Distributed-memory BLR Factorization for Large-Scale System's and Applications

P. Amestoy¹ A. Buttari² J.-Y. L'Excellent³ T. Mary⁴ ¹INP-IRIT ²CNRS-IRIT ³INRIA-LIP SIAM PP'18, Tokyo, March 7-10

⁴University of Manchester

Linear system Ax = b

A is large and sparse

Direct methods

Factorize A = LU and solve LUx = b

- © Numerically reliable
- Computational cost

Linear system Ax = b

A is large and sparse

Direct methods

Factorize A = LU and solve LUx = b

- © Numerically reliable
- Computational cost

Objective of this work: reduce the cost of sparse direct solverswhile maintaining their numerical reliability

Large scale applications

- Target size is $n\sim 10^9$ for sparse
- O(n^{4/3}) memory complexity and O(n²) flop complexity Practical example on a 1000³ 27-point Helmholtz problem: 15 ExaFlops and 209 TeraBytes for factors!
- ⇒ Need to reduce the asymptotic complexity

Large scale systems

Increasingly large numbers of cores available, need to efficiently make use of them by designing parallel algorithms

Large scale applications

- Target size is $n\sim 10^9$ for sparse
- O(n^{4/3}) memory complexity and O(n²) flop complexity Practical example on a 1000³ 27-point Helmholtz problem: 15 ExaFlops and 209 TeraBytes for factors!
- ⇒ Need to reduce the asymptotic complexity

Large scale systems

Increasingly large numbers of cores available, need to efficiently make use of them by designing parallel algorithms

These two objectives are not necessarily compatible

Introduction

Multifrontal Factorization with Nested Dissection

3D problem complexity

- ightarrow Flops: $\mathcal{O}\left(n^{2}
 ight)$, mem: $\mathcal{O}\left(n^{4/3}
 ight)$
 - George. Nested dissection of a regular finite element mesh, SIAM J. Numer. Anal., 1973.

${\cal H}$ and BLR matrices

 $\mathcal H ext{-matrix}$

BLR matrix

${\mathcal H}$ and BLR matrices

 $\mathcal H ext{-matrix}$

- $O(n^{2/3}r)$ memory and $O(n^{2/3}r^2)$ flop complexity
- Complex, hierarchical structure

BLR matrix

- $O(nr^{1/2})$ memory and $O(n^{4/3}r)$ flop complexity
- Simple, flat structure

${\mathcal H}$ and BLR matrices

 $\mathcal H ext{-matrix}$

- $O(n^{2/3}r)$ memory and $O(n^{2/3}r^2)$ flop complexity
- Complex, hierarchical structure

BLR matrix

- $O(nr^{1/2})$ memory and $O(n^{4/3}r)$ flop complexity
- Simple, flat structure

Find a good comprise between complexity and performance

- Easy to handle numerical pivoting
- $\circ~$ No global order between blocks \Rightarrow flexible data distribution
- $\circ~$ Small blocks \Rightarrow can fit on single shared-memory node

• FCSU:

• FCSU: Factor,

• FCSU: Factor, Compress,

• FCSU: Factor, Compress, Solve, Update

• FCSU: Factor, Compress, Solve, Update

• FCSU: Factor, Compress, Solve, Update

• FCSU: Factor, Compress, Solve, Update

- FCSU: Factor, Compress, Solve, Update
- LUAR: Low-rank Updates Accumulation

- FCSU: Factor, Compress, Solve, Update
- LUAR: Low-rank Updates Accumulation and Recompression

- FCSU: Factor, Compress, Solve, Update
- LUAR: Low-rank Updates Accumulation and Recompression

- FCSU: Factor, Compress, Solve, Update
- LUAR: Low-rank Updates Accumulation and Recompression

- FCSU: Factor, Compress, Solve, Update
- LUAR: Low-rank Updates Accumulation and Recompression

Experimental Setting: Applications

3D Seismic Modeling Helmholtz equation Single complex (c) arithmetic Unsymmetric LU factorization Required accuracy: $\varepsilon = 10^{-3}$ Credits: SEISCOPE

matrix	n	nnz	flops	storage
10Hz	17M	446M	2.6 PF	0.7 TB
15Hz	58M	1523M	29.6 PF	3.7 TB
20Hz	130M	3432M	150.0 PF	11.0 TB
Full-Rank statistics				

Amestoy, Brossier, Buttari, L'Excellent, Mary, Métivier, Miniussi, and Operto. Fast 3D frequency-domain full waveform inversion with a parallel Block Low-Rank multifrontal direct solver: application to OBC data from the North Sea, Geophysics, 2016.

Experimental Setting: Systems

- Experiments on matrices 10Hz and 15Hz are done on the eos supercomputer at the CALMIP center of Toulouse (grant P0989):
 - Two Intel(r) 10-cores Ivy Bridge @ 2,8 GHz
 - Peak per core is 22.4 GF/s
 - 64 GB memory per node
 - Infiniband FDR interconnect
- 2. Experiments on matrix 20Hz are done on the occigen supercomputer at the CINES center of Montpellier:
 - Two Intel(r) 12-cores Haswell @ 2,6 GHz
 - Peak per core is 41.6 GF/s
 - 128 GB memory per node
 - Infiniband FDR interconnect

Three challenges to improve the scalability of the BLR factorization:

Three challenges to improve the scalability of the BLR factorization:

1. The communications challenge: flops reduced by 12.8 but volume of comms only by $2.2 \Rightarrow$ higher weight of comms

Three challenges to improve the scalability of the BLR factorization:

- 1. The communications challenge: flops reduced by 12.8 but volume of comms only by $2.2 \Rightarrow$ higher weight of comms
- 2. The load imbalance challenge: ratio between most and less loaded processes increases from 1.3 (FR) to 2.6 (BLR)

Three challenges to improve the scalability of the BLR factorization:

- 1. The communications challenge: flops reduced by 12.8 but volume of comms only by $2.2 \Rightarrow$ higher weight of comms
- 2. The load imbalance challenge: ratio between most and less loaded processes increases from 1.3 (FR) to 2.6 (BLR)
- 3. The memory challenge

The communications challenge

Type of messages

Type of messages

 Volume of LU messages is reduced by compressing the factors ٢

Reduces operation count, communications, and memory consumption

Type of messages

- Volume of LU messages is reduced by compressing the factors
 - $\ensuremath{\textcircled{\circ}}$ Reduces operation count, communications, and memory consumption
- Volume of CB messages can be reduced by compressing the CB
 - © Reduces communications and memory consumption
 - Increases operation count unless assembly is done in LR

Communication analysis

• FR case: LU messages dominate

Theoretical communication bounds

	\mathcal{W}_{LU}	\mathcal{W}_{CB}	\mathcal{W}_{tot}
FR	$\mathcal{O}\left(n^{4/3}p ight)$	$\mathcal{O}\left(n^{4/3} ight)$	$\mathcal{O}\left(n^{4/3} \rho\right)$

Communication analysis

- FR case: LU messages dominate
- BLR case: CB messages dominate ⇒ underwhelming reduction of communications

Theoretical communication bounds

	\mathcal{W}_{LU}	\mathcal{W}_{CB}	\mathcal{W}_{tot}
FR BLR (CB _{FR})	$rac{\mathcal{O}\left(n^{4/3}p ight)}{\mathcal{O}\left(nr^{1/2}p ight)}$	$\mathcal{O}\left(n^{4/3} ight) \ \mathcal{O}\left(n^{4/3} ight)$	$\mathcal{O}\left(n^{4/3} p ight) \ \mathcal{O}\left(n r^{1/2} p + n^{4/3} ight)$

Communication analysis

- FR case: LU messages dominate
- BLR case: CB messages dominate ⇒ underwhelming reduction of communications
- ⇒ CB compression allows for truly reducing the communications

Theoretical communication bounds

	\mathcal{W}_{LU}	\mathcal{W}_{CB}	\mathcal{W}_{tot}
FR	$\mathcal{O}\left(n^{4/3}p ight)$	$\mathcal{O}\left(n^{4/3} ight)$	$\mathcal{O}\left(n^{4/3}p ight)$
BLR (CB _{FR})	$\mathcal{O}\left(nr^{1/2}p ight)$	$\mathcal{O}\left(n^{4/3} ight)$	$\mathcal{O}\left(nr^{1/2}p+n^{4/3} ight)$
BLR (CB _{LR})	$\mathcal{O}\left(nr^{1/2}p ight)$	$\mathcal{O}\left(nr^{1/2} ight)$	$\mathcal{O}\left(nr^{1/2}p ight)$

Performance impact of CB compression

matrix	10Hz	15Hz	20Hz
order	17 M	58 M	130 M
cores	900 Ivy Bridge	900 Ivy Bridge	2,400 Haswell
computer	eos (CALMIP)	eos (CALMIP)	occigen (CINES)
factor flops (FR)	2.6 PF	29.6 PF	150.0 PF
\Rightarrow BLR (CB _{FR})	0.1 PF (5.3%)	1.0 PF (3.3%)	3.6 PF (2.4%)
\Rightarrow BLR (CB _{LR})	0.2 PF (6.1%)	1.1 PF (3.7%)	3.9 PF (2.6%)
factor time (FR)	601	5,206	n/a
\Rightarrow BLR (CB _{FR})	123 (4.9)	838 (6.2)	1,665
\Rightarrow BLR (CB _{LR})	213 (2.8)	856 (6.1)	2,641
CB _{LR} time impact	+73%	+2%	+58%
comm. volume (FR)	5.3 TB	29.6 TB	n/a
comm. volume (CB _{FR})	1.7 TB (3.2)	13.3 TB(2.2)	79.8 TB
comm. volume (CB _{LR})	0.6 TB (9.1)	1.2 TB (23.2)	8.6 TB

⇒ CB compression becomes increasingly critical?

matrix	10Hz	15Hz	20Hz
order	17 M	58 M	130 M
cores	900 Ivy Bridge	900 Ivy Bridge	2,400 Haswell
computer	eos (CALMIP)	eos (CALMIP)	occigen (CINES)
factor flops (FR)	2.6 PF	29.6 PF	150.0 PF
\Rightarrow BLR (CB _{FR})	0.1 PF (5.3%)	1.0 PF (3.3%)	3.6 PF (2.4%)
\Rightarrow BLR (CB _{LR})	0.2 PF (6.1%)	1.1 PF (3.7%)	3.9 PF (2.6%)
factor time (FR)	601	5,206	n/a
\Rightarrow BLR (CB _{FR})	123 (4.9)	838 (6.2)	1,665
\Rightarrow BLR (CB _{LR})	213 (2.8)	856 (6.1)	2,641
CB _{LR} time impact	+73%	+2%	+58%
comm. volume (FR)	5.3 TB	29.6 TB	n/a
comm. volume (CB _{FR})	1.7 TB (3.2)	13.3 TB (2.2)	79.8 TB
comm. volume (CB _{LR})	0.6 TB (9.1)	1.2 TB (23.2)	8.6 TB

 \Rightarrow CB compression becomes increasingly critical?

Performance impact of CB compression

matrix	10Hz	15Hz	20Hz
order	17 M	58 M	130 M
cores	900 Ivy Bridge	900 Ivy Bridge	2,400 Haswell
computer	eos (CALMIP)	eos (CALMIP)	occigen (CINES)
factor flops (FR)	2.6 PF	29.6 PF	150.0 PF
\Rightarrow BLR (CB _{FR})	0.1 PF (5.3%)	1.0 PF (3.3%)	3.6 PF (2.4%)
\Rightarrow BLR (CB _{LR})	0.2 PF (6.1%)	1.1 PF (3.7%)	3.9 PF (2.6%)
factor time (FR)	601	5,206	n/a
\Rightarrow BLR (CB _{FR})	123 (4.9)	838 (6.2)	1,665
\Rightarrow BLR (CB _{LR})	213 (2.8)	856 (6.1)	2,641
CB _{LR} time impact	+73%	+2%	+58%
comm. volume (FR)	5.3 TB	29.6 TB	n/a
comm. volume (CB _{FR})	1.7 TB (3.2)	13.3 TB (2.2)	79.8 TB
comm. volume (CB _{LR})	0.6 TB (9.1)	1.2 TB (23.2)	8.6 TB

\Rightarrow CB compression becomes increasingly critical?

The memory challenge

Memory consumption on matrix 15Hz: **factors + active memory** (**CB + active front**)

• Factors compression (19% of FR) leads to important gains, but the BLR solver inherits the poor scalability of the active memory

- Factors compression (19% of FR) leads to important gains, but the BLR solver inherits the poor scalability of the active memory
- CB compression (7% of FR) slightly attenuates this issue

- Factors compression (19% of FR) leads to important gains, but the BLR solver inherits the poor scalability of the active memory
- CB compression (7% of FR) slightly attenuates this issue

- Factors compression (19% of FR) leads to important gains, but the BLR solver inherits the poor scalability of the active memory
- CB compression (7% of FR) slightly attenuates this issue
- Storage for the active front becomes critical Theo Mary (contact: theo.mary@manchester.ac.uk)

Conclusion

Summary: a distributed-memory BLR solver...

...to reduce time to solution

- On 58 millions problem, $6 \times$ time gains on 900 cores
- Much room left for improvement (30× flops potential!)

...to reduce memory consumption

- On 58 millions problem, 40% memory gains on 900 cores
- Thanks to CB compression: $25\% \rightarrow 40\%$
- Also much room left for improvement (80% gain in sequential!)

...to solve larger problems

- 130 millions problem on 2400 cores in less than an hour
- What do we need to go one order of magnitude larger?

Perspectives

Improving the memory scalability

- Active front becomes dominant and limits memory scalability:
 - Switch to fully-structured (matrix-free) implementation?
 - Panel by panel allocation and compression
- Memory aware mappings: map critical fronts on more processes to improve memory scalability

Improving the load balance

- How to deal with the unpredictability of low-rank compression?
- Can we do more than heuristics?
- Dynamic scheduling and asynchronicity will be important

Improving the asymptotic complexity

• Multilevel BLR format: add just a few more levels

References

Publications

- Theo Mary. Block Low-Rank Multifrontal Solvers: Complexity, Performance, and Scalability, PhD thesis, 2017.
- Amestoy, Buttari, L'Excellent, and Mary. On the Complexity of the Block Low-Rank Multifrontal Factorization, SIAM J. Sci. Comput., 2017.
- Amestoy, Buttari, L'Excellent, and Mary. Performance and Scalability of the Block Low-Rank Multifrontal Factorization on Multicore Architectures, under review in ACM Trans. Math. Soft., 2017.
- Amestoy, Brossier, Buttari, L'Excellent, Mary, Métivier, Miniussi, and Operto. Fast 3D frequency-domain full waveform inversion with a parallel Block Low-Rank multifrontal direct solver: application to OBC data from the North Sea, Geophysics, 2016.
- Shantsev, Jaysaval, de la Kethulle de Ryhove, Amestoy, Buttari, L'Excellent, and Mary. Large-scale 3D EM modeling with a Block Low-Rank multifrontal direct solver, Geophysical Journal International, 2017.

Software

• MUMPS 5.1.2

Thank you for your attention

Slides available here: personalpages.manchester.ac.uk/staff/theo.mary/