15 shows the parallel strong scaling of ran-
dom sampling over three Kepler GPUs, using the fixed pa-
rameters (m;n) = (150, 000; 2, 500) and (�; p; q) = (64; 10; 1).
On two and three GPUs, the respective parallel speedups
of the matrix-matrix multiply were about 2.8× and 5.1×.
These superlinear speedups are due to the fact the chunks
A(i) on each GPU get less tall and skinny when the number
of GPUs ng grows, and we found that the efficiency of the
GPU GEMM kernel increases as the matrix becomes closer
to square: it is around 440, 630 and 760 Gflop/s with 1, 2,
and 3 GPUs (i.e., m/ng = 150, 000, 75, 000, and 50, 000), re-
spectively. With the communication optimal CholQR, inter-
GPU communications only represented 1.6% of total time
for two GPUs, and 4.3% for three GPUs. In the end, ran-
dom sampling obtained an overall speedup of about 2.4×
and 3.8× on two and three GPUs, respectively.
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different numbers of columns.
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10. ADAPTIVE PERFORMANCE
Figure 16 shows the convergence of the error estimate ε̃

computed at each step of the adaptive-� scheme. For this ex-
periment, we used the 50, 000×2, 500 exponentmatrix, and
computed its low-rank approximations without power itera-
tion (i.e., q = 0). Each line corresponds to a different static
parameter �inc, the amount by which the subspace size is in-
creased at each iteration (i.e., f(�, �inc) = �inc). We started
with the same initial subspace size (i.e., �init = 8), and iter-
ated until the error estimate ε̃ was smaller than 10−12 (i.e.,
ε = 10−12).
In the figure, the dashed black line shows the actual er-

rors ‖A− AQTQ‖2, which were one or two order of magni-
tude less than the error estimates ε̃, which are the proba-
bilistic estimates, satisfying (4). For example, with a fixed
probability of failure, γ, the constant cad in (4) is given

by cad = (γ/min(m,n))−1/�inc , where (γ/min(m,n)) < 1.
Thus, a larger value of the parameter �inc decreases the con-
stant cad, making the error estimate ε̃ less pessimistic. This
can be observed in Figure 16, where the error estimates ε̃
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Figure 15: Strong parallel scaling over 3 GPUs.

with �inc = 8 were slightly larger and worse than the es-
timates with a larger value of �inc. In addition, a larger
value of static �inc has a greater chance of overestimating
the sampling size which would satisfy the tolerance ε. This
increases the computation and storage costs of the random
sampling.

Figure 17 shows the same convergence of the error esti-
mate ε̃ but now with respect to the elapsed time in seconds.
We see that the convergence is slower using a smaller value
of �inc. This is because the performance of the GPU kernel
degrades for a smaller dimension of the input matrices (see
Figure 18). Hence, there is a trade-off when selecting the
static parameter �inc: a larger �inc improves the efficiency
of the GPU kernels, but it increases the chance of overesti-
mating the size of the required sampling subspace. One po-
tential solution is to adjust the parameter �inc based on the
convergence of the error estimates. For example, we show
the result of simple linear interpolation of the previous two
steps to select the next �inc. It works well for this particular
matrix, but we are working on other adaptive schemes based
on the performance and numerical measurements gathered
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over the previous adaptive steps and power iterations.

11. CONCLUSION
In this paper, we compared the performance of a deter-

ministic QRCP with that of a random sampling algorithm on
a GPU. While QRCP requires synchronization and commu-
nication at each step of the factorization, random sampling
can be implemented using communication-optimal kernels.
Our performance results on an NVIDIA Kepler GPU demon-
strated that the random sampling can obtain a speedup of up
to 12.8× over QRCP, while achieving a comparable approxi-
mation accuracy. We then studied the parallel scaling of the
random sampling over multiple GPUs, and showed that the
random sampling can obtain a nearly-linear speedup over
three GPUs. Due to its communication efficiency, we ex-
pect the performance benefits of random sampling to in-
crease on a computer with higher communication cost, like a
distributed-memory computer. The GPU kernels developed

�inc

8 16 32 48 64
Gflop/s 123.3 247.0 489.5 597.8 778.5

Figure 18: Performance of GEMM used for adaptive
scheme.

for this study will be released as a part of the MAGMA soft-
ware package. Hence, our primary focus was to improve the
performance and robustness of the algorithm in practice so
that it can be used in many applications.

To improve the performance and stability of random sam-
pling, we are studying other orthogonalization schemes in-
cluding Communication-Avoiding QR [5] and mixed-precision
CholQR [23, 21], and an adaptive scheme based on the nu-
merical properties of the matrices at run time. We plan
to study the performance of our implementation for real
applications and compare it with other algorithms includ-
ing the communication-avoiding QP3 [4]. In particular, we
will investigate other error measurements (e.g., clustering er-
rors) to better understand the quality of the approximation
computed by different algorithms. Previously, we have con-
ducted a performance study of an Hierarchically Semisepara-
ble (HSS) solver using deterministic algorithms on a GPU [22].
We plan to extend our study by integrating our GPU imple-
mentation of the randomized algorithm and compare with
the performance of the random sampling for HSS solver that
was studied on CPUs in [7].
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