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Context

→ →

Linear system Ax = b

Often a keystone in scientific computing applications
(discretization of PDEs, step of an optimization method, …)

Large, sparse matrices

Matrix A is sparse (many zeros) but also large (106–109 unknowns)

Direct methods
Factorize A = LU and solve LUx = b, Numerically reliable / Computational cost

2/47 Block Low-Rank Matrices Theo Mary



Challenges and opportunities

Asymptotic Complexity

Direct methods require O(n2) space and O(n3) work: unfeasible
for large n ⇒ exploit structural sparsity and data sparsity to
achieve O(n) complexity

Performance and Scalability

Increasingly faster computers available, need to efficiently make
use of them to solve larger and larger problems

Accuracy and Stability

Computations are performed in floating-point arithmetic;
increasingly low precisions (e.g. fp16) available
Numerical pivoting needed for stability; important to derive
meaningful error bounds for large and/or data sparse problems
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Structural sparsity

N n = Nd

D1

D2

D3

D4

D1

D2

D3

D4

S

3D problem complexity
• Flops: O(n2)
• Storage: O(n4/3)
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Data sparsity

In many cases of interest the matrix has a block low-rank structure

σ

τ

B
ρ σ

τ

kε ≪ b

kε ≃ b

A block B represents the interaction between two subdomains.
Far away subdomains ⇒ block of low numerical rank:

B ≈ X YT

b× b b× kε kε × b

with kε ≪ b such that ∥B− XYT∥ ≤ ε
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Flat vs hierarchical matrices

How to choose a good block partitioning of the matrix?

BLR matrix H-matrix

• Superlinear complexity
• Simple, flat structure

BLR is a comprise between complexity and performance
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BLR factorization: standard FCU variant

• FCU

(Factor,

Compress,

Update)

• Easy to handle numerical pivoting, a critical feature often
lacking in other low-rank solvers

• Potential of this variant was studied in
P. Amestoy, C. Ashcraft, O. Boiteau, A. Buttari, J.-Y. L’Excellent, and C. Weisbecker.
Improving Multifrontal Methods by Means of Block Low-Rank Representations.

SIAM J. Sci. Comput. (2015).
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BLR factorization: CFU variant

• CFU

(Compress,

Factor,

Update)

• Factor step is performed on compressed blocks ⇒ reduced
flops

• How can we handle numerical pivoting?

◦ Restricting pivot choice to diagonal block is acceptable (in
combination with a pivot delaying strategy)

◦ Must still check entries in off-diagonal blocks: can be estimated
from entries in low-rank blocks
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Outline

I Algorithms and Complexity (joint work with P. Amestoy,
A. Buttari, JY. L’Excellent)

◦ Asymptotic complexity analysis
◦ Multilevel BLR format

II Performance and Scalability (joint work with PA, AB, JYL)
◦ Multicore performance
◦ Distributed-memory scalability

III Accuracy and Stability (joint work with N. Higham)
◦ BLR error analysis
◦ Use as a low-accuracy preconditioner
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Algorithms and Complexity



Section 1

Asymptotic complexity analysis

P. Amestoy, A. Buttari, J.-Y. L’Excellent, and T. Mary. On the Complexity
of the Block Low-Rank Multifrontal Factorization. SIAM J. Sci. Comput.
(2017).



http://personalpages.manchester.ac.uk/staff/theo.mary/doc/SISC17.pdf
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Computing the BLR complexity
Assume all off-diagonal blocks are low-rank. Then:

getrf
trsm
gemm

Storage = costLR ∗ nbLR + costFR ∗ nbFR

= O(br) ∗O((m
b
)2) +O(b2) ∗O(m

b
)

= O(m2r/b+mb)

= O(m3/2r1/2) for b = (mr)1/2

FlopLU = costgetrf ∗ nbgetrf + costtrsm ∗ nbtrsm + costgemm ∗ nbgemm

= O(b3) ∗O(m
b
) +O(��@@b3b2r) ∗O((

m
b
)2) +O(br2) ∗O((m

b
)3)

= O(mb2 +m2
�Sbr+m3r2/b2)

= O(�����XXXXXm7/3r2/3m2r) for b =�����XXXXX(mr2)1/3(mr)1/2

CFU variant improves asymptotic complexity!

Result holds if a constant number of off-diag. blocks is full-rank.
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From dense to sparse: nested dissection

N n = N2

D1

D2

D3

D4

D1

D2

D3

D4

S

Proceed recursively to
compute separator tree

Factorizing a sparse matrix
amounts to factorizing a

sequence of dense matrices
⇒

sparse complexity is directly
derived from dense one
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Nested dissection complexity formulas

In the 2D case:

Csparse =
logN∑
ℓ=0

4ℓCdense(
N
2ℓ

)

= Nα
logN∑
ℓ=0

2(2−α)ℓ

If Cdense = O(mα), Csparse is a geom. series of common ratio 22−α:

Csparse =


O(nα/2) if α > 2
O(n logn) if α = 2
O(n) if α < 2

Similar formulas in the 3D case:

Csparse =
logN∑
ℓ=0

8ℓCdense(
N2

4ℓ
) = N2α

logN∑
ℓ=0

2(3−2α)ℓ

Csparse =


O(n2α/3) if α > 1.5
O(n logn) if α = 1.5
O(n) if α < 1.5
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Complexity of the BLR factorization

storage flops

dense
FR O(m2) O(m3)

BLR O(m3/2) O(m2)

sparse 2D
FR O(n logn) O(n3/2)
BLR O(n) O(n logn)

sparse 3D
FR O(n4/3) O(n2)
BLR O(n logn) O(n4/3)

(assuming r = O(1))

• In a 2D world hierarchical matrices would not be needed

• Superlinear complexities in 3D
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Experimental complexity fit: 3D Poisson (ε = 10−10)

Storage Flops

• Good agreement with theoretical complexity:
◦ Storage: O(n logn) → O(n1.1 logn)
◦ Flops: O(n4/3) → O(n1.3)
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Section 2

The multilevel BLR format

P. Amestoy, A. Buttari, J.-Y. L’Excellent, and T. Mary. Bridging the gap
between flat and hierarchical low-rank matrix formats: the multilevel
BLR format. Submitted (2018).



http://personalpages.manchester.ac.uk/staff/theo.mary/doc/MBLR.pdf
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Complexity of the two-level BLR format

Assume all off-diagonal blocks are low-rank. Then:
Storage = costLR ∗ nbLR + costBLR ∗ nbBLR

= O(br) ∗O((m
b
)2) +O(b3/2r1/2) ∗O(m

b
)

= O(m2r/b+m(br)1/2)

= O(m4/3r2/3) for b = (m2r)1/3

Similarly, we can prove:
FlopLU = O(m5/3r4/3) for b = (m2r)1/3

Result holds if a constant number of off-diag. blocks is BLR.

FR BLR 2-BLR … H

storage
dense O(m2) O(m1.5) O(m1.33) … O(m logm)
sparse O(n1.33) O(n logn) O(n) … O(n)

flop LU
dense O(m3) O(m2) O(m1.66) … O(m log3m)
sparse O(n2) O(n1.33) O(n1.11) … O(n)
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Multilevel BLR complexity

Main result
For b = mℓ/(ℓ+1)r1/(ℓ+1), the ℓ−level complexities are:

Storage = O(m(ℓ+2)/(ℓ+1)rℓ/(ℓ+1))

FlopLU = O(m(ℓ+3)/(ℓ+1)r2ℓ/(ℓ+1))

ℓ = 1 ℓ = 2

ℓ = 3 ℓ = 4

Dense O(m2) O(m1.66)

O(m1.5) O(m1.4)

Sparse 3D O(n1.33) O(n1.11)

O(n logn) O(n)

⇒ H matrices typically use 10+ levels… but only 4 are enough!
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Numerical experiments (3D Poisson)

Storage Flop LU

• Experimental complexity in relatively good agreement with
theoretical one

• Asymptotic gain decreases with levels

20/47 Block Low-Rank Matrices Theo Mary



Performance and Scalability



Section 3

Multicore performance

P. Amestoy, A. Buttari, J.-Y. L’Excellent, and T. Mary. Performance and
Scalability of the Block Low-Rank Multifrontal Factorization on Multi-
core Architectures. ACM Trans. Math. Soft. (2018).



http://personalpages.manchester.ac.uk/staff/theo.mary/doc/MultiCoreBLR.pdf
http://personalpages.manchester.ac.uk/staff/theo.mary/doc/MultiCoreBLR.pdf
http://personalpages.manchester.ac.uk/staff/theo.mary/doc/MultiCoreBLR.pdf


Shared-memory performance analysis

Matrix S3
Double complex (z) symmetric

Electromagnetics application (CSEM)
3.3 millions unknowns

Required accuracy: ε = 10−7

D. Shantsev, P. Jaysaval, S. Kethulle de Ryhove, P. Amestoy, A. Buttari,
J.-Y. L’Excellent, and T. Mary. Large-scale 3D EM modeling with a
Block Low-Rank multifrontal direct solver. Geophys. J. Int (2017).
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flops (×1012) time (1 core) time (24 cores)

FR 78.0 7390 509
BLR 10.2 2242 309
ratio 7.7 3.3 1.7

7.7 gain in flops only translated to a 1.7 gain in time:
Can we do better?
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BLR variants

Variant name C flops (×1012) time

Full-Rank n2 78.0 509

+Tree par. = = 418

FCU n1.67r0.5 10.2 307

+Tree par. = = 221
+Left-looking = = 175
+LUA = = 167
+LUAR n1.55r0.66 8.1 160
+CFU n1.33r 3.9 111

⇒1.7 gain becomes 3.3

24/47 Block Low-Rank Matrices Theo Mary



BLR variants

Tree parallelism improves performance by reducing the relative
cost of the fronts at the bottom of the tree, which achieve poor
compression
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BLR variants

Left-looking FCU improves performance thanks to a left-looking
approach which reduces memory transfers
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BLR variants

LUA improves performance because it accumulates multiple
low-rank updates and applies them at once increasing the
granularity of operations

Variant name C flops (×1012) time
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BLR variants

LUAR reduces complexity because recompresses accumulated
updates on the fly

Variant name C flops (×1012) time

Full-Rank n2 78.0 509
+Tree par. = = 418

FCU n1.67r0.5 10.2 307
+Tree par. = = 221
+Left-looking = = 175
+LUA = = 167
+LUAR n1.55r0.66 8.1 160

+CFU n1.33r 3.9 111

⇒1.7 gain becomes 3.3
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BLR variants

CFU reduces complexity because solve operations are also done
in low-rank

Variant name C flops (×1012) time
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Multicore performance results (24 threads)
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Section 4

Distributed-memory scalability



Distributed-memory scalability analysis
Results on 300 → 900 cores

(eos supercomputer, CALMIP)

Number of MPIs x Number of cores
30x10 45x10 60x10 75x10 90x10

T
im

e 
(s

)

250

500

1000

2000
FR
BLR

Matrix 10Hz
Single complex (c) unsymmetric
Seismic imaging application (FWI)

17 millions unknowns
Required accuracy: ε = 10−3

P. Amestoy, R. Brossier, A. Buttari, J.-Y. L’Excellent, T. Mary,
L. Métivier, A. Miniussi, and S. Operto. Fast 3D frequency-
domain full waveform inversion with a parallel Block Low-
Rank multifrontal direct solver: application to OBC data
from the North Sea. Geophysics (2016).



How to improve the scalability of the BLR factorization? 
Two main difficulties:
• Higher weight of communications: flops reduced by 13 but
volume of communications only by 2

• Unpredictability of compression: more difficult to design good
mapping and scheduling strategies
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Type of messages

P0

P1

P2

P3

LU messages

P0

P1

P2

P3

P4

P5

P0 P0

P1 P1
P2 P2
P3 P3
P4 P4
P5 P5

CB messages

• Volume of LUmessages is reduced by compressing the factors
, Reduces operation count, communications, and memory consumption

• Volume of CB messages can be reduced by compressing the CB
, Reduces communications and memory consumption/ Increases operation count unless assembly is done in LR
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Communication analysis
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• FR case: LU messages dominate

• BLR case: CB messages
dominate ⇒ underwhelming
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⇒ CB compression allows for truly
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Performance impact of the CB compression

matrix 10Hz 15Hz
order 17 M 58 M

factor flops (FR) 2.6 PF 29.6 PF
⇒ BLR (CBFR) 0.1 PF (5.3%) 1.0 PF (3.3%)
⇒ BLR (CBLR) 0.2 PF (6.1%) 1.1 PF (3.7%)

CBLR flops impact +15% +12%

factor time (FR) 601 5,206
⇒ BLR (CBFR) 123 (4.9) 838 (6.2)
⇒ BLR (CBLR) 213 (2.8) 856 (6.1)

CBLR time impact +73% +2%

comm. volume (FR) 5.3 TB 29.6 TB
comm. volume (CBFR) 1.7 TB (3.2) 13.3 TB ( 2.2)
comm. volume (CBLR) 0.6 TB (9.1) 1.2 TB (23.2)

⇒ CB compression becomes increasingly critical?
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Results on very large problems

Results from

T. Mary. Block Low-Rank multifrontal solvers: complexity, performance,
and scalability. PhD thesis (2017).



(Chapter 9, Future challenges for large-scale BLR solvers)

Matrix 20Hz (N = 130M, seismic imaging) on 2400 cores:

flops factors storage memory peak time

FR 150.0 PF 11.0 TB 151.0 GB OOM
BLR 3.6 PF 1.8 TB 81.0 GB 2641s
ratio 42.0 6.0 1.9
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Accuracy and Stability



Section 5

Error analysis of BLR factorizations



Why we need an error analysis

Each off-diagonal block B is approximated by
a low-rank matrix B̃ such that ∥B− B̃∥ ≤ ε

∥A− LεUε∥ ̸= ε because of error propagation
⇒ What is the overall accuracy ∥A− LεUε∥?

• Can we prove that ∥A− LεUε∥ = O(ε)?

• What is the error growth, i.e., how does the error depend on the
matrix size m?

• How do the different variants (FCU, CFU, etc.) compare?

• Should we use an absolute threshold (∥B− B̃∥ ≤ ε) or a relative
one (∥B− B̃∥ ≤ ε∥B∥)?
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Some ingredients for the proof

The proof is based on Stability of Block Algorithms with Fast
Level-3 BLAS (Demmel and Higham, 1992)

A =

[
A11 A12

A21 A22

]
Inductive proof: easy to bound error of computing
S = A22 − L21U12 and error of S = L22U22 is obtained by induction

For BLR, several specific difficulties arise:
• Need to bound error of low-rank product kernel:
C = ÃB̃ = XA

(
YTAXB

)
YTB

• Choice of norm matters: to obtain best constants possible,
we need a consistent, unitarily invariant norm

• Global bound is obtained from blockwise bounds
⇒ we work with the Frobenius norm
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Main result

Reminder
The full-rank LU factorization of A ∈ Rn×n satisfies

∥A− LU∥ ≤ nu∥L∥∥U∥+O(u2)

Main result
The FCU BLR factorization of A ∈ Rn×n with relative threshold ε
satisfies

∥A− LεUε∥ ≤ (nu+ ε)∥L∥∥U∥+O(uε) +O(u2)

• ∥L∥∥U∥ ≤ n2ρn∥A∥ where ρn is the growth factor
⇒ with partial pivoting, the BLR factorization is stable!

• Usually ε ≫ u:

⇒ Role of u is limited

⇒ Very slow error growth

⇒ Usage of fast matrix arithmetic

may be stable in BLR

10 -1 10 -3 10 -5 10 -7 10 -9 10 -11
10 -12

10 -10

10 -8

10 -6

10 -4

10 -2

10 0
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Main result

Main result
The FCU BLR factorization of A ∈ Rn×n with relative threshold ε
satisfies

∥A− LεUε∥ ≤ (nu+ ε)∥L∥∥U∥+O(uε) +O(u2)

• ∥L∥∥U∥ ≤ n2ρn∥A∥ where ρn is the growth factor
⇒ with partial pivoting, the BLR factorization is stable!

• Usually ε ≫ u:

⇒ Role of u is limited

⇒ Very slow error growth

⇒ Usage of fast matrix arithmetic

may be stable in BLR

For example with Strassen’s algo-
rithm, nu→ nlog2 12u ≈ n3.6u

Ongoing work with C.-P. Jeannerod, C. Per-

net, and D. Roche: Exploiting fast matrix

arithmetic within BLR factorizations:

O(n2) complexity → O(n(ω+1)/2)
(≈ O(n1.9) for Strassen)
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Relative vs absolute threshold

Theorem
The FCU BLR factorization of A ∈ Rn×n with absolute threshold ε
satisfies

∥A− LεUε∥ ≤ (nu+ θε)∥L∥∥U∥+O(uε) +O(u2)

where θ =
√
n/b− 1

∑n/b
i=1 ∥Lii∥+ ∥Uii∥

The BLR factorization with
absolute threshold

/ Has a faster error growth

/ Is scaling-dependent

, Is more efficient in practice
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Error analysis: CFU variant

Theorem
The CFU BLR factorization of A ∈ Rn×n with relative threshold ε
satisfies

∥A− LεUε∥ ≤ (nu+ ε)∥L∥∥U∥+O(κ(A)uε) +O(u2)
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Error analysis: CFU variant

Theorem
The CFU BLR factorization of A ∈ Rn×n with relative threshold ε
satisfies

∥A− LεUε∥ ≤ (nu+ ε)∥L∥∥U∥+O(κ(A)uε) +O(u2)
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Section 6

Use as a low-accuracy preconditioner

N. Higham and T. Mary. A New Preconditioner that Exploits Low-Rank
Approximations to Factorization Error. SIAM J. Sci. Comp (2018).



http://personalpages.manchester.ac.uk/staff/theo.mary/doc/LRErrPrecond.pdf
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Low-accuracy BLR preconditioners

BLR factorization + GMRES solve with stopping tolerance 10−9

Matrix n Time (s) Storage (GB)
ε = 10−2 ε = 10−8 ε = 10−2 ε = 10−8

audikw_1 1.0M 1163 69 5 10
Bump_2911 2.9M — 282 34 56
Emilia_923 0.9M 304 63 7 12
Fault_639 0.6M — 45 5 9
Ga41As41H72 0.3M — 76 12 17
Hook_1498 1.5M 902 75 6 11
Si87H76 0.2M — 62 10 14

Low-accuracy BLR solvers:/ are slower and less robust, but require much less storage
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Improved preconditioner: context

Objective

• Compute solution to linear system Ax = b
• A ∈ Rn×n is ill conditioned

LU-based preconditioner

1. Compute approximate factorization A = L̂Û+∆A
◦ Half-precision factorization
◦ Incomplete LU factorization
◦ Structured matrix factorization: Block Low-Rank, H, HSS,…

2. Solve ΠLUAx = ΠLUb with ΠLU = Û−1L̂−1 via some iterative
method

• Convergence to solution may be slow or fail

⇒ Objective: accelerate convergence
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Improved preconditioner: key observation

Matrix lund_a (n = 147, κ(A) = 2.8e+06)
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SVD of A−1

• Often, A is ill conditioned due to a small number of small
singular values

• Then, A−1 is numerically low-rank
42/47 Block Low-Rank Matrices Theo Mary



Improved preconditioner: key idea

Factorization error might be low-rank?

Let the error E = Û−1L̂−1A− I = Û−1L̂−1(L̂Û+∆A)− I

= Û−1L̂−1∆A ≈ A−1∆A
Does E retain the low-rank property of A−1?

A novel preconditioner

Consider the preconditioner
ΠEk = (I+ Ek)−1ΠLU

with Ek a rank-k approximation to E.
• If E = Ek, ΠEk = A−1

• If E ≈ Ek for some small k, ΠEk can be computed cheaply
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Typical SV distributions of A−1 and E
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Typical SV distributions of A−1 and E
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Typical SV distributions of A−1 and E
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Typical SV distributions of A−1 and E
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We did not specifically select matrices for which A−1 is low-rank!
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Computing Ek

We need to compute a rank-k approximation of

E = Û−1L̂−1A− I

E cannot be built explicitly! ⇒ use randomized method

Algorithm 1 Randomized SVD via direct SVD of VTE.
1: Sample E: S = EΩ, with Ω a n× (k+ p) random matrix.
2: Orthonormalize S: V = qr(S). {⇒ E ≈ VVTE.}
3: Compute truncated SVD VTE ≈ XkΣkYTk .
4: Ek ≈ (VXk)ΣkYTk .
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Improved BLR preconditioners

Results for ε = 10−2:

Matrix ΠLU ΠEk
Iter. Time Iter. Time

audikw_1 691 1163 331 625
Bump_2911 — — 284 1708
Emilia_923 174 304 136 267
Fault_639 — — 294 345
Ga41As41H72 — — 135 143
Hook_1498 417 902 356 808
Si87H76 — — 131 116

⇒ performance and robustness improvement
with zero storage overhead
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Conclusion

Takeaway messages

• BLR factorization achieves quadratic dense complexity but
(quasi-)linear sparse complexity with a small number of levels

• A large fraction of this theoretical reduction is converted into
actual time gains, even on large numbers of cores

• It is numerically stable thanks to numerical pivoting and can
efficiently exploit low-precision floating-point arithmetic

⇒ Good compromise between complexity, performance, and
accuracy

Perspectives (my objective for the next O(10) years)

Develop a distributed-memory, high-performance implementation
of a multifrontal, multilevel, multiprecision BLR solver

Slides and papers available here

bit.ly/theomary (list of references on next slide)
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