A comparison of parallel rank-structured solvers

François-Henry Rouet

Livermore Software Technology Corporation, Lawrence Berkeley National Laboratory
Joint work with:

- LSTC: J. Anton, C. Ashcraft, C. Weisbecker
- LBNL: P. Ghysels, X. S. Li
- MUMPS project: P. R. Amestoy, A. Buttari, J.-Y. L'Excellent, T. Mary

Low-rankness

■ Low-rank/structured methods rely on data sparsity, similar to the Fast Multipole Method.

- In algebraic terms: some off-diagonal blocks of the input matrix are low-rank; they can be compressed.

- NB: sometimes this applies to intermediate matrices (not the input matrix), e.g., in sparse factorizations.

Classes of structured matrices

Most structured matrices belong to the class of Hierarchical matrices (\mathcal{H}-matrices) [Hackbusch, Bebendorf, Börm, Grasedyck...].

- \mathcal{H}^{2} (Hackbusch, Börm, et al.)
- HSS (Chandrasekaran, Jia, et al.)

■ HODLR (Darve et al.)

- BLR (Amestoy, Ashcraft, et al.)

■ + SSS, MHS, ...
In this talk:
■ We review some algorithmic and implementation differences.
■ We discuss a comparison of HSS and BLR.

Differences

Three criteria differentiate all the low-rank formats:

Differences

Three criteria differentiate all the low-rank formats:

- Clustering/partitioning: off-diagonal blocks can be refined or not.

The partitioning is defined by a single tree whose leaves cluster $[1, n]$.

The partitioning is defined by the product of two trees (rows \times columns).

Differences

Three criteria differentiate all the low-rank formats:

- Clustering/partitioning: off-diagonal blocks can be refined or not.

The partitioning is defined by a single tree whose leaves cluster $[1, n]$.

The partitioning is defined by the product of two trees (rows \times columns).

■ Nested basis or not.
Blocks have independent compressed representations (bases).

Shared information:

$$
U_{3}^{\mathrm{big}}=\left[\begin{array}{cc}
U_{1} & 0 \\
0 & U_{2}
\end{array}\right] U_{3}
$$

Differences

Three criteria differentiate all the low-rank formats:

- Clustering/partitioning: off-diagonal blocks can be refined or not.

The partitioning is defined by a single tree whose leaves cluster $[1, n]$.

The partitioning is defined by the product of two trees (rows \times columns).

- Nested basis or not.

Blocks have independent compressed representations (bases).

Shared information:

$$
U_{3}^{\text {big }}=\left[\begin{array}{cc}
U_{1} & 0 \\
0 & U_{2}
\end{array}\right] U_{3}
$$

■ Buffer zone next to the diagonal or not ("strong admissibility").
Assumes interaction between two clusters is low-rank.

Blocks next to the diagonal not "admitted" (compressed).

Main classes of hierarchical matrices

HODLR (Darve et al.)
■ No nested bases.

- No off-diagonal refinement.
- No buffer zone.

Main classes of hierarchical matrices

HSS (Chandrasekaran, Jia...)

- Nested bases.
- No off-diagonal refinement.

■ No buffer zone.

Main classes of hierarchical matrices

BLR (Amestoy, Ashcraft, et al.)
■ No nested bases.

- Refine off-diagonal blocks.
- Can do buffer zone.

Main classes of hierarchical matrices

Barnes-Hut ("tree code")
■ No nested bases.
■ Refine off-diagonal blocks.

- Buffer zone.

Main classes of hierarchical matrices

Fast Multipole Method (Greengard \& Rokhlin)

- Nested bases.
- Refine off-diagonal blocks.
- Buffer zone.

Main classes of hierarchical matrices

Fast Multipole Method (Greengard \& Rokhlin)

- Nested bases.
- Refine off-diagonal blocks.
- Buffer zone.

$\mathcal{H} \rightarrow \mathcal{H}^{2} \equiv$ Barnes-Hut \rightarrow FMM

Compression kernel

Compression of an $m \times n$ block B :
■ SVD: optimal but costly $\left(O\left(m n^{2}\right)\right)$.

Compression kernel

Compression of an $m \times n$ block B :
■ SVD: optimal but costly $\left(O\left(m n^{2}\right)\right)$.
■ Rank-Revealing QR (Householder or Gram-Schmidt). Cost $O(m n k)$. Strong RRQR might reduce ranks but is more costly.

Compression kernel

Compression of an $m \times n$ block B :
■ SVD: optimal but costly $\left(O\left(m n^{2}\right)\right)$.
■ Rank-Revealing QR (Householder or Gram-Schmidt). Cost O (mnk). Strong RRQR might reduce ranks but is more costly.
■ Interpolative Decomposition (ID) is RRQR + 1 step:

$$
B=Q R \Pi^{-1}=Q\left[R_{1} R_{2}\right] \Pi^{-1}=\left(Q R_{1}\right)\left[I R_{1}^{-1} R_{2}\right] \Pi^{-1}=B(:, J) X
$$

Compression kernel

Compression of an $m \times n$ block B :
■ SVD: optimal but costly $\left(O\left(m n^{2}\right)\right)$.
■ Rank-Revealing QR (Householder or Gram-Schmidt). Cost O (mnk). Strong RRQR might reduce ranks but is more costly.
■ Interpolative Decomposition (ID) is RRQR + 1 step:

$$
B=Q R \Pi^{-1}=Q\left[R_{1} R_{2}\right] \Pi^{-1}=\left(Q R_{1}\right)\left[I R_{1}^{-1} R_{2}\right] \Pi^{-1}=B(:, J) X
$$

- Adaptive Cross Approximation (Bebendorf) is essentially rank-revealing LU and a similar trick to get

$$
B=X B(I, J) Y
$$

Cost $O\left(k^{2} n\right)$. In some applications people choose I, J a priori.

Compression kernel

Compression of an $m \times n$ block B :
■ SVD: optimal but costly $\left(O\left(m n^{2}\right)\right)$.
■ Rank-Revealing QR (Householder or Gram-Schmidt). Cost O (mnk). Strong RRQR might reduce ranks but is more costly.
■ Interpolative Decomposition (ID) is RRQR + 1 step:
$B=Q R \Pi^{-1}=Q\left[R_{1} R_{2}\right] \Pi^{-1}=\left(Q R_{1}\right)\left[I R_{1}^{-1} R_{2}\right] \Pi^{-1}=B(:, J) X$

- Adaptive Cross Approximation (Bebendorf) is essentially rank-revealing $L U$ and a similar trick to get

$$
B=X B(I, J) Y
$$

Cost $O\left(k^{2} n\right)$. In some applications people choose I, J a priori.

- CUR (Mahoney \& Drineas), or pseudo-skeleton decomposition, is essentially a two-sided ID:

$$
B=C \cup R=B(:, J) \cup B(I,:)
$$

Compression kernel

Compression of an $m \times n$ block B :
■ SVD: optimal but costly $\left(O\left(m n^{2}\right)\right)$.
■ Rank-Revealing QR (Householder or Gram-Schmidt). Cost $O(m n k)$. Strong RRQR might reduce ranks but is more costly.
■ Interpolative Decomposition (ID) is RRQR + 1 step:
$B=Q R \Pi^{-1}=Q\left[R_{1} R_{2}\right] \Pi^{-1}=\left(Q R_{1}\right)\left[I R_{1}^{-1} R_{2}\right] \Pi^{-1}=B(:, J) X$

- Adaptive Cross Approximation (Bebendorf) is essentially rank-revealing $L U$ and a similar trick to get

$$
B=X B(I, J) Y
$$

Cost $O\left(k^{2} n\right)$. In some applications people choose I, J a priori.

- CUR (Mahoney \& Drineas), or pseudo-skeleton decomposition, is essentially a two-sided ID:

$$
B=C \cup R=B(:, J) \cup B(I,:)
$$

■ BDLR (Darve et al.) is a new technique that looks at the underlying graph to pick some interesting rows/columns.

Low-rank representations and sparse solvers

Many LR techniques embedded in the multifrontal method [Duff \& Reid '83]. Related: "sweeping preconditioner" [Ying, Engquist,...], elliptic solver [Chavez et al. '16]. . .

Traverse the tree bottom-up; at each node (a.k.a. frontal matrix):

- Partial factorization (yields parts of L / U).

Elimination tree

Low-rank representations and sparse solvers

Many LR techniques embedded in the multifrontal method [Duff \& Reid '83]. Related: "sweeping preconditioner" [Ying, Engquist,...], elliptic solver [Chavez et al. '16]. . .

Traverse the tree bottom-up; at each node (a.k.a. frontal matrix):

- Partial factorization (yields parts of L / U).
- Compute a contribution block (Schur complement) to be used at the parent.

Assembly/extend-add operation:

$$
F=A_{l, J}^{\stackrel{\rightharpoonup}{\imath}} \mathrm{CB}_{\text {child } 1} \stackrel{\rightharpoonup}{\imath} \mathrm{CB}_{\text {child } 2} \stackrel{\rightharpoonup}{\checkmark} \ldots
$$

Extend-add and low-rank representations

How to do extend-add with compressed matrices?
■ BLR: contribution blocks not compressed [Amestoy et al. '12].

Extend-add and low-rank representations

How to do extend-add with compressed matrices?
■ BLR: contribution blocks not compressed [Amestoy et al. '12].
■ HSS, [Jia et al. '09], serial 2D code. HSS extend-add. Slow and hard to parallelize. Hard to extend to algebraic.

Extend-add and low-rank representations

How to do extend-add with compressed matrices?
■ BLR: contribution blocks not compressed [Amestoy et al. '12].
■ HSS, [Jia et al. '09], serial 2D code. HSS extend-add.
Slow and hard to parallelize. Hard to extend to algebraic.
■ HSS, [Wang et al. '15], parallel geometric code. Contribution blocks not compressed. Simple but penalty on memory footprint.

Extend-add and low-rank representations

How to do extend-add with compressed matrices?
■ BLR: contribution blocks not compressed [Amestoy et al. '12].
■ HSS, [Jia et al. '09], serial 2D code. HSS extend-add.
Slow and hard to parallelize. Hard to extend to algebraic.
■ HSS, [Wang et al. '15], parallel geometric code. Contribution blocks not compressed. Simple but penalty on memory footprint.

- HSS, [Ghysels et al. '15], parallel algebraic code with randomized sampling:

1. After partial factorization, compute
$Y=C B \cdot R$ with R random tall-skinny matrix.
Y is a sample of the Schur Complement.

2. At parent node, compute a sample of the frontal matrix F as:

$$
F \cdot R=A \cdot R \hat{\imath} \quad Y_{1} \uparrow Y_{2} \ldots
$$

Extend-add with "extension" only along rows.

Extend-add and low-rank representations

How to do extend-add with compressed matrices?
■ BLR: contribution blocks not compressed [Amestoy et al. '12].
■ HSS, [Jia et al. '09], serial 2D code. HSS extend-add.
Slow and hard to parallelize. Hard to extend to algebraic.
■ HSS, [Wang et al. '15], parallel geometric code. Contribution blocks not compressed. Simple but penalty on memory footprint.

- HSS, [Ghysels et al. '15], parallel algebraic code with randomized sampling:

1. After partial factorization, compute $Y=C B \cdot R$ with R random tall-skinny matrix. Y is a sample of the Schur Complement.

2. At parent node, compute a sample of the frontal matrix F as:

$$
F \cdot R=A \cdot R \hat{\imath} \quad Y_{1} \hat{\imath} \quad Y_{2} \ldots
$$

Extend-add with "extension" only along rows.

Software packages - 1/2

Code	License	Authors	Format	Arch	Matrix
$\begin{gathered} \hline \text { HLIBPro } \\ 2.4 \end{gathered}$	Commercial (free academia)	Kriemann et al.	$\begin{aligned} & \overline{\mathcal{H}}, \\ & \mathcal{H}^{2} \end{aligned}$	Shared (TBB), Dist. (MPI)	Dense, Sparse
$\begin{gathered} \text { HODLR } \\ 3.14 \end{gathered}$	None	Ambikasaran, Darve	HODLR	Serial	Dense
MUMPS 5.X dev	$\begin{aligned} & \text { Cecill-C } \\ & \simeq \text { GPL } \end{aligned}$	Amestoy, L'Excellent, et al.	BLR	Dist. (MPI), Shared (OpenMP)	Sparse (dense)
STRUMPACK -dense 1.1.1	BSD	R., Li , Ghysels	HSS	Dist. (MPI)	Dense
STRUMPACK -sparse 0.9.4	BSD	Ghysels, Li, R.	HSS	Shared (OpenMP)	Sparse

Other codes: H2lib [Boerm et al.], AHMED [Bebendorf \& Rjasanov], BEM ++ [Smigaj et al.], DMHM [Poulson \& Li], H2tools [Mikhalev et al.]. . .

Software packages $-2 / 2$

Code	Matrix	Clustering	Compress	Factor	Solve	Extract	Matvec
HLIBPro	Dense	\checkmark (geo)	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark
	Sparse	\checkmark (graph)	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark
HODLR	Dense		\checkmark	\checkmark	\checkmark	\checkmark	\checkmark
MUMPS	Sparse	\checkmark (graph)		\checkmark	\checkmark		
	Dense			\checkmark	\checkmark		
STRUMPACK	Dense		\checkmark	\checkmark	\checkmark	\checkmark	\checkmark
	Sparse	\checkmark (graph)		\checkmark	\checkmark		

Software packages - 2/2

Code	Matrix	Clustering	Compress	Factor	Solve	Extract	Matvec
HLIBPro	Dense	\checkmark (geo)	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark
	Sparse	\checkmark (graph)	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark
HODLR	Dense		\checkmark	\checkmark	\checkmark	\checkmark	\checkmark
MUMPS	Sparse	\checkmark (graph)		\checkmark	\checkmark		
	Dense			\checkmark	\checkmark		
STRUMPACK	Dense		\checkmark	\checkmark	\checkmark	\checkmark	\checkmark
	Sparse	\checkmark (graph)		\checkmark	\checkmark		

HLIBPro also has:

- \mathcal{H}-matrix addition and multiplication,
- BEM-specific features,
- Iterative solvers,
- Visualization. . .

HODLR: there is a new code by A. Aminfar with sparse features.

STRUMPACK: HSS algorithms based on randomized sampling [Martinsson]. Sparse MPI+OpenMP solver to be released soon (P. Ghysel's talk).

MUMPS: BLR features implemented in the dissertations of C . Weisbecker and T. Mary, to be released soon.

Algorithmic and implementation differences

- For dense matrices:
- HODLR, HLIBPro and STRUMPACK 1/ compress the entire matrix then $2 /$ perform a structured factorization (e.g., ULV factorization for HSS).
- MUMPS interleaves compressions and factorizations of panels.

Algorithmic and implementation differences

- For dense matrices:
- HODLR, HLIBPro and STRUMPACK 1/ compress the entire matrix then 2/ perform a structured factorization (e.g., ULV factorization for HSS).
- MUMPS interleaves compressions and factorizations of panels.

■ Compression kernel:

- MUMPS and STRUMPACK use QR with column pivoting.
- HODLR and HLIBPro use ACA.

Algorithmic and implementation differences

- For dense matrices:
- HODLR, HLIBPro and STRUMPACK 1/ compress the entire matrix then 2 / perform a structured factorization (e.g., ULV factorization for HSS).
- MUMPS interleaves compressions and factorizations of panels.

■ Compression kernel:

- MUMPS and STRUMPACK use QR with column pivoting.
- HODLR and HLIBPro use ACA.

■ Compression threshold:

- HLIBPro, HODLR and STRUMPACK use a relative threshold.
- MUMPS uses an absolute threshold on singular values.

Algorithmic and implementation differences

- For dense matrices:
- HODLR, HLIBPro and STRUMPACK 1/ compress the entire matrix then 2 / perform a structured factorization (e.g., ULV factorization for HSS).
- MUMPS interleaves compressions and factorizations of panels.

■ Compression kernel:

- MUMPS and STRUMPACK use QR with column pivoting.
- HODLR and HLIBPro use ACA.

■ Compression threshold:

- HLIBPro, HODLR and STRUMPACK use a relative threshold.
- MUMPS uses an absolute threshold on singular values.
- Interface:
- HLIBPro and HODLR require only a function that defines $A_{i, j}$.
- MUMPS requires an explicit matrix A.
- STRUMPACK can take either an explicit matrix, either an element function and samples of the row and column spaces of the matrix: $S_{r}=A \cdot R_{r}, S_{c}=A^{T} \cdot R_{c}$.

Comparison for dense problems (SIAM LA15) - 1/5

Settings:

- 10 dense matrices from various applications.
- $N=10,000-20,000$.

■ Benchmark: preconditioned GMRES.
■ HODLR vs HLIBPro vs MUMPS-BLR vs STRUMPACK.

Comparison for dense problems (SIAM LA15) - 2/5

Quantum Chemistry Toeplitz matrix, $n=12,500$.

Solver	Time(s)	Mem(MB)	\# Iters
LAPACK	63.5	1192.1	1
HODLR 10-14	0.7	42.5	2
HODLR 10-08	0.5	27.5	3
HODLR 10-02	60.0	10.7	600
HLIBPro 10^{-14}	3.6	42.8	2
HLIBPro 10-08	2.2	30.3	2
HLIBPro 10-02	1.4	16.3	6
MUMPS-BLR 10^{-14}	8.3	64.3	2
MUMPS-BLR 10-08	9.0	58.4	3
MUMPS-BLR 10^{-02}	12.2	53.6	17
STRUMPACK 10^{-14}	0.7	40.7	1
STRUMPACK 10-08	0.5	22.7	3
STRUMPACK 10^{-02}	1.0	7.9	65

Very structured problem, hierarchical formats outperform BLR. Nested basis structure gives the edge to HSS.

Comparison for dense problems (SIAM LA15) - 3/5

Covariance matrix, $n=10$, $648(22 \times 22 \times 22$ mesh $)$.

Solver	Time(s)	Mem(MB)	\# Iters
LAPACK	41.0	865.0	1
HODLR 10-14	448.2	2250.1	2
HODLR 10-08	89.6	935.7	9
HODLR 10^{-02}	NoCV	10.9	NoCV
HLIBPro 10-14	247.8	764.7	1
HLIBPro 10-08	191.5	577.5	3
HLIBPro 10-02	NoCV	30.8	NoCV
MUMPS-BLR 10^{-14}	48.9	865.0	2
MUMPS-BLR 10-08	35.7	737.0	3
MUMPS-BLR 10-02	49.6	203.3	130
STRUMPACK 10-14	277.7	1651.9	2
STRUMPACK 10^{-08}	97.8	945.1	6
STRUMPACK 10^{-02}	111.1	648.8	436

No compression with hierarchical formats except with large ε.
Some limited gains with BLR.

Comparison for dense problems (SIAM LA15) - 4/5

BEM Acoustic Sphere, $n=10,002$.

Solver	Time(s)	Mem(MB)	\# Iters
LAPACK	53.0	921.8	1
HODLR 10 ${ }^{-14}$	1.5	23.1	4
HODLR 10-08	0.8	9.5	5
HODLR 10-02	1.0	7.2	8
HLIBPro 10^{-14}	1.5	13.7	7
HLIBPro 10-08	1.4	11.4	7
HLIBPro 10-02	1.2	9.3	7
MUMPS-BLR 10^{-14}	11.1	48.3	1
MUMPS-BLR 10-08	9.1	40.6	2
MUMPS-BLR 10-02	9.8	38.5	5
STRUMPACK 10-14	245.8	501.8	1
STRUMPACK 10-08	8.8	22.7	2
STRUMPACK 10^{-02}	1.9	10.9	5

HODLR, HLIBPro, ahead.
No clear nested basis structure in this problem.

Comparison for dense problems (SIAM LA15) - 5/5

For our test suite (10 problems):
■ Problems with very low-ranks (Toeplitz, 2D Laplacian): HLIBPro/HODLR/STRUMPACK dominate.

- Problems with large ranks (in A_{12}, A_{21}) (Covariance, 3D Laplacian): MUMPS-BLR faster.
■ Some problems: no clear result, depends on threshold.
- MUMPS-BLR limits the worst-case: no huge increase in run time or memory for 10^{-14}. It rejects blocks with large ranks. This is possible with HSS etc. but these codes don't do it.

Sparse problems - Regular grids

We compared HSS (STRUMPACK) and BLR (MUMPS) for 2D
Poisson and 3D Helmholtz.
■ 2D Poisson: HSS slightly lower asymptotic complexity but higher prefactor.

- 3D Helmholtz: asymptotic behaviors very similar.

Cf. next talk (Theo Mary) for experimental results with BLR and complexity study.

Sparse problems - General problems

We experimented with 10 medium-sized matrices from UFL. (A22, Geo_1438, tdr190k, atmosmodd, nlpkkt80, Serena, torso3, Cube_Coup_dt0, spe10-aniso, Transport)

Lessons learnt:
■ HSS can't be used as a direct solver $\left(\varepsilon \simeq 10^{-16}\right)$. Aggressive settings needed. Cf. P. Ghysels' talk for HSS vs ILU and other preconditioners.

- Gains with BLR as a function of ε more consistent.

■ BLR has a wider range of applications. HSS more restricted (especially for sparse problems, not as much for dense).

- Parallelism, efficiency: HSS more complicated communication pattern (tree traversal). BLR similar to a traditional factorization; better flop rate.

End

Thank you for your attention!

Any questions?

