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Today’s floating-point precision arithmetics

Type Bits Range u = 2−t

fp128 quad 128 10±4932 2−113 ≈ 1× 10−34

fp64 double 64 10±308 2−53 ≈ 1× 10−16

fp32 single 32 10±38 2−24 ≈ 6× 10−8

fp16 half 16 10±5 2−11 ≈ 5× 10−4

bfloat16 half 16 10±38 2−8 ≈ 4× 10−3

Half precision increasingly supported by hardware:
• Present: NVIDIA Pascal & Volta GPUs, AMD Radeon Instinct
MI25 GPU, Google TPU, ARM NEON

• Near future: Fujitsu A64FX ARM, IBM AI chips, Intel Xeon
Cooper Lake and Intel Nervana Neural Network
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NVIDIA GPU tensor cores units
4× 4 matrix multiplication in 1 clock cycle:

D = A B + C
× × × ×
× × × ×
× × × ×
× × × ×


︸ ︷︷ ︸
fp16 or fp32

=


× × × ×
× × × ×
× × × ×
× × × ×


︸ ︷︷ ︸

fp16


× × × ×
× × × ×
× × × ×
× × × ×


︸ ︷︷ ︸

fp16

+


× × × ×
× × × ×
× × × ×
× × × ×


︸ ︷︷ ︸
fp16 or fp32

• This is a block fused multiply-add (FMA) in terms of speed (in
terms of accuracy, depends on the implementation)

⇒ Performance peak 125 TFlops/s (8× speedup vs fp32!)
• Algorithms now become intrinsically mixed precision—and
more complicated to analyze

⇒ Need for new analysis to understand how to best use these new
units
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Block FMA: a general framework

We consider the following framework
• A ∈ Rb1×b, B ∈ Rb×b2 , and C ∈ Rb1×b2 ,

D︸︷︷︸
ulow or uhigh

= C︸︷︷︸
ulow or uhigh

+ A︸︷︷︸
ulow

B︸︷︷︸
ulow

• AB is computed with multiplications in precision umul and
additions in precision uadd, and then rounded to precision
uFMA = uhigh or ulow

|D̂− D| ≲ uFMA(|C|+ |A||B|) +
(
(b− 1)uadd + umul

)
|A||B|

• What choice of uadd and umul?
◦ uadd = umul = 0: true FMA (only 1 rounding error per element of D)
◦ uadd = umul = ulow: not an FMA in terms of accuracy, just speed
◦ uadd = ulow, umul = uhigh: not really an FMA either
◦ uadd = umul = uhigh: almost an FMA (FMA to first order)
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Examples of block FMA units (present and future)

b1 b b2 ulow uhigh

Google TPU v1 256 256 256 bfloat16 fp32
Google TPU v2 128 128 128 bfloat16 fp32
NVIDIA Volta 4 4 4 fp16 fp32
Intel NNP-T 32 32 32 bfloat16 fp32
Armv8-A 2 4 2 bfloat16 fp32

• What are uadd and umul? ⇒ not entirely clear. For tensor cores:
Element-wise multiplication of matrix A and B is performed with at least single
precision. When .ctype or .dtype is .f32, accumulation of the intermediate
values is performed with at least single precision. When both .ctype and .dtype
are specified as .f16, the accumulation is performed with at least half precision.
The accumulation order, rounding and handling of subnormal inputs is
unspecified.

⇒ In the following we distinguish two variants:
◦ TC16 (uFMA = uadd = ulow = u16, umul = uhigh = u32)
◦ TC32 (uFMA = uadd = umul = uhigh = u32)
◦ Intermediate variant uFMA = umul = u32 and uadd = u16 not

discussed here5/15 Mixed-Precision Matrix Factorizations Theo Mary



Matrix multiplication with block FMA

This algorithm computes C = AB using a block FMA, where
A,B,C ∈ Rn×n, and returns C in precision uFMA

Ã← fllow(A) and B̃← fllow(B) (if necessary)
for i = 1: n/b1 do

for j = 1: n/b2 do
Cij = 0
for k = 1: n/b do

Compute Cij = Cij + ÃikB̃kj using a block FMA
end for

end for
end for
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Matrix multiplication: error analysis

Let A and B already be given in precision ulow. For any row x of A
and any column y of B, computing s = c+ xTy classically produces

ŝ = c(1 + θn)+x1y1(1 + θn+1) + x2y2(1 + θ′n)

+x3y3(1 + θn−1) + · · ·+ xnyn(1 + θ2),

where zk = xkyk and |θk| ≲ ku.

With a block FMA, we have instead

ŝ=
(
z1(1 + ϵ1)

(
1 + θ

(1)
b−1

)
+ · · ·+ zb(1 + ϵb)

(
1 + θ

(1)
1

)) n/b∏
i=1

(1 + δi)

+ · · ·+(
zn−b+1(1 + ϵn−b+1)

(
1 + θ

(n/b)
b−1

)
+ · · ·+ zn(1 + ϵn)

(
1 + θ

(n/b)
1

))
(1 + δn/b)

where |ϵk| ≤ umul, |θk| ≲ kuadd, and |δk| ≤ uFMA

Overall: |s− ŝ| ≲
(n
buFMA + (b− 1)uadd + umul

)
|x|T|y|
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Matrix multiplication: error analysis (cont’d)

If A and B are already given in precision ulow:

Ĉ = AB+∆C, |∆C| ≲
(n
b
uFMA + (b− 1)uadd + umul

)
|A||B|

If not, we must account for the initial conversion:

Ã = fllow(A) = A+∆A, |∆A| ≤ ulow|A|,
B̃ = fllow(B) = B+∆B, |∆B| ≤ ulow|B|.

Ĉ = ÃB̃+∆C, |∆C| ≲
(n
b
uFMA + (b− 1)uadd + umul

)
|Ã||B̃|,

= AB+∆AB+ A∆B+∆A∆B+∆C

= AB+ E, |E| ≲
(
2ulow +

n
b
uFMA + (b− 1)uadd + umul

)
|A||B|
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Matrix multiplication: error analysis (cont’d)
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uFMA + (b− 1)uadd + umul
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|Ã||B̃|,

= AB+∆AB+ A∆B+∆A∆B+∆C

= AB+ E, |E| ≲
(

2ulow︸ ︷︷ ︸
Conversion

+
n
b
uFMA + (b− 1)uadd + umul︸ ︷︷ ︸

Accumulation

)
|A||B|
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Matrix multiplication: error bounds interpretation

Evaluation method (umul = uhigh) Bound

Standard in precision ulow nulow
Block FMA uFMA = ulow uadd = ulow (n/b+ b)ulow
Block FMA uFMA = ulow uadd = uhigh (n/b)ulow + buhigh
Block FMA uFMA = ulow uadd = 0 (n/b)ulow
Block FMA uFMA = uhigh uadd = ulow (b+ 2)ulow + (n/b)uhigh
Block FMA uFMA = uhigh uadd = uhigh 2ulow + (n/b+ b)uhigh
Block FMA uFMA = uhigh uadd = 0 2ulow + (n/b)uhigh

Standard in precision uhigh nuhigh

• uFMA = uadd = ulow ⇒ reduction by factor b from blocked sum
• uFMA = ulow, uadd ≪ ulow ⇒ smaller uadd not very useful
• uFMA = uhigh ⇒ reduction by factor min

(
n/2,ulow/uhigh

)
,

uadd ≪ ulow useful, uadd = 0 not useful

Conclusion: choice of uFMA critical, uadd less so
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Matrix multiplication with tensor cores

Standard Tensor core Tensor core Standard
fp16 TC16 TC32 fp32

nu16 (n/4)u16 2u16 + (n/4)u32 nu32

104 105 106 107

10−7

10−5

10−3

10−1

101

Matrix size: n

C
W

er
ro
r

fp16

fp32

Conclusion: TC32 significantly more accurate than TC16,
with almost no performance loss
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LU factorization with block FMA

This algorithm computes A = LU using a block FMA, where
A ∈ Rn×n is given in precision uhigh, and L and U are returned in
precision uFMA

for k = 1: n/b do
Factorize LkkUkk = Akk
for i = k+ 1: n/b do

Solve LikUkk = Aik and LkkUki = Aki for Lik and Uki
end for
for i = k+ 1: n/b do

for j = k+ 1: n/b do
L̃ik ← fllow(Lik) and Ũki ← fllow(Uki)
Aij ← Aij − L̃ikŨkj using a block FMA

end for
end for

end for
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LU factorization with tensor cores
Error analysis for LU follows from matrix multiplication analysis and
gives same bounds to first order (minor changes in the constants)

Standard Tensor core Tensor core Standard
fp16 TC16 TC32 fp32

nu16 n/4u16 2u16 + (n/4)u32 nu32

10,000 20,000 30,000 40,000
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TC32 fp32
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Iterative refinement
Results from Haidar et al, Harnessing GPU tensor cores for fast FP16 arithmetic

to speed up mixed-precision iterative refinement solvers (SC’2018):

• Performance TC boost not fully translated in their
implementation

• But accuracy boost sometimes critical!
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Conclusions
• Mixed-precision units increasingly available in hardware
• Proposed a general mixed-precision block FMA framework,
should be applicable to existing and future units

• Performed error analysis for matrix mult. and LU factorization
• Application to NVIDIA GPU tensor cores: compared two
variants, TC16 and TC32 (different computeType parameter)

⇒ TC32 is significantly more accurate than fp16 and TC16:
reduction from O(nu16) to 2u16 +O(nu32), while being almost
as fast as TC16 (and much faster than fp16)

Take-home message: we recommend using TC32 over TC16

Preprint and slides

See our preprint: Mixed Precision Block Fused Multiply-Add: Error
Analysis and Application to GPU Tensor Cores
Slides available on my website: bit.ly/tmaryLIP6
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Ongoing work on LU factorization with tensor cores

Partitioned LU factorization with tensor cores
The LU analysis assumes a panel of size b = 4 ⇒ not realistic for
performance, where b = O(100). Possible solutions:
• Do the panel factorization in fp32 (Haidar et al, 2018)⇒ suboptimal

performance
• Do the panel factorization in fp16⇒ suboptimal accuracy
• Our proposed solution: use a double panel hierarchy to use mixed

precision TC32 in the panel factorization

Storing the LU factors in fp16
The LU analysis assumes the LU factors to be stored in fp32 precision
⇒ no storage gain! Possible solutions:
• Store them in fp16 ⇒ repeated rounding to fp16 (after each update)

causes great loss of accuracy (TC16 even with computeType=fp32)
• Our proposed solution: use a left-looking factorization with a

temporary fp32 buffer to accumulate updates⇒ no accuracy loss!
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