Block Low-Rank Matrices: Main Results and Recent Advances

Theo Mary
University of Manchester, School of Mathematics
Rutherford Appleton Laboratory, 15 November 2018

Context

Linear system $A x=b$

Often a keystone in scientific computing applications (discretization of PDEs, step of an optimization method, ...)

Large, sparse matrices
Matrix A is sparse (many zeros) but also large $\left(10^{6}-10^{9}\right.$ unknowns)
Direct methods
Factorize $A=L U$ and solve $L U x=b$
(). Numerically reliable
© Computational cost

Challenges and opportunities

Asymptotic Complexity

Direct methods require $O\left(n^{2}\right)$ space and $O\left(n^{3}\right)$ work: unfeasible for large $n \Rightarrow$ exploit structural sparsity and data sparsity to achieve $O(n)$ complexity

Performance and Scalability

Increasingly faster computers available, need to efficiently make use of them to solve larger and larger problems

Accuracy and Stability

Computations are performed in floating-point arithmetic; increasingly low precisions (e.g. fp16) available
Numerical pivoting needed for stability; important to derive meaningful error bounds for large and/or data sparse problems

3D problem complexity

- Flops: $O\left(n^{2}\right)$
- Storage: $O\left(n^{4 / 3}\right)$

Data sparsity

In many cases of interest the matrix has a block low-rank structure

A block B represents the interaction between two subdomains.
Far away subdomains \Rightarrow block of low numerical rank:

$$
\underset{b \times b}{B} \approx \underset{b \times k_{\varepsilon}}{ } \quad k_{\varepsilon} \times b
$$

Flat vs hierarchical matrices

How to choose a good block partitioning of the matrix?

Flat vs hierarchical matrices
How to choose a good block partitioning of the matrix?

BLR matrix

Flat vs hierarchical matrices

How to choose a good block partitioning of the matrix?

BLR matrix

- Superlinear complexity
- Simple, flat structure

\mathcal{H}-matrix
- Nearly linear complexity
- Complex, hierarchical structure

Flat vs hierarchical matrices

How to choose a good block partitioning of the matrix?

BLR matrix

- Superlinear complexity
- Simple, flat structure

\mathcal{H}-matrix
- Nearly linear complexity
- Complex, hierarchical structure

BLR is a comprise between complexity and performance

BLR factorization: standard FCU variant

- FCU

BLR factorization: standard FCU variant

- FCU (Factor,
- Easy to handle numerical pivoting, a critical feature often lacking in other low-rank solvers

BLR factorization: standard FCU variant

- FCU (Factor, Compress,
- Easy to handle numerical pivoting, a critical feature often lacking in other low-rank solvers

BLR factorization: standard FCU variant

- FCU (Factor, Compress, Update)
- Easy to handle numerical pivoting, a critical feature often lacking in other low-rank solvers

BLR factorization: standard FCU variant

- FCU (Factor, Compress, Update)
- Easy to handle numerical pivoting, a critical feature often lacking in other low-rank solvers

BLR factorization: standard FCU variant

- FCU (Factor, Compress, Update)
- Easy to handle numerical pivoting, a critical feature often lacking in other low-rank solvers

BLR factorization: standard FCU variant

- FCU (Factor, Compress, Update)
- Easy to handle numerical pivoting, a critical feature often lacking in other low-rank solvers

BLR factorization: standard FCU variant

- FCU (Factor, Compress, Update)
- Easy to handle numerical pivoting, a critical feature often lacking in other low-rank solvers

BLR factorization: standard FCU variant

- FCU (Factor, Compress, Update)
- Easy to handle numerical pivoting, a critical feature often lacking in other low-rank solvers

BLR factorization: standard FCU variant

- FCU (Factor, Compress, Update)
- Easy to handle numerical pivoting, a critical feature often lacking in other low-rank solvers

BLR factorization: standard FCU variant

- FCU (Factor, Compress, Update)
- Easy to handle numerical pivoting, a critical feature often lacking in other low-rank solvers

BLR factorization: standard FCU variant

- FCU (Factor, Compress, Update)
- Easy to handle numerical pivoting, a critical feature often lacking in other low-rank solvers
- Potential of this variant was studied in
P. Amestoy, C. Ashcraft, O. Boiteau, A. Buttari, J.-Y. L'Excellent, and C. Weisbecker. Improving Multifrontal Methods by Means of Block Low-Rank Representations.

SIAM J. Sci. Comput. (2015).

BLR factorization: CFU variant

- CFU

BLR factorization: CFU variant

- CFU (Compress,

BLR factorization: CFU variant

- CFU (Compress, Factor,
- Factor step is performed on compressed blocks \Rightarrow reduced flops

BLR factorization: CFU variant

- CFU (Compress, Factor, Update)
- Factor step is performed on compressed blocks \Rightarrow reduced flops

BLR factorization: CFU variant

- CFU (Compress, Factor, Update)
- Factor step is performed on compressed blocks \Rightarrow reduced flops
- How can we handle numerical pivoting?

BLR factorization: CFU variant

- CFU (Compress, Factor, Update)
- Factor step is performed on compressed blocks \Rightarrow reduced flops
- How can we handle numerical pivoting?
- Restricting pivot choice to diagonal block is acceptable (in combination with a pivot delaying strategy)

BLR factorization: CFU variant

- CFU (Compress, Factor, Update)
- Factor step is performed on compressed blocks \Rightarrow reduced flops
- How can we handle numerical pivoting?
- Restricting pivot choice to diagonal block is acceptable (in combination with a pivot delaying strategy)
- Must still check entries in off-diagonal blocks: can be estimated from entries in low-rank blocks

Outline

| Algorithms and Complexity (joint work with P. Amestoy, A. Buttari, JY. L'Excellent)

- Asymptotic complexity analysis
- Multilevel BLR format
\| Performance and Scalability (joint work with PA, AB, JYL)
- Multicore performance
- Distributed-memory scalability

III Accuracy and Stability (joint work with N. Higham)

- BLR error analysis
- Use as a low-accuracy preconditioner

Algorithms and Complexity

Section 1

Asymptotic complexity analysis

P. Amestoy, A. Buttari, J.-Y. L'Excellent, and T. Mary. On the Complexity of the Block Low-Rank Multifrontal Factorization. SIAM J. Sci. Comput. (2017).

Computing the BLR complexity

Assume all off-diagonal blocks are low-rank. Then:

$$
\left.\begin{array}{rl}
\text { Storage } & =\operatorname{cost}_{L R} * n b_{L R}+\operatorname{cost}_{F R} * n b_{F R} \\
& =O(b r) * O\left(\left(\frac{m}{b}\right)^{2}\right)+O\left(b^{2}\right) * O\left(\frac{m}{b}\right) \\
& =O\left(m^{2} r / b+m b\right) \\
& =O\left(m^{3 / 2} \mathbf{r}\right. \\
\mathbf{r}
\end{array}\right) \text { for } b=(m r)^{1 / 2} .
$$

Computing the BLR complexity

Assume all off-diagonal blocks are low-rank. Then:

$$
\begin{aligned}
\text { Storage } & =\operatorname{cost}_{L R} * n b_{L R}+\operatorname{cost}_{F R} * n b_{F R} \\
& =O(b r) * O\left(\left(\frac{m}{b}\right)^{2}\right)+O\left(b^{2}\right) * O\left(\frac{m}{b}\right) \\
& =O\left(m^{2} r / b+m b\right) \\
& =O\left(m^{3 / 2} \mathbf{r}^{1 / 2}\right) \text { for } b=(m r)^{1 / 2}
\end{aligned}
$$

FlopLU $=\operatorname{cost}_{\text {getrf }} * n b_{\text {getrf }}+$ cost trsm $* n b_{\text {trsm }}+\operatorname{costgemm} * n b_{\text {gemm }}$

$$
\begin{aligned}
& =O\left(b^{3}\right) * O\left(\frac{m}{b}\right)+O\left(b^{3}\right) * O\left(\left(\frac{m}{b}\right)^{2}\right)+O\left(b r^{2}\right) * O\left(\left(\frac{m}{b}\right)^{3}\right) \\
& =O\left(m b^{2}+m^{2} b+m^{3} r^{2} / b^{2}\right) \\
& =O\left(m^{7 / 3} \mathbf{r}^{2 / 3}\right) \text { for } b=\left(m r^{2}\right)^{1 / 3}
\end{aligned}
$$

Computing the BLR complexity

Assume all off-diagonal blocks are low-rank. Then:

$$
\begin{aligned}
\text { Storage } & =\operatorname{cost}_{\angle R} * n b_{L R}+\operatorname{cost}_{F R} * n b_{F R} \\
& =O(b r) * O\left(\left(\frac{m}{b}\right)^{2}\right)+O\left(b^{2}\right) * O\left(\frac{m}{b}\right) \\
& =O\left(m^{2} r / b+m b\right) \\
& =O\left(m^{3 / 2} \mathbf{r}^{1 / 2}\right) \text { for } b=(m r)^{1 / 2}
\end{aligned}
$$

FlopLU $=\operatorname{cost}_{\text {getrf }} * n b_{\text {getrf }}+$ cost trsm $* n b_{\text {trsm }}+\operatorname{costgemm} * n b_{\text {gemm }}$

$$
\begin{aligned}
& =O\left(b^{3}\right) * O\left(\frac{m}{b}\right)+O\left(b^{2} b^{2} r\right) * O\left(\left(\frac{m}{b}\right)^{2}\right)+O\left(b r^{2}\right) * O\left(\left(\frac{m}{b}\right)^{3}\right) \\
& \left.=O\left(m b^{2}+m^{2}\right) \not b r+m^{3} r^{2} / b^{2}\right) \\
& =O\left(m^{7 / 3+3} m^{2} r\right) \text { for } b=\left(m m^{2}\right)^{1+3}(m r)^{1 / 2}
\end{aligned}
$$

CFU variant improves asymptotic complexity!

Computing the BLR complexity

Assume all off-diagonal blocks are low-rank. Then:

$$
\begin{aligned}
\text { Storage } & =\operatorname{cost}_{L R} * n b_{L R}+\text { cost }_{F R} * n b_{F R} \\
& =O(b r) * O\left(\left(\frac{m}{b}\right)^{2}\right)+O\left(b^{2}\right) * O\left(\frac{m}{b}\right) \\
& =O\left(m^{2} r / b+m b\right) \\
& =O\left(m^{3 / 2} \mathbf{r}^{1 / 2}\right) \text { for } b=(m r)^{1 / 2}
\end{aligned}
$$

FlopLU $=\operatorname{cost}_{\text {getrf }} * n b_{\text {getrf }}+$ cost trsm $* n b_{\text {trsm }}+\operatorname{costgemm} * n b_{\text {gemm }}$

$$
\begin{aligned}
& =O\left(b^{3}\right) * O\left(\frac{m}{b}\right)+O\left(b^{2} b^{2} r\right) * O\left(\left(\frac{m}{b}\right)^{2}\right)+O\left(b r^{2}\right) * O\left(\left(\frac{m}{b}\right)^{3}\right) \\
& \left.=O\left(m b^{2}+m^{2}\right) \not b r+m^{3} r^{2} / b^{2}\right) \\
& =O\left(m^{7 / 3+3} m^{2} r\right) \text { for } b=\left(m m^{2}\right)^{1+3}(m r)^{1 / 2}
\end{aligned}
$$

CFU variant improves asymptotic complexity!
Result holds if a constant number of off-diag. blocks is full-rank.

From dense to sparse: nested dissection

From dense to sparse: nested dissection

Factorizing a sparse matrix amounts to factorizing a sequence of dense matrices

$$
\Rightarrow
$$

sparse complexity is directly derived from dense one
Proceed recursively to compute separator tree

Nested dissection complexity formulas

In the 2D case:

$$
\mathcal{C}_{\text {sparse }}=\sum_{\ell=0}^{\log N} 4^{\ell} \mathcal{C}_{\text {dense }}\left(\frac{N}{2^{\ell}}\right)
$$

Nested dissection complexity formulas

In the 2D case:

$$
\mathcal{C}_{\text {sparse }}=\sum_{\ell=0}^{\log N} 4^{\ell} \mathcal{C}_{\text {dense }}\left(\frac{N}{2^{\ell}}\right)=N^{\alpha} \sum_{\ell=0}^{\log N} 2^{(2-\alpha) \ell}
$$

If $\mathcal{C}_{\text {dense }}=O\left(m^{\alpha}\right), \mathcal{C}_{\text {sparse }}$ is a geom. series of common ratio $2^{2-\alpha}$:

$$
\mathcal{C}_{\text {sparse }}= \begin{cases}O\left(n^{\alpha / 2}\right) & \text { if } \alpha>2 \\ O(n \log n) & \text { if } \alpha=2 \\ O(n) & \text { if } \alpha<2\end{cases}
$$

Nested dissection complexity formulas

In the 2D case:

$$
\mathcal{C}_{\text {sparse }}=\sum_{\ell=0}^{\log N} 4^{\ell} \mathcal{C}_{\text {dense }}\left(\frac{N}{2^{\ell}}\right)=N^{\alpha} \sum_{\ell=0}^{\log N} 2^{(2-\alpha) \ell}
$$

If $\mathcal{C}_{\text {dense }}=O\left(m^{\alpha}\right), \mathcal{C}_{\text {sparse }}$ is a geom. series of common ratio $2^{2-\alpha}$:

$$
\mathcal{C}_{\text {sparse }}= \begin{cases}O\left(n^{\alpha / 2}\right) & \text { if } \alpha>2 \\ O(n \log n) & \text { if } \alpha=2 \\ O(n) & \text { if } \alpha<2\end{cases}
$$

Similar formulas in the 3D case:

$$
\begin{gathered}
\mathcal{C}_{\text {sparse }}=\sum_{\ell=0}^{\log N} 8^{\ell} \mathcal{C}_{\text {dense }}\left(\frac{N^{2}}{4^{\ell}}\right)=N^{2 \alpha} \sum_{\ell=0}^{\log N} 2^{(3-2 \alpha) \ell} \\
\mathcal{C}_{\text {sparse }}= \begin{cases}O\left(n^{2 \alpha / 3}\right) & \text { if } \alpha>1.5 \\
O(n \log n) & \text { if } \alpha=1.5 \\
O(n) & \text { if } \alpha<1.5\end{cases}
\end{gathered}
$$

Complexity of the BLR factorization

	storage				
flops					
dense	FR	$O\left(m^{2}\right)$	$O\left(m^{3}\right)$		
	BLR	$O\left(m^{3 / 2}\right)$	$O\left(m^{2}\right)$		
sparse 2D	FR	$O(n \log n)$	$O\left(n^{3 / 2}\right)$		
	BLR	$O(n)$	$O(n \log n)$		
		assuming $r=O(1))$			

- In a 2D world hierarchical matrices would not be needed

Complexity of the BLR factorization

	storage		
flops			
dense	FR	$O\left(m^{2}\right)$	$O\left(m^{3}\right)$
	BLR	$O\left(m^{3 / 2}\right)$	$O\left(m^{2}\right)$
sparse 2D	FR	$O(n \log n)$	$O\left(n^{3 / 2}\right)$
	BLR	$O(n)$	$O(n \log n)$
sparse 3D	FR	$O\left(n^{4 / 3}\right)$	$O\left(n^{2}\right)$
	BLR	$O(n \log n)$	$O\left(n^{4 / 3}\right)$
(assuming $r=O(1))$			

- In a 2D world hierarchical matrices would not be needed
- Superlinear complexities in 3D

Experimental complexity fit: 3D Poisson $\left(\varepsilon=10^{-10}\right)$

Storage

Flops

- Good agreement with theoretical complexity:
- Storage: $O(n \log n) \rightarrow O\left(n^{1.1} \log n\right)$
- Flops: $O\left(n^{4 / 3}\right) \rightarrow O\left(n^{1.3}\right)$

Section 2

The multilevel BLR format

P. Amestoy, A. Buttari, J.-Y. L'Excellent, and T. Mary. Bridging the gap between flat and hierarchical low-rank matrix formats: the multilevel BLR format. Submitted (2018).

Assume all off-diagonal blocks are low-rank. Then:

$$
\text { Storage }=\operatorname{cost}_{L R} * n b_{L R}+\operatorname{cost}_{B L R} * n b_{B L R}
$$

$$
\begin{aligned}
& =O(b r) * O\left(\left(\frac{m}{b}\right)^{2}\right)+O\left(b^{3 / 2} r^{1 / 2}\right) * O\left(\frac{m}{b}\right) \\
& =O\left(m^{2} r / b+m(b r)^{1 / 2}\right) \\
& =O\left(m^{4 / 3} r^{2 / 3}\right) \text { for } b=\left(m^{2} r\right)^{1 / 3}
\end{aligned}
$$

Assume all off-diagonal blocks are low-rank. Then:

$$
\begin{aligned}
\text { Storage } & =\operatorname{cost} \\
& =O(b r) * O\left(\left(\frac{m}{b}\right)^{2}\right)+O\left(b^{3 / 2} r^{1 / 2}\right) * O\left(\frac{m}{b}\right) \\
& =O\left(m^{2} r / b+m(b r)^{1 / 2}\right) \\
& =O\left(m^{4 / 3} r^{2 / 3}\right) \text { for } b=\left(m^{2} r\right)^{1 / 3}
\end{aligned}
$$

Similarly, we can prove:
Flop $L U=\mathbf{O}\left(\boldsymbol{m}^{5 / 3} \mathbf{r}^{4 / 3}\right)$ for $b=\left(m^{2} r\right)^{1 / 3}$
Result holds if a constant number of off-diag. blocks is BLR.

Assume all off-diagonal blocks are low-rank. Then:

$$
\begin{aligned}
\text { Storage } & =\operatorname{cost}_{L R} * n b_{L R}+\operatorname{cost}_{B L R} * n b_{B L R} \\
& =O(b r) * O\left(\left(\frac{m}{b}\right)^{2}\right)+O\left(b^{3 / 2} r^{1 / 2}\right) * O\left(\frac{m}{b}\right) \\
& =O\left(m^{2} r / b+m(b r)^{1 / 2}\right) \\
& =O\left(m^{4 / 3} r^{2 / 3}\right) \text { for } b=\left(m^{2} r\right)^{1 / 3}
\end{aligned}
$$

Similarly, we can prove:

$$
\text { Flop } L U=\mathbf{O}\left(\mathbf{m}^{5 / 3} \mathbf{r}^{4 / 3}\right) \text { for } b=\left(m^{2} r\right)^{1 / 3}
$$

Result holds if a constant number of off-diag. blocks is BLR.

		FR	BLR	$2-B L R$	\ldots	\mathcal{H}
storage	dense	$O\left(m^{2}\right)$	$O\left(m^{1.5}\right)$	$O\left(m^{1.33}\right)$	\ldots	$O(m \log m)$
	sparse	$O\left(n^{1.33}\right)$	$O(n \log n)$	$O(n)$	\ldots	$O(n)$
flop LU	dense	$O\left(m^{3}\right)$	$O\left(m^{2}\right)$	$O\left(m^{1.66}\right)$	\ldots	$O\left(m \log ^{3} m\right)$
	sparse	$O\left(n^{2}\right)$	$O\left(n^{1.33}\right)$	$O\left(n^{1.11}\right)$	\ldots	$O(n)$

Multilevel BLR complexity

Main result

For $b=m^{\ell /(\ell+1)} r^{1 /(\ell+1)}$, the ℓ-level complexities are:

$$
\begin{aligned}
& \text { Storage }=\mathbf{O}\left(\mathbf{m}^{(\ell+2) /(\ell+1)} \mathbf{r}^{\ell /(\ell+1)}\right) \\
& \text { FlopLU }=\mathbf{O}\left(\mathbf{m}^{(\ell+3) /(\ell+1)} \mathbf{r}^{2 \ell /(\ell+1)}\right)
\end{aligned}
$$

Multilevel BLR complexity

Main result

For $b=m^{\ell /(\ell+1)} r^{1 /(\ell+1)}$, the ℓ-level complexities are:

$$
\begin{aligned}
& \text { Storage }=\mathbf{O}\left(\mathbf{m}^{(\ell+2) /(\ell+1)} \mathbf{r}^{\ell /(\ell+1)}\right) \\
& \text { FlopLU }=\mathbf{O}\left(\mathbf{m}^{(\ell+3) /(\ell+1)} \mathbf{r}^{2 \ell /(\ell+1)}\right)
\end{aligned}
$$

	$\ell=1$	$\ell=2$
Dense	$O\left(m^{2}\right)$	$O\left(m^{1.66}\right)$
Sparse 3D	$O\left(n^{1.33}\right)$	$O\left(n^{1.11}\right)$

Multilevel BLR complexity

Main result

For $b=m^{\ell /(\ell+1)} r^{1 /(\ell+1)}$, the ℓ-level complexities are:

$$
\begin{aligned}
& \text { Storage }=\mathbf{O}\left(\mathbf{m}^{(\ell+2) /(\ell+1)} \mathbf{r}^{\ell /(\ell+1)}\right) \\
& \text { FlopLU }=\mathbf{O}\left(\mathbf{m}^{(\ell+3) /(\ell+1)} \mathbf{r}^{2 \ell /(\ell+1)}\right)
\end{aligned}
$$

	$\ell=1$	$\ell=2$	$\ell=3$
Dense	$O\left(m^{2}\right)$	$O\left(m^{1.66}\right)$	$O\left(m^{1.5}\right)$
Sparse 3D	$O\left(n^{1.33}\right)$	$O\left(n^{1.11}\right)$	$O(n \log n)$

Multilevel BLR complexity

Main result

For $b=m^{\ell /(\ell+1)} r^{1 /(\ell+1)}$, the ℓ-level complexities are:

$$
\begin{aligned}
& \text { Storage }=\mathbf{O}\left(\mathbf{m}^{(\ell+2) /(\ell+1)} \mathbf{r}^{\ell /(\ell+1)}\right) \\
& \text { FlopLU }=\mathbf{O}\left(\mathbf{m}^{(\ell+3) /(\ell+1)} \mathbf{r}^{2 \ell /(\ell+1)}\right)
\end{aligned}
$$

	$\ell=1$	$\ell=2$	$\ell=3$	$\ell=4$
Dense	$O\left(m^{2}\right)$	$O\left(m^{1.66}\right)$	$O\left(m^{1.5}\right)$	$O\left(m^{1.4}\right)$
Sparse 3D	$O\left(n^{1.33}\right)$	$O\left(n^{1.11}\right)$	$O(n \log n)$	$O(n)$

Multilevel BLR complexity

Main result

For $b=m^{\ell /(\ell+1)} r^{1 /(\ell+1)}$, the ℓ-level complexities are:

$$
\begin{aligned}
& \text { Storage }=\mathbf{O}\left(\mathbf{m}^{(\ell+2) /(\ell+1)} \mathbf{r}^{\ell /(\ell+1)}\right) \\
& \text { FlopLU }=\mathbf{O}\left(\mathbf{m}^{(\ell+3) /(\ell+1)} \mathbf{r}^{2 \ell /(\ell+1)}\right)
\end{aligned}
$$

	$\ell=1$	$\ell=2$	$\ell=3$	$\ell=4$
Dense	$O\left(m^{2}\right)$	$O\left(m^{1.66}\right)$	$O\left(m^{1.5}\right)$	$O\left(m^{1.4}\right)$
Sparse 3D	$O\left(n^{1.33}\right)$	$O\left(n^{1.11}\right)$	$O(n \log n)$	$O(n)$

$\Rightarrow \mathcal{H}$ matrices typically use $10+$ levels... but only 4 are enough!

Numerical experiments (3D Poisson)

Storage

Flop LU

- Experimental complexity in relatively good agreement with theoretical one
- Asymptotic gain decreases with levels

Performance and Scalability

Section 3

Multicore performance

P. Amestoy, A. Buttari, J.-Y. L'Excellent, and T. Mary. Performance and Scalability of the Block Low-Rank Multifrontal Factorization on Multicore Architectures. ACM Trans. Math. Soft. (2018).

Shared-memory performance analysis

> Matrix S3

Double complex (z) symmetric Electromagnetics application (CSEM)
3.3 millions unknowns

Required accuracy: $\varepsilon=10^{-7}$
D. Shantsev, P. Jaysaval, S. Kethulle de Ryhove, P. Amestoy, A. Buttari, J.-Y. L'Excellent, and T. Mary. Large-scale 3D EM modeling with a
 Block Low-Rank multifrontal direct solver. Geophys. J. Int (2017).
flops $\left(\times 10^{12}\right)$ time (1 core) time (24 cores)

FR	78.0	7390	509
BLR	10.2	2242	309
ratio	7.7	3.3	1.7

7.7 gain in flops only translated to a 1.7 gain in time:

Can we do better?

BLR variants

Variant name	Clops $\left(\times 10^{12}\right)$	time	
Full-Rank	n^{2}	78.0	509
FCU	$n^{1.67} r^{0.5}$	10.2	307

BLR variants

Tree parallelism improves performance by reducing the relative cost of the fronts at the bottom of the tree, which achieve poor compression

Variant name	\mathcal{C}	flops $\left(\times 10^{12}\right)$	time
Full-Rank	n^{2}	78.0 $=$	509
+Tree par.	$=$	418	
FCU	$n^{1.67} r^{0.5}$	10.2 307 + $=$	221
+Tree par.	$=$		

BLR variants

Left-looking FCU improves performance thanks to a left-looking approach which reduces memory transfers

Variant name	\mathcal{C}	flops $\left(\times 10^{12}\right)$	time
Full-Rank	n^{2}	78.0 $=$	509
+Tree par.	$=$	10.2	307
FCU	$n^{1.67} r^{0.5}$	$=$	221
+Tree par.	$=$	$=$	175
+Left-looking	$=$		

BLR variants

LUA improves performance because it accumulates multiple low-rank updates and applies them at once increasing the granularity of operations

Variant name	\mathcal{C}	flops $\left(\times 10^{12}\right)$	time
Full-Rank	n^{2}	78.0 $=$	509
+Tree par.	$=$	418	
FCU	$n^{1.67} r^{0.5}$	10.2 307 +Tree par. $=$ +Left-looking $=$ +LUA $=$	$=$
		$=$	175

BLR variants

LUAR reduces complexity because recompresses accumulated updates on the fly

Variant name	\mathcal{C}	flops $\left(\times 10^{12}\right)$	time
Full-Rank	n^{2}	78.0 $=$	509
+ Tree par.	$=$	418	
FCU	$n^{1.67} r^{0.5}$	10.2	307
+Tree par.	$=$	$=$	221
+Left-looking	$=$	$=$	175
+LUA	$=$	$=$	167
+LUAR	$n^{1.55} r^{0.66}$	8.1	160

BLR variants

CFU reduces complexity because solve operations are also done in low-rank

Variant name	\mathcal{C}	flops $\left(\times 10^{12}\right)$	time
Full-Rank	n^{2}	78.0	509
+ Tree par.	$=$	$=$	418
FCU	$n^{1.67} r^{0.5}$	10.2	307
+Tree par.	$=$	$=$	221
+Left-looking	$=$	$=$	175
+LUA	$=$	$=$	167
+LUAR	$n^{1.55} r^{0.66}$	8.1	160
+CFU	$n^{1.33} r$	3.9	111

BLR variants

Variant name	\mathcal{C}	flops $\left(\times 10^{12}\right)$	time
Full-Rank	n^{2}	78.0 509 +Tree par. $=$	418
FCU	$n^{1.67} r^{0.5}$	10.2	307
+Tree par.	$=$	$=$	221
+Left-looking	$=$	$=$	175
+LUA	$=$	$=$	167
+LUAR	$n^{1.55} r^{0.66}$	8.1	160
+CFU	$n^{1.33} r$	3.9	111

$\Rightarrow 1.7$ gain becomes 3.3

Multicore performance results (24 threads)

Section 4

Distributed-memory scalability

Distributed-memory scalability analysis

Results on $300 \rightarrow 900$ cores
(eos supercomputer, CALMIP)

Matrix 10 Hz

Single complex (c) unsymmetric Seismic imaging application (FWI)

17 millions unknowns Required accuracy: $\varepsilon=10^{-3}$
P. Amestoy, R. Brossier, A. Buttari, J.-Y. L'Excellent, T. Mary, L. Métivier, A. Miniussi, and S. Operto. Fast 3D frequencydomain full waveform inversion with a parallel Block LowRank multifrontal direct solver: application to OBC data from the North Sea. Geophysics (2016).

How to improve the scalability of the BLR factorization?
Two main difficulties:

- Higher weight of communications: flops reduced by 13 but volume of communications only by 2
- Unpredictability of compression: more difficult to design good mapping and scheduling strategies

Type of messages

Type of messages

LU messages

- Volume of LU messages is reduced by compressing the factors
© Reduces operation count, communications, and memory consumption

Type of messages

LU messages

- Volume of $L U$ messages is reduced by compressing the factors
© Reduces operation count, communications, and memory consumption
- Volume of CB messages can be reduced by compressing the CB
© Reduces communications and memory consumption
(3) Increases operation count unless assembly is done in LR

Communication analysis

- FR case: LU messages dominate

Theoretical communication bounds

	$\mathcal{W}_{L U}$	$\mathcal{W}_{C B}$	$\mathcal{W}_{\text {tot }}$
FR	$\mathcal{O}\left(n^{4 / 3} p\right)$	$\mathcal{O}\left(n^{4 / 3}\right)$	$\mathcal{O}\left(n^{4 / 3} p\right)$

Communication analysis

- FR case: LU messages dominate
- BLR case: CB messages dominate \Rightarrow underwhelming reduction of communications

Theoretical communication bounds

	$\mathcal{W}_{L U}$	$\mathcal{W}_{C B}$	$\mathcal{W}_{\text {tot }}$
FR	$\mathcal{O}\left(n^{4 / 3} p\right)$	$\mathcal{O}\left(n^{4 / 3}\right)$	$\mathcal{O}\left(n^{4 / 3} p\right)$
BLR (CB $\left.{ }_{F R}\right)$	$\mathcal{O}\left(n r^{1 / 2} p\right)$	$\mathcal{O}\left(n^{4 / 3}\right)$	$\mathcal{O}\left(n r^{1 / 2} p+n^{4 / 3}\right)$

Communication analysis

- FR case: LU messages dominate
- BLR case: CB messages dominate \Rightarrow underwhelming reduction of communications
\Rightarrow CB compression allows for truly reducing the communications

Theoretical communication bounds

	$\mathcal{W}_{L U}$	$\mathcal{W}_{C B}$	$\mathcal{W}_{\text {tot }}$
FR	$\mathcal{O}\left(n^{4 / 3} p\right)$	$\mathcal{O}\left(n^{4 / 3}\right)$	$\mathcal{O}\left(n^{4 / 3} p\right)$
BLR (CB	FR $)$	$\mathcal{O}\left(n r^{1 / 2} p\right)$	$\mathcal{O}\left(n^{4 / 3}\right)$
$\mathcal{O}\left(n r^{1 / 2} p+n^{4 / 3}\right)$			
BLR (CB $\left.\mathrm{CB}_{L R}\right)$	$\mathcal{O}\left(n r^{1 / 2} p\right)$	$\mathcal{O}\left(n r^{1 / 2}\right)$	$\mathcal{O}\left(n r^{1 / 2} p\right)$

Performance impact of the CB compression

matrix order	$\begin{aligned} & 10 \mathrm{~Hz} \\ & 17 \mathrm{M} \end{aligned}$	$\begin{aligned} & 15 \mathrm{~Hz} \\ & 58 \mathrm{M} \end{aligned}$
factor flops (FR)	2.6 PF	29.6 PF
\Rightarrow BLR ($\mathrm{CB}_{\text {FR }}$)	0.1 PF (5.3\%)	1.0 PF (3.3\%)
\Rightarrow BLR ($\mathrm{CB}_{L R}$)	0.2 PF (6.1\%)	1.1 PF (3.7\%)
$\mathrm{CB}_{L R}$ flops impact	+15\%	+12\%
factor time (FR)	601	5,206
$\Rightarrow \mathrm{BLR}\left(\mathrm{CB}_{\text {FR }}\right)$	123 (4.9)	838 (6.2)
$\Rightarrow \operatorname{BLR}\left(\mathrm{CB}_{L R}\right)$	213 (2.8)	856 (6.1)
CBLR time impact		
comm. volume (FR)	5.3 TB	29.6 TB
comm. volume ($\mathrm{CB}_{\text {FR }}$)	1.7 TB (3.2)	13.3 TB (2.2)
comm. volume ($\mathrm{CB}_{L R}$)	0.6 TB (9.1)	1.2 TB (23.2)

Performance impact of the CB compression

matrix order	$\begin{aligned} & 10 \mathrm{~Hz} \\ & 17 \mathrm{M} \end{aligned}$	$\begin{aligned} & 15 \mathrm{~Hz} \\ & 58 \mathrm{M} \end{aligned}$
factor flops (FR)	2.6 PF	29.6 PF
$\Rightarrow \operatorname{BLR}\left(\mathrm{CB}_{F R}\right)$	0.1 PF (5.3\%)	1.0 PF (3.3\%)
$\Rightarrow \mathrm{BLR}\left(\mathrm{CB}_{L R}\right)$	0.2 PF (6.1\%)	1.1 PF (3.7\%)
$\mathrm{CB}_{\text {LR }}$ flops impact	+15\%	+12\%
factor time (FR)	601	5,206
$\Rightarrow \operatorname{BLR}\left(\mathrm{CB}_{\text {FR }}\right)$	123 (4.9)	838 (6.2)
$\Rightarrow \operatorname{BLR}\left(\mathrm{CB}_{L R}\right)$	213 (2.8)	856 (6.1)
$\mathrm{CB}_{L R}$ time impact	+73\%	+2\%
comm. volume (FR)	5.3 TB	29.6 TB
comm. volume ($\mathrm{CB}_{F R}$)	1.7 TB (3.2)	13.3 TB (2.2)
comm. volume ($\mathrm{CB}_{L R}$)	0.6 TB (9.1)	1.2 TB (23.2)

Performance impact of the CB compression

matrix order	$\begin{aligned} & 10 \mathrm{~Hz} \\ & 17 \mathrm{M} \end{aligned}$	$\begin{aligned} & 15 \mathrm{~Hz} \\ & 58 \mathrm{M} \end{aligned}$
factor flops (FR)	2.6 PF	29.6 PF
$\Rightarrow \operatorname{BLR}\left(\mathrm{CB}_{F R}\right)$	0.1 PF (5.3\%)	1.0 PF (3.3\%)
$\Rightarrow \operatorname{BLR}\left(\mathrm{CB}_{L R}\right)$	0.2 PF (6.1\%)	1.1 PF (3.7\%)
$\mathrm{CB}_{\text {LR }}$ flops impact	+15\%	+12\%
factor time (FR)	601	5,206
$\Rightarrow \operatorname{BLR}\left(\mathrm{CB}_{F R}\right)$	123 (4.9)	838 (6.2)
\Rightarrow BLR ($\mathrm{CB}_{L R}$)	213 (2.8)	856 (6.1)
$C B_{L R}$ time impact	+73\%	+2\%
comm. volume (FR)	5.3 TB	29.6 TB
comm. volume ($\mathrm{CB}_{F R}$)	1.7 TB (3.2)	13.3 TB (2.2)
comm. volume ($\mathrm{CB}_{L R}$)	0.6 TB (9.1)	1.2 TB (23.2)

\Rightarrow CB compression becomes increasingly critical?

Results on very large problems

Results from
팁
T. Mary. Block Low-Rank multifrontal solvers: complexity, performance, and scalability. PhD thesis (2017).
(Chapter 9, Future challenges for large-scale BLR solvers)

Matrix $20 \mathrm{~Hz}(N=130 \mathrm{M}$, seismic imaging) on 2400 cores:				
	flops	factors storage	memory peak	time
FR	150.0 PF	11.0 TB	151.0 GB	OOM
BLR	3.6 PF	1.8 TB	81.0 GB	2641 s
ratio	42.0	6.0	1.9	

Accuracy and Stability

Section 5

Error analysis of BLR factorizations

Why we need an error analysis

Each off-diagonal block B is approximated by a low-rank matrix \widetilde{B} such that $\|B-\widetilde{B}\| \leq \varepsilon$
$\left\|A-L_{\varepsilon} U_{\varepsilon}\right\| \neq \varepsilon$ because of error propagation \Rightarrow What is the overall accuracy $\left\|A-L_{\varepsilon} \cup_{\varepsilon}\right\|$?

- Can we prove that $\left\|A-L_{\varepsilon} \cup_{\varepsilon}\right\|=O(\varepsilon)$?
- What is the error growth, i.e., how does the error depend on the matrix size m ?
- How do the different variants (FCU, CFU, etc.) compare?
- Should we use an absolute threshold $(\|B-\widetilde{B}\| \leq \varepsilon)$ or a relative one $(\|B-\widetilde{B}\| \leq \varepsilon\|B\|)$?

Some ingredients for the proof

The proof is based on Stability of Block Algorithms with Fast Level-3 BLAS (Demmel and Higham, 1992)

$$
A=\left[\begin{array}{ll}
A_{11} & A_{12} \\
A_{21} & A_{22}
\end{array}\right]
$$

Inductive proof: easy to bound error of computing
$S=A_{22}-L_{21} \cup_{12}$ and error of $S=L_{22} U_{22}$ is obtained by induction

Some ingredients for the proof

The proof is based on Stability of Block Algorithms with Fast Level-3 BLAS (Demmel and Higham, 1992)

$$
A=\left[\begin{array}{ll}
A_{11} & A_{12} \\
A_{21} & A_{22}
\end{array}\right]
$$

Inductive proof: easy to bound error of computing
$S=A_{22}-L_{21} \cup_{12}$ and error of $S=L_{22} U_{22}$ is obtained by induction

For BLR, several specific difficulties arise:

- Need to bound error of low-rank product kernel:

$$
C=\widetilde{A} \widetilde{B}=X_{A}\left(Y_{A}^{\top} X_{B}\right) Y_{B}^{\top}
$$

- Choice of norm matters: to obtain best constants possible, we need a consistent, unitarily invariant norm
- Global bound is obtained from blockwise bounds \Rightarrow we work with the Frobenius norm

Main result

Reminder

The full-rank LU factorization of $A \in \mathbb{R}^{n \times n}$ satisfies

$$
\|A-L U\| \leq n u\|L\|\|U\|+O\left(u^{2}\right)
$$

Main result

The FCU BLR factorization of $A \in \mathbb{R}^{n \times n}$ with relative threshold ε satisfies

$$
\left\|A-L_{\varepsilon} \cup_{\varepsilon}\right\| \leq(n u+\varepsilon)\|L\|\|U\|+O(u \varepsilon)+O\left(u^{2}\right)
$$

Main result

Main result

The FCU BLR factorization of $A \in \mathbb{R}^{n \times n}$ with relative threshold ε satisfies

$$
\left\|A-L_{\varepsilon} \cup_{\varepsilon}\right\| \leq(n u+\varepsilon)\|L\|\|U\|+O(u \varepsilon)+O\left(u^{2}\right)
$$

- $\|L\|\|U\| \leq n^{2} \rho_{n}\|A\|$ where ρ_{n} is the growth factor \Rightarrow with partial pivoting, the BLR factorization is stable!

Main result

Main result

The FCU BLR factorization of $A \in \mathbb{R}^{n \times n}$ with relative threshold ε satisfies

$$
\left\|A-L_{\varepsilon} \cup_{\varepsilon}\right\| \leq(n u+\varepsilon)\|L\|\|U\|+O(u \varepsilon)+O\left(u^{2}\right)
$$

- $\|L\|\|U\| \leq n^{2} \rho_{n}\|A\|$ where ρ_{n} is the growth factor \Rightarrow with partial pivoting, the BLR factorization is stable!
- Usually $\varepsilon \gg u$:
\Rightarrow Role of u is limited
\Rightarrow Very slow error growth
\Rightarrow Usage of fast matrix arithmetic may be stable in BLR

Main result

Main result

The FCU BLR factorization of $A \in \mathbb{R}^{n \times n}$ with relative threshold ε satisfies

$$
\left\|A-L_{\varepsilon} \cup_{\varepsilon}\right\| \leq(n u+\varepsilon)\|L\|\|U\|+O(u \varepsilon)+O\left(u^{2}\right)
$$

- $\|L\|\left\|\|U\| \leq n^{2} \rho_{n}\right\| A \|$ where ρ_{n} is the growth factor \Rightarrow with partial pivoting, the BLR factorization is stable!
- Usually $\varepsilon \gg u$:
\Rightarrow Role of u is limited
\Rightarrow Very slow error growth
\Rightarrow Usage of fast matrix arithmetic may be stable in BLR

Main result

Main result

The FCU BLR factorization of $A \in \mathbb{R}^{n \times n}$ with relative threshold ε satisfies

$$
\left\|A-L_{\varepsilon} \cup_{\varepsilon}\right\| \leq(n u+\varepsilon)\|L\|\|U\|+O(u \varepsilon)+O\left(u^{2}\right)
$$

- $\|L\|\left\|\|U\| \leq n^{2} \rho_{n}\right\| A \|$ where ρ_{n} is the growth factor \Rightarrow with partial pivoting, the BLR factorization is stable!
- Usually $\varepsilon \gg u$:
\Rightarrow Role of u is limited
\Rightarrow Very slow error growth
\Rightarrow Usage of fast matrix arithmetic may be stable in BLR

Main result

Main result

The FCU BLR factorization of $A \in \mathbb{R}^{n \times n}$ with relative threshold ε satisfies

$$
\left\|A-L_{\varepsilon} \cup_{\varepsilon}\right\| \leq(n u+\varepsilon)\|L\|\|U\|+O(u \varepsilon)+O\left(u^{2}\right)
$$

- $\|L\|\left\|\|U\| \leq n^{2} \rho_{n}\right\| A \|$ where ρ_{n} is the growth factor \Rightarrow with partial pivoting, the BLR factorization is stable!
- Usually $\varepsilon \gg u$:
\Rightarrow Role of u is limited
\Rightarrow Very slow error growth
\Rightarrow Usage of fast matrix arithmetic may be stable in BLR

For example with Strassen's algorithm, $n u \rightarrow n^{\log _{2} 12} u \approx n^{3.6} u$

Ongoing work with C.-P. Jeannerod, C. Pernet, and D. Roche: Exploiting fast matrix arithmetic within BLR factorizations:
$O\left(n^{2}\right)$ complexity $\rightarrow O\left(n^{(\omega+1) / 2}\right)$ ($\approx O\left(n^{1.9}\right)$ for Strassen)

Relative vs absolute threshold

Theorem

The FCU BLR factorization of $A \in \mathbb{R}^{n \times n}$ with absolute threshold ε satisfies

$$
\left\|A-L_{\varepsilon} U_{\varepsilon}\right\| \leq(n u+\theta \varepsilon)\|L\|\|U\|+O(u \varepsilon)+O\left(u^{2}\right)
$$

where $\theta=\sqrt{n / b-1} \sum_{i=1}^{n / b}\left\|L_{i i}\right\|+\left\|U_{i i}\right\|$

The BLR factorization with absolute threshold
(2) Has a faster error growth
© Is scaling-dependent

Relative vs absolute threshold

Theorem

The FCU BLR factorization of $A \in \mathbb{R}^{n \times n}$ with absolute threshold ε satisfies

$$
\left\|A-L_{\varepsilon} U_{\varepsilon}\right\| \leq(n u+\theta \varepsilon)\|L\|\|U\|+O(u \varepsilon)+O\left(u^{2}\right)
$$

where $\theta=\sqrt{n / b-1} \sum_{i=1}^{n / b}\left\|L_{i i}\right\|+\left\|U_{i i}\right\|$

The BLR factorization with absolute threshold
(2) Has a faster error growth
© Is scaling-dependent
(․) Is more efficient in practice

Error analysis: CFU variant

Theorem

The CFU BLR factorization of $A \in \mathbb{R}^{n \times n}$ with relative threshold ε satisfies

$$
\left\|A-L_{\varepsilon} \cup_{\varepsilon}\right\| \leq(n u+\varepsilon)\|L\|\|U\|+O(\kappa(A) u \varepsilon)+O\left(u^{2}\right)
$$

Error analysis: CFU variant

Theorem

The CFU BLR factorization of $A \in \mathbb{R}^{n \times n}$ with relative threshold ε satisfies

$$
\left\|A-L_{\varepsilon} \cup_{\varepsilon}\right\| \leq(n u+\varepsilon)\|L\|\|\cup\|+O(\kappa(A) u \varepsilon)+O\left(u^{2}\right)
$$

Error analysis: CFU variant

Theorem

The CFU BLR factorization of $A \in \mathbb{R}^{n \times n}$ with relative threshold ε satisfies

$$
\left\|A-L_{\varepsilon} \cup_{\varepsilon}\right\| \leq(n u+\varepsilon)\|L\|\|U\|+O(\kappa(A) u \varepsilon)+O\left(u^{2}\right)
$$

Section 6

Use as a low-accuracy preconditioner

N. Higham and T. Mary. A New Preconditioner that Exploits Low-Rank Approximations to Factorization Error. SIAM J. Sci. Comp (2018).

Low-accuracy BLR preconditioners

BLR factorization + GMRES solve with stopping tolerance 10^{-9}

Matrix	n	Time (s)		Storage (GB)	
		$\varepsilon=10^{-2}$	$\varepsilon=10^{-8}$	$\varepsilon=10^{-2}$	$\varepsilon=10^{-8}$
audikw_1	1.0 M	1163	69	5	10
Bump_2911	2.9 M	-	282	34	56
Emilia_923	0.9 M	304	63	7	12
Fault_639	0.6 M	-	45	5	9
Ga41As41H72	0.3 M	-	76	12	17
Hook_1498	1.5 M	902	75	6	11
Si87H76	0.2 M	-	62	10	14

Low-accuracy BLR solvers:
© ${ }^{\text {(}}$ are slower and less robust
() but require much less storage

Improved preconditioner: context

Objective

- Compute solution to linear system $A x=b$
- $A \in \mathbb{R}^{n \times n}$ is ill conditioned

LU-based preconditioner

1. Compute approximate factorization $A=\widehat{L} \widehat{U}+\Delta A$

- Half-precision factorization
- Incomplete LU factorization
- Structured matrix factorization: Block Low-Rank, \mathcal{H}, HSS,...

2. Solve $\Pi_{L U} A x=\Pi_{L \cup b}$ with $\Pi_{L U}=\widehat{U}^{-1} \widehat{L}^{-1}$ via some iterative method

- Convergence to solution may be slow or fail
\Rightarrow Objective: accelerate convergence

Improved preconditioner: key observation

Matrix lund_a ($n=147, \kappa(A)=2.8 e+06$)

- Often, A is ill conditioned due to a small number of small singular values
- Then, A^{-1} is numerically low-rank

Improved preconditioner: key idea

Factorization error might be low-rank?

Let the error $E=\widehat{U}^{-1} \widehat{L}^{-1} A-I=\widehat{U}^{-1} \widehat{L}^{-1}(\widehat{L} \widehat{U}+\Delta A)-I$

$$
=\widehat{U}^{-1} \widehat{L}^{-1} \Delta A \approx A^{-1} \Delta A
$$

Does E retain the low-rank property of A^{-1} ?

A novel preconditioner

Consider the preconditioner

$$
\Pi_{E_{k}}=\left(I+E_{k}\right)^{-1} \Pi_{L U}
$$

with E_{k} a rank-k approximation to E.

- If $E=E_{k}, \Pi_{E_{k}}=A^{-1}$
- If $E \approx E_{k}$ for some small $k_{1} \Pi_{E_{k}}$ can be computed cheaply

Typical SV distributions of A^{-1} and E

Typical SV distributions of A^{-1} and E

We did not specifically select matrices for which A^{-1} is low-rank!

Computing E_{k}

We need to compute a rank- k approximation of

$$
E=\widehat{U}^{-1} \widehat{L}^{-1} A-1
$$

E cannot be built explicitly! \Rightarrow use randomized method

Algorithm 1 Randomized SVD via direct SVD of $V^{\top} E$.
1: Sample $E: S=E \Omega$, with Ω a $n \times(k+p)$ random matrix.
2: Orthonormalize $S: V=\operatorname{ar}(S) . \quad\left\{\Rightarrow E \approx V V^{\top} E.\right\}$
3: Compute truncated SVD $V^{\top} E \approx X_{k} \Sigma_{k} Y_{k}^{\top}$.
4: $E_{k} \approx\left(V X_{k}\right) \Sigma_{k} Y_{k}^{\top}$.

$$
\text { Results for } \varepsilon=10^{-2} \text { : }
$$

Matrix	$\Pi_{L U}$		$\Pi_{E_{k}}$	
	Iter.	Time	Iter.	Time
audikw_1	691	1163	331	625
Bump_2911	-	-	284	1708
Emilia_923	174	304	136	267
Fault_639	-	-	294	345
Ga41As41H72	-	-	135	143
Hook_1498	417	902	356	808
Si87H76	-	-	131	116

\Rightarrow performance and robustness improvement with zero storage overhead

Conclusion

Takeaway messages

- BLR factorization achieves quadratic dense complexity but (quasi-)linear sparse complexity with a small number of levels
- A large fraction of this theoretical reduction is converted into actual time gains, even on large numbers of cores
- It is numerically stable thanks to numerical pivoting and can efficiently exploit low-precision floating-point arithmetic
\Rightarrow Good compromise between complexity, performance, and accuracy

Perspectives (my objective for the next $O(10)$ years)
Develop a distributed-memory, high-performance implementation of a multifrontal, multilevel, multiprecision BLR solver

Slides and papers available here
bit.ly/theomary (list of references on next slide)

References

P. Amestoy, A. Buttari, J.-Y. L'Excellent, and T. Mary. On the Complexity of the Block Low-Rank Multifrontal Factorization. SIAM J. Sci. Comput. (2017).
P. Amestoy, A. Buttari, J.-Y. L'Excellent, and T. Mary. Bridging the gap between flat and hierarchical lowrank matrix formats: the multilevel BLR format. Submitted (2018).
P. Amestoy, A. Buttari, J.-Y. L'Excellent, and T. Mary. Performance and Scalability of the Block Low-Rank Multifrontal Factorization on Multicore Architectures. ACM Trans. Math. Soft. (2018).
C. Gorman, G. Chavez, P .Ghysels, T. Mary, F.-H. Rouet, and X. S. Li. Matrix-free Construction of HSS Representation Using Adaptive Randomized Sampling. Submitted (2018).
N. Higham and T. Mary. A New Preconditioner that Exploits Low-Rank Approximations to Factorization Error. SIAM J. Sci. Comp (2018).
N. Higham and T. Mary. A New Approach to Probabilistic Rounding Error Analysis. Submitted (2018).
P. Amestoy, R. Brossier, A. Buttari, J.-Y. L'Excellent, T. Mary, L. Métivier, A. Miniussi, and S. Operto. Fast 3D frequency-domain full waveform inversion with a parallel Block Low-Rank multifrontal direct solver: application to OBC data from the North Sea. Geophysics (2016).
D. Shantsev, P. Jaysaval, S. Kethulle de Ryhove, P. Amestoy, A. Buttari, J.-Y. L'Excellent, and T. Mary. Largescale 3D EM modeling with a Block Low-Rank multifrontal direct solver. Geophys. J. Int (2017).

