Block Low-Rank Matrices: Main Results and Recent Advances

Theo Mary University of Manchester, School of Mathematics Rutherford Appleton Laboratory, 15 November 2018

Context

Linear system Ax = b

Often a keystone in scientific computing applications (discretization of PDEs, step of an optimization method, ...)

Large, sparse matrices

Matrix A is sparse (many zeros) but also large $(10^6 - 10^9$ unknowns)

Direct methods

Factorize A = LU and solve LUx = b

© Numerically reliable © Computational cost

Asymptotic Complexity

Direct methods require $O(n^2)$ space and $O(n^3)$ work: unfeasible for large $n \Rightarrow$ exploit structural sparsity and data sparsity to achieve O(n) complexity

Performance and Scalability

Increasingly faster computers available, need to efficiently make use of them to solve larger and larger problems

Accuracy and Stability

Computations are performed in floating-point arithmetic; increasingly low precisions (e.g. fp16) available Numerical pivoting needed for stability; important to derive meaningful error bounds for large and/or data sparse problems

Structural sparsity

3D problem complexity

- Flops: $O(n^2)$
- Storage: $O(n^{4/3})$

Data sparsity

In many cases of interest the matrix has a block low-rank structure

A block *B* represents the interaction between two subdomains. Far away subdomains \Rightarrow block of low numerical rank:

$$egin{array}{cccc} B &pprox & X & Y^{ au} \ b imes b & b imes k_arepsilon & k_arepsilon imes b \end{array}$$

with
$$k_{\varepsilon} \ll b$$
 such that $||B - XY^{T}|| \leq \varepsilon$

Theo Mary

How to choose a good block partitioning of the matrix?

Flat vs hierarchical matrices

How to choose a good block partitioning of the matrix?

BLR matrix

How to choose a good block partitioning of the matrix?

BLR matrix

- Superlinear complexity
- Simple, flat structure

- Nearly linear complexity
- Complex, hierarchical structure

How to choose a good block partitioning of the matrix?

BLR matrix

- Superlinear complexity
- Simple, flat structure

 $\mathcal H ext{-matrix}$

- Nearly linear complexity
- Complex, hierarchical structure

BLR is a comprise between complexity and performance

• FCU

- FCU (Factor,
- Easy to handle numerical pivoting, a critical feature often lacking in other low-rank solvers

- FCU (Factor, Compress,
- Easy to handle numerical pivoting, a critical feature often lacking in other low-rank solvers

- FCU (Factor, Compress, Update)
- Easy to handle numerical pivoting, a critical feature often lacking in other low-rank solvers

- FCU (Factor, Compress, Update)
- Easy to handle numerical pivoting, a critical feature often lacking in other low-rank solvers

- FCU (Factor, Compress, Update)
- Easy to handle numerical pivoting, a critical feature often lacking in other low-rank solvers

- FCU (Factor, Compress, Update)
- Easy to handle numerical pivoting, a critical feature often lacking in other low-rank solvers

- FCU (Factor, Compress, Update)
- Easy to handle numerical pivoting, a critical feature often lacking in other low-rank solvers

- FCU (Factor, Compress, Update)
- Easy to handle numerical pivoting, a critical feature often lacking in other low-rank solvers

- FCU (Factor, Compress, Update)
- Easy to handle numerical pivoting, a critical feature often lacking in other low-rank solvers

- FCU (Factor, Compress, Update)
- Easy to handle numerical pivoting, a critical feature often lacking in other low-rank solvers

- FCU (Factor, Compress, Update)
- Easy to handle numerical pivoting, a critical feature often lacking in other low-rank solvers
- Potential of this variant was studied in
 P. Amestoy, C. Ashcraft, O. Boiteau, A. Buttari, J.-Y. L'Excellent, and C. Weisbecker. Improving Multifrontal Methods by Means of Block Low-Rank Representations.
 SIAM J. Sci. Comput. (2015).

• CFU

• CFU (Compress,

- CFU (Compress, Factor,
- Factor step is performed on compressed blocks ⇒ reduced flops

- CFU (Compress, Factor, Update)
- Factor step is performed on compressed blocks ⇒ reduced flops

- CFU (Compress, Factor, Update)
- Factor step is performed on compressed blocks ⇒ reduced flops
- How can we handle numerical pivoting?

- CFU (Compress, Factor, Update)
- Factor step is performed on compressed blocks ⇒ reduced flops
- How can we handle numerical pivoting?
 - Restricting pivot choice to diagonal block is acceptable (in combination with a pivot delaying strategy)

- CFU (Compress, Factor, Update)
- Factor step is performed on compressed blocks ⇒ reduced flops
- How can we handle numerical pivoting?
 - Restricting pivot choice to diagonal block is acceptable (in combination with a pivot delaying strategy)
 - Must still check entries in off-diagonal blocks: can be estimated from entries in low-rank blocks

Outline

Algorithms and Complexity (joint work with P. Amestoy, A. Buttari, JY. L'Excellent)

- Asymptotic complexity analysis
- Multilevel BLR format

II Performance and Scalability (joint work with PA, AB, JYL)

- Multicore performance
- Distributed-memory scalability

- III Accuracy and Stability (joint work with N. Higham)
 - BLR error analysis
 - Use as a low-accuracy preconditioner

Algorithms and Complexity

Section 1

Asymptotic complexity analysis

P. Amestoy, A. Buttari, J.-Y. L'Excellent, and T. Mary. *On the Complexity of the Block Low-Rank Multifrontal Factorization*. SIAM J. Sci. Comput. (2017).

Assume all off-diagonal blocks are low-rank. Then:

Storage =
$$cost_{LR} * nb_{LR} + cost_{FR} * nb_{FR}$$

= $O(br) * O((\frac{m}{b})^2) + O(b^2) * O(\frac{m}{b})$
= $O(m^2 r/b + mb)$
= $O(m^{3/2}r^{1/2})$ for $b = (mr)^{1/2}$

Assume all off-diagonal blocks are low-rank. Then:

 $FlopLU = cost_{getrf} * nb_{getrf} + cost_{trsm} * nb_{trsm} + cost_{gemm} * nb_{gemm}$ = $O(b^3) * O(\frac{m}{b}) + O(b^3) * O((\frac{m}{b})^2) + O(br^2) * O((\frac{m}{b})^3)$ = $O(mb^2 + m^2b + m^3r^2/b^2)$ = $O(m^{7/3}r^{2/3})$ for $b = (mr^2)^{1/3}$

Block Low-Rank Matrices

Assume all off-diagonal blocks are low-rank. Then:

 $FlopLU = \operatorname{cost}_{getrf} * \operatorname{nb}_{getrf} + \operatorname{cost}_{trsm} * \operatorname{nb}_{trsm} + \operatorname{cost}_{gemm} * \operatorname{nb}_{gemm}$ $= O(b^3) * O(\frac{m}{b}) + O(b^3b^2r) * O((\frac{m}{b})^2) + O(br^2) * O((\frac{m}{b})^3)$ $= O(mb^2 + m^2br + m^3r^2/b^2)$ $= O(mr^{7/3}r^{2/3}m^2r) \text{ for } b = (mr^2)^{1/3}(mr)^{1/2}$

CFU variant improves asymptotic complexity!

Assume all off-diagonal blocks are low-rank. Then:

 $FlopLU = \operatorname{cost_{getrf}} * \operatorname{nb}_{getrf} + \operatorname{cost_{trsm}} * \operatorname{nb}_{trsm} + \operatorname{cost_{gemm}} * \operatorname{nb}_{gemm}$ $= O(b^3) * O(\frac{m}{b}) + O(b^3b^2r) * O((\frac{m}{b})^2) + O(br^2) * O((\frac{m}{b})^3)$ $= O(mb^2 + m^2br + m^3r^2/b^2)$ $= O(m^{7/3}r^{2/3}m^2r) \text{ for } b = (mr^2)^{1/3}(mr)^{1/2}$

CFU variant improves asymptotic complexity!

Result holds if a **constant** number of off-diag. blocks is full-rank.

Block Low-Rank Matrices

From dense to sparse: nested dissection

Theo Mary
From dense to sparse: nested dissection

Proceed recursively to compute separator tree

Factorizing a sparse matrix amounts to factorizing a sequence of dense matrices ⇒ sparse complexity is directly derived from dense one

Nested dissection complexity formulas

In the **2D** case:

$$\mathcal{C}_{\text{sparse}} = \sum_{\ell=0}^{\log N} 4^{\ell} \mathcal{C}_{\text{dense}}(rac{N}{2^{\ell}})$$

Nested dissection complexity formulas

In the **2D** case:

$$\mathcal{C}_{\text{sparse}} = \sum_{\ell=0}^{\log N} 4^{\ell} \mathcal{C}_{\text{dense}}(\frac{N}{2^{\ell}}) = N^{\alpha} \sum_{\ell=0}^{\log N} 2^{(2-\alpha)\ell}$$

If $\mathcal{C}_{dense} = O(m^{lpha})$, \mathcal{C}_{sparse} is a geom. series of common ratio 2^{2-lpha} :

$$\mathcal{C}_{\text{sparse}} = \begin{cases} O(n^{\alpha/2}) & \text{if } \alpha > 2\\ O(n \log n) & \text{if } \alpha = 2\\ O(n) & \text{if } \alpha < 2 \end{cases}$$

Nested dissection complexity formulas

In the **2D** case:

$$\mathcal{C}_{\text{sparse}} = \sum_{\ell=0}^{\log N} 4^{\ell} \mathcal{C}_{\text{dense}}(\frac{N}{2^{\ell}}) = N^{\alpha} \sum_{\ell=0}^{\log N} 2^{(2-\alpha)\ell}$$

If $\mathcal{C}_{dense} = O(m^{lpha})$, \mathcal{C}_{sparse} is a geom. series of common ratio 2^{2-lpha} :

$$\mathcal{C}_{\text{sparse}} = \left\{ \begin{array}{ll} \mathcal{O}(n^{\alpha/2}) & \text{if } \alpha > 2\\ \mathcal{O}(n\log n) & \text{if } \alpha = 2\\ \mathcal{O}(n) & \text{if } \alpha < 2 \end{array} \right.$$

Similar formulas in the **3D** case:

$$\mathcal{C}_{sparse} = \sum_{\ell=0}^{\log N} 8^{\ell} \mathcal{C}_{dense}(\frac{N^2}{4^{\ell}}) = N^{2\alpha} \sum_{\ell=0}^{\log N} 2^{(3-2\alpha)\ell}$$
$$\mathcal{C}_{sparse} = \begin{cases} O(n^{2\alpha/3}) & \text{if } \alpha > 1.5\\ O(n\log n) & \text{if } \alpha = 1.5\\ O(n) & \text{if } \alpha < 1.5 \end{cases}$$

14/47

Block Low-Rank Matrices

Theo Mary

		storage	flops		
dense	FR BLR	$O(m^2) O(m^{3/2})$	O(m ³) O(m ²)		
sparse 2D	FR BLR	O(n log n) <mark>O(n)</mark>	$O(n^{3/2})$ $O(n \log n)$		
(assuming $r = O(1)$)					

• In a 2D world hierarchical matrices would not be needed

		storage	flops	
dense	FR BLR	$O(m^2) O(m^{3/2})$	$O(m^3)$ $O(m^2)$	
sparse 2D	FR BLR	$O(n \log n)$ O(n)	$\frac{O(n^{3/2})}{O(n\log n)}$	
sparse 3D	FR BLR	$O(n^{4/3})$ $O(n\log n)$	$O(n^2) \\ O(n^{4/3})$	
(assuming $r = O(1)$)				

- In a 2D world hierarchical matrices would not be needed
- Superlinear complexities in **3D**

Experimental complexity fit: 3D Poisson ($arepsilon=10^{-10}$)

- Good agreement with theoretical complexity:
 - Storage: $O(n \log n) \rightarrow O(n^{1.1} \log n)$
 - Flops: $O(n^{4/3}) \rightarrow O(n^{1.3})$

Section 2

The multilevel BLR format

B

P. Amestoy, A. Buttari, J.-Y. L'Excellent, and T. Mary. *Bridging the gap* between flat and hierarchical low-rank matrix formats: the multilevel *BLR format*. Submitted (2018).

Complexity of the two-level BLR format

Assume all off-diagonal blocks are low-rank. Then:

Storage = $cost_{LR} * nb_{LR} + cost_{BLR} * nb_{BLR}$ = $O(br) * O((\frac{m}{b})^2) + O(b^{3/2}r^{1/2}) * O(\frac{m}{b})$ = $O(m^2r/b + m(br)^{1/2})$ = $O(m^{4/3}r^{2/3})$ for $b = (m^2r)^{1/3}$

Complexity of the two-level BLR format

Assume all off-diagonal blocks are low-rank. Then:

Storage = $cost_{LR} * nb_{LR} + cost_{BLR} * nb_{BLR}$ = $O(br) * O((\frac{m}{b})^2) + O(b^{3/2}r^{1/2}) * O(\frac{m}{b})$ = $O(m^2r/b + m(br)^{1/2})$ = $O(m^{4/3}r^{2/3})$ for $b = (m^2r)^{1/3}$

Similarly, we can prove: $FlopLU = \mathbf{O}(\mathbf{m}^{5/3}\mathbf{r}^{4/3})$ for $b = (m^2 r)^{1/3}$

Result holds if a constant number of off-diag. blocks is BLR.

Complexity of the two-level BLR format

Assume all off-diagonal blocks are low-rank. Then:

Storage = $cost_{LR} * nb_{LR} + cost_{BLR} * nb_{BLR}$ = $O(br) * O((\frac{m}{b})^2) + O(b^{3/2}r^{1/2}) * O(\frac{m}{b})$ = $O(m^2r/b + m(br)^{1/2})$ = $O(m^{4/3}r^{2/3})$ for $b = (m^2r)^{1/3}$

Similarly, we can prove: $FlopLU = \mathbf{O}(\mathbf{m}^{5/3}\mathbf{r}^{4/3})$ for $b = (m^2 r)^{1/3}$

Result holds if a constant number of off-diag. blocks is BLR.

Main result

Storage =
$$O(m^{(\ell+2)/(\ell+1)}r^{\ell/(\ell+1)})$$

FlopLU = $O(m^{(\ell+3)/(\ell+1)}r^{2\ell/(\ell+1)})$

Main result

Storage =
$$O(m^{(\ell+2)/(\ell+1)}r^{\ell/(\ell+1)})$$

FlopLU = $O(m^{(\ell+3)/(\ell+1)}r^{2\ell/(\ell+1)})$

	$\ell = 1$	$\ell = 2$
Dense	$O(m^2)$	$O(m^{1.66})$
Sparse 3D	$O(n^{1.33})$	$O(n^{1.11})$

Main result

Storage =
$$O(m^{(\ell+2)/(\ell+1)}r^{\ell/(\ell+1)})$$

FlopLU = $O(m^{(\ell+3)/(\ell+1)}r^{2\ell/(\ell+1)})$

	$\ell = 1$	$\ell = 2$	$\ell = 3$
Dense	$O(m^2)$	$O(m^{1.66})$	$O(m^{1.5})$
Sparse 3D	$O(n^{1.33})$	$O(n^{1.11})$	$O(n \log n)$

Main result

Storage =
$$O(m^{(\ell+2)/(\ell+1)}r^{\ell/(\ell+1)})$$

FlopLU = $O(m^{(\ell+3)/(\ell+1)}r^{2\ell/(\ell+1)})$

	$\ell = 1$	$\ell = 2$	$\ell = 3$	$\ell = 4$
Dense	$O(m^2)$	$O(m^{1.66})$	$O(m^{1.5})$	$O(m^{1.4})$
Sparse 3D	$O(n^{1.33})$	$O(n^{1.11})$	$O(n \log n)$	O(n)

Main result

For $b = m^{\ell/(\ell+1)} r^{1/(\ell+1)}$, the ℓ -level complexities are:

Storage =
$$O(m^{(\ell+2)/(\ell+1)}r^{\ell/(\ell+1)})$$

FlopLU = $O(m^{(\ell+3)/(\ell+1)}r^{2\ell/(\ell+1)})$

	$\ell = 1$	$\ell = 2$	$\ell = 3$	$\ell = 4$
Dense	$O(m^2)$	$O(m^{1.66})$ $O(n^{1.11})$	$O(m^{1.5})$	$O(m^{1.4})$
Sharse 2D		O(n)	O(mog n)	O(n)

$\Rightarrow \mathcal{H}$ matrices typically use 10+ levels... but only 4 are enough!

Numerical experiments (3D Poisson)

- Experimental complexity in relatively good agreement with theoretical one
- Asymptotic gain decreases with levels

Performance and Scalability

Section 3

Multicore performance

P

P. Amestoy, A. Buttari, J.-Y. L'Excellent, and T. Mary. *Performance and Scalability of the Block Low-Rank Multifrontal Factorization on Multi-core Architectures*. ACM Trans. Math. Soft. (2018).

Shared-memory performance analysis

Matrix S3 Double complex (z) symmetric Electromagnetics application (CSEM) 3.3 millions unknowns Required accuracy: $\varepsilon = 10^{-7}$

D. Shantsev, P. Jaysaval, S. Kethulle de Ryhove, P. Amestoy, A. Buttari, J.-Y. L'Excellent, and T. Mary. *Large-scale 3D EM modeling with a Block Low-Rank multifrontal direct solver*. Geophys. J. Int (2017).

	flops ($ imes 10^{12}$)	time (1 core)	time (24 cores)
FR	78.0	7390	509
BLR	10.2	2242	309
ratio	7.7	3.3	1.7

7.7 gain in flops only translated to a **1.7** gain in time: Can we do better?

Block Low-Rank Matrices

Variant name	С	flops ($ imes 10^{12}$)	time
Full-Rank	n ²	78.0	509
FCU	n ^{1.67} r ^{0.5}	10.2	307

Tree parallelism improves performance by reducing the relative cost of the fronts at the bottom of the tree, which achieve poor compression

Variant name	С	flops ($ imes 10^{12}$)	time
Full-Rank	n ²	78.0	509
+Tree par.	=	=	418
FCU	n ^{1.67} r ^{0.5}	10.2	307
+Tree par.	=	=	221

Left-looking FCU improves performance thanks to a left-looking approach which reduces memory transfers

Variant name	\mathcal{C}	flops ($ imes 10^{12}$)	time
Full-Rank	n ²	78.0	509
+Tree par.	=	=	418
FCU	n ^{1.67} r ^{0.5}	10.2	307
+Tree par.	=	=	221
+Left-looking	=	=	175

LUA improves performance because it accumulates multiple low-rank updates and applies them at once increasing the granularity of operations

Variant name	С	flops ($ imes 10^{12}$)	time
Full-Rank	n ²	78.0	509
+Tree par.	=	=	418
FCU	n ^{1.67} r ^{0.5}	10.2	307
+Tree par.	=	=	221
+Left-looking	=	=	175
+LUA	=	=	167

LUAR reduces complexity because recompresses accumulated updates on the fly

Variant name	С	flops ($ imes 10^{12}$)	time
Full-Rank	n^2	78.0	509
+Tree par.	=	=	418
FCU	$n^{1.67}r^{0.5}$	10.2	307
+Tree par.	=	=	221
+Left-looking	=	=	175
+LUA	=	=	167
+LUAR	$n^{1.55}r^{0.66}$	8.1	160

CFU reduces complexity because solve operations are also done in low-rank

Variant name	С	flops ($ imes 10^{12}$)	time
Full-Rank	n ²	78.0	509
+Tree par.	=	=	418
FCU	$n^{1.67}r^{0.5}$	10.2	307
+Tree par.	=	=	221
+Left-looking	=	=	175
+LUA	=	=	167
+LUAR	$n^{1.55}r^{0.66}$	8.1	160
+CFU	n ^{1.33} r	3.9	111

Variant name	С	flops ($ imes 10^{12}$)	time
Full-Rank +Tree par	n ² =	78.0	509 418
FCU	n ^{1.67} r ^{0.5}	10.2	307
+Tree par.	=	=	221
+Left-looking	=	=	175
+LUA	=	=	167
+LUAR	$n^{1.55}r^{0.66}$	8.1	160
+CFU	n ^{1.33} r	3.9	111

\Rightarrow **1.7** gain becomes **3.3**

Block Low-Rank Matrices

Section 4

Distributed-memory scalability

Distributed-memory scalability analysis

Results on $300 \rightarrow 900$ cores (eos supercomputer, CALMIP)

Matrix 10Hz Single complex (c) unsymmetric Seismic imaging application (FWI) 17 millions unknowns Required accuracy: $\varepsilon = 10^{-3}$ P. Amestoy, R. Brossier, A. Buttari, J.-Y. L'Excellent, T. Mary, L. Métivier, A. Miniussi, and S. Operto. Fast 3D frequencydomain full waveform inversion with a parallel Block Low-Rank multifrontial direct solver: application to OBC data from the North Sea. Geophysics (2016).

How to improve the scalability of the BLR factorization? Two main difficulties:

- Higher weight of communications: flops reduced by 13 but volume of communications only by 2
- Unpredictability of compression: more difficult to design good mapping and scheduling strategies

Block Low-Rank Matrices

Type of messages

Theo Mary

Type of messages

• Volume of *LU* messages is reduced by compressing the factors

© Reduces operation count, communications, and memory consumption

Type of messages

- Volume of LU messages is reduced by compressing the factors
 - $\ensuremath{\textcircled{}}$ Reduces operation count, communications, and memory consumption
- Volume of CB messages can be reduced by compressing the CB
 - © Reduces communications and memory consumption
 - Increases operation count unless assembly is done in LR

28/47

Block Low-Rank Matrices

Theo Mary

Communication analysis

• FR case: LU messages dominate

Theoretical communication bounds

	\mathcal{W}_{LU}	\mathcal{W}_{CB}	\mathcal{W}_{tot}
FR	$\mathcal{O}\left(n^{4/3}p ight)$	$\mathcal{O}\left(n^{4/3} ight)$	$\mathcal{O}\left(n^{4/3} \rho\right)$

Communication analysis

- FR case: LU messages dominate
- BLR case: CB messages dominate ⇒ underwhelming reduction of communications

Theoretical communication bounds

	\mathcal{W}_{LU}	\mathcal{W}_{CB}	\mathcal{W}_{tot}
FR BLR (CB _{FR})	$rac{\mathcal{O}\left(n^{4/3}p ight)}{\mathcal{O}\left(nr^{1/2}p ight)}$	$\mathcal{O}\left(n^{4/3} ight) \ \mathcal{O}\left(n^{4/3} ight)$	$\mathcal{O}\left(n^{4/3} \mathcal{p} ight) \\ \mathcal{O}\left(n r^{1/2} \mathcal{p} + n^{4/3} ight)$

Communication analysis

- FR case: LU messages dominate
- BLR case: CB messages dominate ⇒ underwhelming reduction of communications
- ⇒ CB compression allows for truly reducing the communications

Theoretical communication bounds

	\mathcal{W}_{LU}	\mathcal{W}_{CB}	W _{tot}
FR	$\mathcal{O}\left(n^{4/3}p ight)$	$\mathcal{O}\left(n^{4/3} ight)$	$\mathcal{O}\left(n^{4/3}p ight)$
BLR (CB _{FR})	$\mathcal{O}\left(nr^{1/2}p ight)$	$\mathcal{O}\left(n^{4/3}\right)$	$O(nr^{1/2}p + n^{4/3})$
BLR (CB _{LR})	$\mathcal{O}\left(nr^{1/2}p ight)$	$\mathcal{O}\left(nr^{1/2} ight)$	$\mathcal{O}\left(nr^{1/2}p ight)$
Performance impact of the CB compression

matrix	10Hz	15Hz
order	17 M	58 M
factor flops (FR)	2.6 PF	29.6 PF
\Rightarrow BLR (CB _{FR})	0.1 PF (5.3%)	1.0 PF (3.3%)
\Rightarrow BLR (CB _{LR})	0.2 PF (6.1%)	1.1 PF (3.7%)
CB _{LR} flops impact	+15%	+12%
factor time (FR)	601	5,206
\Rightarrow BLR (CB _{FR})	123 (4.9)	838 (6.2)
\Rightarrow BLR (CB _{LR})	213 (2.8)	856 (6.1)
CB _{LR} time impact	+73%	+2%
comm. volume (FR)	5.3 TB	29.6 TB
comm. volume (CB _{FR})	1.7 TB (3.2)	13.3 TB (2.2)
comm. volume (CB _{LR})	0.6 TB (9.1)	1.2 TB (23.2)

⇒ CB compression becomes increasingly critical?

Performance impact of the CB compression

matrix	10Hz	15Hz
order	17 M	58 M
factor flops (FR)	2.6 PF	29.6 PF
\Rightarrow BLR (CB _{FR})	0.1 PF (5.3%)	1.0 PF (3.3%)
\Rightarrow BLR (CB _{LR})	0.2 PF (6.1%)	1.1 PF (3.7%)
CB _{LR} flops impact	+15%	+12%
factor time (FR)	601	5,206
\Rightarrow BLR (CB _{FR})	123 (4.9)	838 (6.2)
\Rightarrow BLR (CB _{LR})	213 (2.8)	856 (6.1)
CB _{LR} time impact	+73%	+2%
comm. volume (FR)	5.3 TB	29.6 TB
comm. volume (CB _{FR})	1.7 TB (3.2)	13.3 TB (2.2)
comm. volume (CB _{LR})	0.6 TB (9.1)	1.2 TB (23.2)

⇒ CB compression becomes increasingly critical?

Performance impact of the CB compression

matrix order	10Hz 17 M	15Hz 58 M
factor flops (FR) \Rightarrow BLR (CB _{FR})	2.6 PF 0.1 PF (5.3%)	29.6 PF 1.0 PF (3.3%)
	0.2 PF (6.1%)	1.1 PF (3.7%)
CB _{LR} flops impact	+15%	+12%
factor time (FR)	601	5,206
	123 (4.9)	
	213 (2.8)	
CB _{LR} time impact	+73%	+2%
comm. volume (FR)	5.3 TB	29.6 TB
comm. volume (CB _{FR})	1.7 TB (<mark>3.2</mark>)	13.3 TB(<mark>2.2</mark>)
comm. volume (CB _{LR})	0.6 TB (<mark>9.1</mark>)	1.2 TB (<mark>23.2</mark>)

\Rightarrow CB compression becomes increasingly critical?

Results from

T. Mary. Block Low-Rank multifrontal solvers: complexity, performance, and scalability. PhD thesis (2017).

(Chapter 9, Future challenges for large-scale BLR solvers)

	flops	factors storage	memory peak	time
FR	150.0 PF	11.0 TB	151.0 GB	OOM
BLR	3.6 PF	1.8 TB	81.0 GB	2641s
ratio	42.0	6.0	1.9	

Matrix 20Hz (N = 130M, seismic imaging) on 2400 cores:

Accuracy and Stability

Section 5

Error analysis of BLR factorizations

Why we need an error analysis

Each off-diagonal block *B* is approximated by a low-rank matrix \widetilde{B} such that $||B - \widetilde{B}|| \le \varepsilon$

 $||A - L_{\varepsilon}U_{\varepsilon}|| \neq \varepsilon$ because of error propagation \Rightarrow What is the overall accuracy $||A - L_{\varepsilon}U_{\varepsilon}||$?

- Can we prove that $||A L_{\varepsilon}U_{\varepsilon}|| = O(\varepsilon)$?
- What is the error growth, i.e., how does the error depend on the matrix size *m*?
- How do the different variants (FCU, CFU, etc.) compare?
- Should we use an absolute threshold $(||B \tilde{B}|| \le \varepsilon)$ or a relative one $(||B \tilde{B}|| \le \varepsilon ||B||)$?

The proof is based on *Stability of Block Algorithms with Fast Level-3 BLAS* (Demmel and Higham, 1992)

$$A = \left[\begin{array}{cc} A_{11} & A_{12} \\ A_{21} & A_{22} \end{array} \right]$$

Inductive proof: easy to bound error of computing

 $S = A_{22} - L_{21}U_{12}$ and error of $S = L_{22}U_{22}$ is obtained by induction

The proof is based on *Stability of Block Algorithms with Fast Level-3 BLAS* (Demmel and Higham, 1992)

$$\mathsf{A} = \left[\begin{array}{cc} \mathsf{A}_{11} & \mathsf{A}_{12} \\ \mathsf{A}_{21} & \mathsf{A}_{22} \end{array} \right]$$

Inductive proof: easy to bound error of computing $S = A_{22}$, A_{23} ,

 $S = A_{22} - L_{21}U_{12}$ and error of $S = L_{22}U_{22}$ is obtained by induction

For BLR, several specific difficulties arise:

- Need to bound error of low-rank product kernel: $C = \widetilde{A}\widetilde{B} = X_A \left(Y_A^T X_B\right) Y_B^T$
- Choice of norm matters: to obtain best constants possible, we need a consistent, unitarily invariant norm
- Global bound is obtained from blockwise bounds
 ⇒ we work with the Frobenius norm

Reminder

The full-rank LU factorization of $A \in \mathbb{R}^{n \times n}$ satisfies

$$||A - LU|| \le nu||L|| ||U|| + O(u^2)$$

Main result

The FCU BLR factorization of $A \in \mathbb{R}^{n \times n}$ with relative threshold ε satisfies

$$\|A - L_{\varepsilon}U_{\varepsilon}\| \le (nu + \varepsilon)\|L\|\|U\| + O(u\varepsilon) + O(u^{2})$$

Main result

The FCU BLR factorization of $A \in \mathbb{R}^{n \times n}$ with relative threshold ε satisfies

 $\|A - L_{\varepsilon}U_{\varepsilon}\| \le (nu + \varepsilon)\|L\|\|U\| + O(u\varepsilon) + O(u^{2})$

||L||||U|| ≤ n²ρ_n||A|| where ρ_n is the growth factor
 ⇒ with partial pivoting, the BLR factorization is stable!

Main result

The FCU BLR factorization of $A \in \mathbb{R}^{n \times n}$ with relative threshold ε satisfies

 $\|A - L_{\varepsilon}U_{\varepsilon}\| \le (nu + \varepsilon)\|L\|\|U\| + O(u\varepsilon) + O(u^{2})$

- ||L||||U|| ≤ n²ρ_n||A|| where ρ_n is the growth factor
 ⇒ with partial pivoting, the BLR factorization is stable!
- Usually $\varepsilon \gg u$:
- \Rightarrow Role of *u* is limited
- \Rightarrow Very slow error growth
- ⇒ Usage of fast matrix arithmetic may be stable in BLR

Main result

The FCU BLR factorization of $A \in \mathbb{R}^{n \times n}$ with relative threshold ε satisfies

 $\|A - L_{\varepsilon}U_{\varepsilon}\| \le (nu + \varepsilon)\|L\|\|U\| + O(u\varepsilon) + O(u^2)$

- ||L||||U|| ≤ n²ρ_n||A|| where ρ_n is the growth factor
 ⇒ with partial pivoting, the BLR factorization is stable!
- Usually $\varepsilon \gg u$:
- \Rightarrow Role of *u* is limited
- \Rightarrow Very slow error growth
- ⇒ Usage of fast matrix arithmetic may be stable in BLR

Main result

The FCU BLR factorization of $A \in \mathbb{R}^{n \times n}$ with relative threshold ε satisfies

 $\|A - L_{\varepsilon}U_{\varepsilon}\| \le (nu + \varepsilon)\|L\|\|U\| + O(u\varepsilon) + O(u^2)$

- ||L||||U|| ≤ n²ρ_n ||A|| where ρ_n is the growth factor
 ⇒ with partial pivoting, the BLR factorization is stable!
- Usually $\varepsilon \gg u$:
- \Rightarrow Role of *u* is limited
- ⇒ Very slow error growth
- ⇒ Usage of fast matrix arithmetic may be stable in BLR

Main result

The FCU BLR factorization of $A \in \mathbb{R}^{n \times n}$ with relative threshold ε satisfies

 $\|A - L_{\varepsilon}U_{\varepsilon}\| \le (nu + \varepsilon)\|L\|\|U\| + O(u\varepsilon) + O(u^{2})$

- ||L||||U|| ≤ n²ρ_n||A|| where ρ_n is the growth factor
 ⇒ with partial pivoting, the BLR factorization is stable!
- Usually $\varepsilon \gg u$:
- \Rightarrow Role of *u* is limited
- \Rightarrow Very slow error growth
- ⇒ Usage of fast matrix arithmetic may be stable in BLR

For example with Strassen's algorithm, $nu \rightarrow n^{\log_2 12} u \approx n^{3.6} u$

Ongoing work with C.-P. Jeannerod, C. Pernet, and D. Roche: Exploiting fast matrix arithmetic within BLR factorizations: $O(n^2)$ complexity $\rightarrow O(n^{(\omega+1)/2})$ ($\approx O(n^{1.9})$ for Strassen)

The FCU BLR factorization of $A \in \mathbb{R}^{n \times n}$ with absolute threshold ε satisfies

$$\begin{split} \|A - L_{\varepsilon} U_{\varepsilon}\| &\leq (nu + \theta \varepsilon) \|L\| \|U\| + O(u\varepsilon) + O(u^2) \\ \text{where } \theta &= \sqrt{n/b - 1} \sum_{i=1}^{n/b} \|L_{ii}\| + \|U_{ii}\| \end{split}$$

The BLR factorization with absolute threshold

- 🙁 Has a faster error growth
- Is scaling-dependent

The FCU BLR factorization of $A \in \mathbb{R}^{n \times n}$ with absolute threshold ε satisfies

$$\begin{split} \|A - L_{\varepsilon}U_{\varepsilon}\| &\leq (nu + \theta\varepsilon)\|L\|\|U\| + O(u\varepsilon) + O(u^2)\\ \text{where } \theta &= \sqrt{n/b - 1}\sum_{i=1}^{n/b}\|L_{ii}\| + \|U_{ii}\| \end{split}$$

The BLR factorization with absolute threshold

- Bas a faster error growth
- Is scaling-dependent
- © Is more efficient in practice

The CFU BLR factorization of $A \in \mathbb{R}^{n \times n}$ with relative threshold ε satisfies

$$\|A - L_{\varepsilon}U_{\varepsilon}\| \le (nu + \varepsilon)\|L\|\|U\| + O(\kappa(A)u\varepsilon) + O(u^2)$$

The CFU BLR factorization of $A \in \mathbb{R}^{n \times n}$ with relative threshold ε satisfies

 $\|A - L_{\varepsilon}U_{\varepsilon}\| \le (nu + \varepsilon)\|L\|\|U\| + O(\kappa(A)u\varepsilon) + O(u^{2})$

The CFU BLR factorization of $A \in \mathbb{R}^{n \times n}$ with relative threshold ε satisfies

 $\|A - L_{\varepsilon}U_{\varepsilon}\| \le (nu + \varepsilon)\|L\|\|U\| + O(\kappa(A)u\varepsilon) + O(u^2)$

Block Low-Rank Matrices

Section 6

Use as a low-accuracy preconditioner

N. Higham and T. Mary. A New Preconditioner that Exploits Low-Rank Approximations to Factorization Error. SIAM J. Sci. Comp (2018).

BLR factorization + GMRES solve with stopping tolerance $10^{-9}\,$

Matrix	n	Time (s)		Storage (GB)	
		$\varepsilon = 10^{-2}$	$\varepsilon = 10^{-8}$	$\varepsilon = 10^{-2}$	$\varepsilon = 10^{-8}$
audikw_1	1.0M	1163	69	5	10
Bump_2911	2.9M	_	282	34	56
Emilia_923	0.9M	304	63	7	12
Fault_639	0.6M	_	45	5	9
Ga41As41H72	0.3M	_	76	12	17
Hook_1498	1.5M	902	75	6	11
Si87H76	0.2M	_	62	10	14

Low-accuracy BLR solvers:

- $\ensuremath{\textcircled{}}$ are slower and less robust
- ⑤ but require much less storage

Improved preconditioner: context

Objective

- Compute solution to linear system Ax = b
- $A \in \mathbb{R}^{n \times n}$ is ill conditioned

LU-based preconditioner

- 1. Compute approximate factorization $A = \widehat{L}\widehat{U} + \Delta A$
 - Half-precision factorization
 - Incomplete LU factorization
 - $\circ~$ Structured matrix factorization: Block Low-Rank, \mathcal{H}_{r} HSS,...
- 2. Solve $\prod_{LU}Ax = \prod_{LU}b$ with $\prod_{LU} = \hat{U}^{-1}\hat{L}^{-1}$ via some iterative method
 - Convergence to solution may be slow or fail

> Objective: accelerate convergence

Improved preconditioner: key observation

Matrix lund_a (n = 147, $\kappa(A) = 2.8e+06$)

- Often, A is ill conditioned due to a small number of small singular values
- Then, A^{-1} is numerically low-rank

Improved preconditioner: key idea

Factorization error might be low-rank?

Let the error
$$E = \widehat{U}^{-1}\widehat{L}^{-1}A - I = \widehat{U}^{-1}\widehat{L}^{-1}(\widehat{L}\widehat{U} + \Delta A) - I$$

= $\widehat{U}^{-1}\widehat{L}^{-1}\Delta A \approx A^{-1}\Delta A$

Does *E* retain the low-rank property of A^{-1} ?

A novel preconditioner

Consider the preconditioner

$$\Pi_{E_k} = (I + E_k)^{-1} \Pi_{LU}$$

with E_k a rank-k approximation to E.

• If
$$E = E_k$$
, $\Pi_{E_k} = A^{-1}$

• If $E \approx E_k$ for some small k, Π_{E_k} can be computed cheaply

Block Low-Rank Matrices

Theo Mary

Theo Mary

Block Low-Rank Matrices

Theo Mary

We did **not** specifically select matrices for which A^{-1} is low-rank!

We need to compute a rank-k approximation of

$$E = \widehat{U}^{-1}\widehat{L}^{-1}A - I$$

E cannot be built explicitly! \Rightarrow use **randomized** method

Algorithm 1 Randomized SVD via direct SVD of $V^T E$.

- 1: Sample E: $S = E\Omega$, with Ω a $n \times (k + p)$ random matrix.
- 2: Orthonormalize S: V = qr(S). $\{\Rightarrow E \approx VV^T E.\}$
- 3: Compute truncated SVD $V^T E \approx X_k \Sigma_k Y_k^T$.
- 4: $E_k \approx (VX_k)\Sigma_k Y_k^T$.

Results for $\varepsilon = 10^{-2}$:

Matrix	Π_{LU}		Π_{E_k}	
	Iter.	Time	Iter.	Time
audikw_1	691	1163	331	625
Bump_2911	_	_	284	1708
Emilia_923	174	304	136	267
Fault_639	_	_	294	345
Ga41As41H72	_	_	135	143
Hook_1498	417	902	356	808
Si87H76	_	—	131	116

\Rightarrow performance and robustness improvement with zero storage overhead

Conclusion

Takeaway messages

- BLR factorization achieves quadratic dense complexity but (quasi-)linear sparse complexity with a small number of levels
- A large fraction of this theoretical reduction is converted into actual time gains, even on large numbers of cores
- It is numerically stable thanks to numerical pivoting and can efficiently exploit low-precision floating-point arithmetic
- ⇒ Good compromise between complexity, performance, and accuracy

Perspectives (my objective for the next O(10) years)

Develop a distributed-memory, high-performance implementation of a multifrontal, multilevel, multiprecision BLR solver

Slides and papers available here

bit.ly/theomary (list of references on next slide)

References

P. Amestoy, A. Buttari, J.-Y. L'Excellent, and T. Mary. On the Complexity of the Block Low-Rank Multifrontal Factorization. SIAM J. Sci. Comput. (2017).

P. Amestoy, A. Buttari, J.-Y. L'Excellent, and T. Mary. *Bridging the gap between flat and hierarchical low*rank matrix formats: the multilevel *BLR* format. Submitted (2018).

P. Amestoy, A. Buttari, J.-Y. L'Excellent, and T. Mary. *Performance and Scalability of the Block Low-Rank Multifrontal Factorization on Multicore Architectures.* ACM Trans. Math. Soft. (2018).

C. Gorman, G. Chavez, P. Ghysels, T. Mary, F.-H. Rouet, and X. S. Li. *Matrix-free Construction of HSS Representation Using Adaptive Randomized Sampling*. Submitted (2018).

N. Higham and T. Mary. A New Preconditioner that Exploits Low-Rank Approximations to Factorization Error. SIAM J. Sci. Comp (2018).

N. Higham and T. Mary. A New Approach to Probabilistic Rounding Error Analysis. Submitted (2018).

P. Amestoy, R. Brossier, A. Buttari, J.-Y. L'Excellent, T. Mary, L. Métivier, A. Miniussi, and S. Operto. Fast 3D frequency-domain full waveform inversion with a parallel Block Low-Rank multifrontal direct solver: application to OBC data from the North Sea. Geophysics (2016).

D. Shantsev, P. Jaysaval, S. Kethulle de Ryhove, P. Amestoy, A. Buttari, J.-Y. L'Excellent, and T. Mary. Largescale 3D EM modeling with a Block Low-Rank multifrontal direct solver. Geophys. J. Int (2017).