
A comparison of parallel rank-structured solvers

François-Henry Rouet
Livermore Software Technology Corporation, Lawrence Berkeley National Laboratory

Joint work with:
- LSTC: J. Anton, C. Ashcraft, C. Weisbecker
- LBNL: P. Ghysels, X. S. Li
- MUMPS project: P. R. Amestoy, A. Buttari, J.-Y. L’Excellent, T. Mary

SIAM Conference on Parallel Processing, April 15th, 2016



Low-rankness

Low-rank/structured methods rely on data sparsity, similar to the
Fast Multipole Method.

In algebraic terms: some off-diagonal blocks of the input matrix
are low-rank; they can be compressed.

NB: sometimes this applies to intermediate matrices (not the
input matrix), e.g., in sparse factorizations.

F.-H. Rouet, SIAM Conference on Parallel Processing, April 15th, 2016 2/20



Classes of structured matrices

Most structured matrices belong to the class of Hierarchical matrices
(H−matrices) [Hackbusch, Bebendorf, Börm, Grasedyck. . . ].
H2 (Hackbusch, Börm, et al.)
HSS (Chandrasekaran, Jia, et al.)
HODLR (Darve et al.)
BLR (Amestoy, Ashcraft, et al.)
+ SSS, MHS, . . .

In this talk:
We review some algorithmic and implementation differences.
We discuss a comparison of HSS and BLR.

F.-H. Rouet, SIAM Conference on Parallel Processing, April 15th, 2016 3/20



Differences

Three criteria differentiate all the low-rank formats:

Clustering/partitioning: off-diagonal blocks can be refined or not.
The partitioning is
defined by a single
tree whose leaves
cluster [1, n].

vs
The partitioning is
defined by the
product of two trees
(rows × columns).

Nested basis or not.
Blocks have
independent
compressed
representations
(bases).

vs
U1

U2
U3

Shared information:

Ubig
3 =

[
U1 0
0 U2

]
U3

Buffer zone next to the diagonal or not (“strong admissibility”).

Assumes interaction
between two clusters
is low-rank.

vs
Blocks next to the
diagonal not
“admitted”
(compressed).

F.-H. Rouet, SIAM Conference on Parallel Processing, April 15th, 2016 4/20



Differences

Three criteria differentiate all the low-rank formats:
Clustering/partitioning: off-diagonal blocks can be refined or not.

The partitioning is
defined by a single
tree whose leaves
cluster [1, n].

vs
The partitioning is
defined by the
product of two trees
(rows × columns).

Nested basis or not.
Blocks have
independent
compressed
representations
(bases).

vs
U1

U2
U3

Shared information:

Ubig
3 =

[
U1 0
0 U2

]
U3

Buffer zone next to the diagonal or not (“strong admissibility”).

Assumes interaction
between two clusters
is low-rank.

vs
Blocks next to the
diagonal not
“admitted”
(compressed).

F.-H. Rouet, SIAM Conference on Parallel Processing, April 15th, 2016 4/20



Differences

Three criteria differentiate all the low-rank formats:
Clustering/partitioning: off-diagonal blocks can be refined or not.

The partitioning is
defined by a single
tree whose leaves
cluster [1, n].

vs
The partitioning is
defined by the
product of two trees
(rows × columns).

Nested basis or not.
Blocks have
independent
compressed
representations
(bases).

vs
U1

U2
U3

Shared information:

Ubig
3 =

[
U1 0
0 U2

]
U3

Buffer zone next to the diagonal or not (“strong admissibility”).

Assumes interaction
between two clusters
is low-rank.

vs
Blocks next to the
diagonal not
“admitted”
(compressed).

F.-H. Rouet, SIAM Conference on Parallel Processing, April 15th, 2016 4/20



Differences

Three criteria differentiate all the low-rank formats:
Clustering/partitioning: off-diagonal blocks can be refined or not.

The partitioning is
defined by a single
tree whose leaves
cluster [1, n].

vs
The partitioning is
defined by the
product of two trees
(rows × columns).

Nested basis or not.
Blocks have
independent
compressed
representations
(bases).

vs
U1

U2
U3

Shared information:

Ubig
3 =

[
U1 0
0 U2

]
U3

Buffer zone next to the diagonal or not (“strong admissibility”).

Assumes interaction
between two clusters
is low-rank.

vs
Blocks next to the
diagonal not
“admitted”
(compressed).

F.-H. Rouet, SIAM Conference on Parallel Processing, April 15th, 2016 4/20



Main classes of hierarchical matrices

HODLR (Darve et al.)
No nested bases.
No off-diagonal refinement.
No buffer zone.

F.-H. Rouet, SIAM Conference on Parallel Processing, April 15th, 2016 5/20



Main classes of hierarchical matrices

HSS (Chandrasekaran, Jia. . . )
Nested bases.
No off-diagonal refinement.
No buffer zone.

F.-H. Rouet, SIAM Conference on Parallel Processing, April 15th, 2016 5/20



Main classes of hierarchical matrices

BLR (Amestoy, Ashcraft, et al.)
No nested bases.
Refine off-diagonal blocks.
Can do buffer zone.

F.-H. Rouet, SIAM Conference on Parallel Processing, April 15th, 2016 5/20



Main classes of hierarchical matrices

Barnes-Hut (“tree code”)
No nested bases.
Refine off-diagonal blocks.
Buffer zone.

F.-H. Rouet, SIAM Conference on Parallel Processing, April 15th, 2016 5/20



Main classes of hierarchical matrices

Fast Multipole Method (Greengard & Rokhlin)
Nested bases.
Refine off-diagonal blocks.
Buffer zone.

F.-H. Rouet, SIAM Conference on Parallel Processing, April 15th, 2016 5/20



Main classes of hierarchical matrices

Fast Multipole Method (Greengard & Rokhlin)
Nested bases.
Refine off-diagonal blocks.
Buffer zone.

H → H2 ≡ Barnes-Hut→ FMM

F.-H. Rouet, SIAM Conference on Parallel Processing, April 15th, 2016 5/20



The four formats

HODLRH (one instance)

HSSBLR

Simple clusteringUniform
partitioning

Nested
bases

F.-H. Rouet, SIAM Conference on Parallel Processing, April 15th, 2016 6/20



Compression kernel

Compression of an m × n block B:
SVD: optimal but costly (O(mn2)).

Rank-Revealing QR (Householder or Gram-Schmidt). Cost
O(mnk). Strong RRQR might reduce ranks but is more costly.
Interpolative Decomposition (ID) is RRQR + 1 step:

B = QRΠ−1 = Q [R1R2] Π−1 = (QR1)
[
I R−1

1 R2
]

Π−1 = B(:, J)X
Adaptive Cross Approximation (Bebendorf) is essentially
rank-revealing LU and a similar trick to get

B = X B(I, J) Y
Cost O(k2n). In some applications people choose I, J a priori.
CUR (Mahoney & Drineas), or pseudo-skeleton decomposition, is
essentially a two-sided ID:

B = CUR = B(:, J) U B(I, :)
BDLR (Darve et al.) is a new technique that looks at the
underlying graph to pick some interesting rows/columns.

F.-H. Rouet, SIAM Conference on Parallel Processing, April 15th, 2016 7/20



Compression kernel

Compression of an m × n block B:
SVD: optimal but costly (O(mn2)).
Rank-Revealing QR (Householder or Gram-Schmidt). Cost
O(mnk). Strong RRQR might reduce ranks but is more costly.

Interpolative Decomposition (ID) is RRQR + 1 step:

B = QRΠ−1 = Q [R1R2] Π−1 = (QR1)
[
I R−1

1 R2
]

Π−1 = B(:, J)X
Adaptive Cross Approximation (Bebendorf) is essentially
rank-revealing LU and a similar trick to get

B = X B(I, J) Y
Cost O(k2n). In some applications people choose I, J a priori.
CUR (Mahoney & Drineas), or pseudo-skeleton decomposition, is
essentially a two-sided ID:

B = CUR = B(:, J) U B(I, :)
BDLR (Darve et al.) is a new technique that looks at the
underlying graph to pick some interesting rows/columns.

F.-H. Rouet, SIAM Conference on Parallel Processing, April 15th, 2016 7/20



Compression kernel

Compression of an m × n block B:
SVD: optimal but costly (O(mn2)).
Rank-Revealing QR (Householder or Gram-Schmidt). Cost
O(mnk). Strong RRQR might reduce ranks but is more costly.
Interpolative Decomposition (ID) is RRQR + 1 step:

B = QRΠ−1 = Q [R1R2] Π−1 = (QR1)
[
I R−1

1 R2
]

Π−1 = B(:, J)X

Adaptive Cross Approximation (Bebendorf) is essentially
rank-revealing LU and a similar trick to get

B = X B(I, J) Y
Cost O(k2n). In some applications people choose I, J a priori.
CUR (Mahoney & Drineas), or pseudo-skeleton decomposition, is
essentially a two-sided ID:

B = CUR = B(:, J) U B(I, :)
BDLR (Darve et al.) is a new technique that looks at the
underlying graph to pick some interesting rows/columns.

F.-H. Rouet, SIAM Conference on Parallel Processing, April 15th, 2016 7/20



Compression kernel

Compression of an m × n block B:
SVD: optimal but costly (O(mn2)).
Rank-Revealing QR (Householder or Gram-Schmidt). Cost
O(mnk). Strong RRQR might reduce ranks but is more costly.
Interpolative Decomposition (ID) is RRQR + 1 step:

B = QRΠ−1 = Q [R1R2] Π−1 = (QR1)
[
I R−1

1 R2
]

Π−1 = B(:, J)X
Adaptive Cross Approximation (Bebendorf) is essentially
rank-revealing LU and a similar trick to get

B = X B(I, J) Y
Cost O(k2n). In some applications people choose I, J a priori.

CUR (Mahoney & Drineas), or pseudo-skeleton decomposition, is
essentially a two-sided ID:

B = CUR = B(:, J) U B(I, :)
BDLR (Darve et al.) is a new technique that looks at the
underlying graph to pick some interesting rows/columns.

F.-H. Rouet, SIAM Conference on Parallel Processing, April 15th, 2016 7/20



Compression kernel

Compression of an m × n block B:
SVD: optimal but costly (O(mn2)).
Rank-Revealing QR (Householder or Gram-Schmidt). Cost
O(mnk). Strong RRQR might reduce ranks but is more costly.
Interpolative Decomposition (ID) is RRQR + 1 step:

B = QRΠ−1 = Q [R1R2] Π−1 = (QR1)
[
I R−1

1 R2
]

Π−1 = B(:, J)X
Adaptive Cross Approximation (Bebendorf) is essentially
rank-revealing LU and a similar trick to get

B = X B(I, J) Y
Cost O(k2n). In some applications people choose I, J a priori.
CUR (Mahoney & Drineas), or pseudo-skeleton decomposition, is
essentially a two-sided ID:

B = CUR = B(:, J) U B(I, :)

BDLR (Darve et al.) is a new technique that looks at the
underlying graph to pick some interesting rows/columns.

F.-H. Rouet, SIAM Conference on Parallel Processing, April 15th, 2016 7/20



Compression kernel

Compression of an m × n block B:
SVD: optimal but costly (O(mn2)).
Rank-Revealing QR (Householder or Gram-Schmidt). Cost
O(mnk). Strong RRQR might reduce ranks but is more costly.
Interpolative Decomposition (ID) is RRQR + 1 step:

B = QRΠ−1 = Q [R1R2] Π−1 = (QR1)
[
I R−1

1 R2
]

Π−1 = B(:, J)X
Adaptive Cross Approximation (Bebendorf) is essentially
rank-revealing LU and a similar trick to get

B = X B(I, J) Y
Cost O(k2n). In some applications people choose I, J a priori.
CUR (Mahoney & Drineas), or pseudo-skeleton decomposition, is
essentially a two-sided ID:

B = CUR = B(:, J) U B(I, :)
BDLR (Darve et al.) is a new technique that looks at the
underlying graph to pick some interesting rows/columns.

F.-H. Rouet, SIAM Conference on Parallel Processing, April 15th, 2016 7/20



Low-rank representations and sparse solvers

Many LR techniques embedded in the multifrontal method [Duff & Reid
’83]. Related: “sweeping preconditioner” [Ying, Engquist,. . . ], elliptic
solver [Chavez et al. ’16]. . .

1 2 3 4 5
1
2
3
4
5

1 2 3 4 5
1
2
3
4
5

A= L+U-I=

Traverse the tree bottom-up; at each node
(a.k.a. frontal matrix):

Partial factorization (yields parts of L/U).
Compute a contribution block (Schur
complement) to be used at the parent.

Assembly/extend-add operation:
F = AI,J l↔ CBchild 1 l↔ CBchild 2 l↔ . . .

5

5
4

1
4
5

3
4

2
3

Elimination tree

F.-H. Rouet, SIAM Conference on Parallel Processing, April 15th, 2016 8/20



Low-rank representations and sparse solvers

Many LR techniques embedded in the multifrontal method [Duff & Reid
’83]. Related: “sweeping preconditioner” [Ying, Engquist,. . . ], elliptic
solver [Chavez et al. ’16]. . .

1 2 3 4 5
1
2
3
4
5

1 2 3 4 5
1
2
3
4
5

A= L+U-I=

Traverse the tree bottom-up; at each node
(a.k.a. frontal matrix):

Partial factorization (yields parts of L/U).
Compute a contribution block (Schur
complement) to be used at the parent.
Assembly/extend-add operation:
F = AI,J l↔ CBchild 1 l↔ CBchild 2 l↔ . . .

5

5
4

1
4
5

3
4

2
3

5
4

5
4

0
0

5
4

0
0
0+ +

CB CBA4:5,4:5

F.-H. Rouet, SIAM Conference on Parallel Processing, April 15th, 2016 8/20



Extend-add and low-rank representations

How to do extend-add with compressed matrices?
BLR: contribution blocks not compressed [Amestoy et
al. ’12].

HSS, [Jia et al. ’09], serial 2D code. HSS extend-add.
Slow and hard to parallelize. Hard to extend to
algebraic.
HSS, [Wang et al. ’15], parallel geometric code.
Contribution blocks not compressed. Simple but
penalty on memory footprint.
HSS, [Ghysels et al. ’15], parallel algebraic code with
randomized sampling:
1. After partial factorization, compute

Y = CB · R with R random tall-skinny matrix.
Y is a sample of the Schur Complement.

2. At parent node, compute a sample of the
frontal matrix F as:

F · R = A · R l Y1 l Y2 . . .
Extend-add with “extension” only along rows.

F.-H. Rouet, SIAM Conference on Parallel Processing, April 15th, 2016 9/20



Extend-add and low-rank representations

How to do extend-add with compressed matrices?
BLR: contribution blocks not compressed [Amestoy et
al. ’12].
HSS, [Jia et al. ’09], serial 2D code. HSS extend-add.
Slow and hard to parallelize. Hard to extend to
algebraic.

HSS, [Wang et al. ’15], parallel geometric code.
Contribution blocks not compressed. Simple but
penalty on memory footprint.
HSS, [Ghysels et al. ’15], parallel algebraic code with
randomized sampling:
1. After partial factorization, compute

Y = CB · R with R random tall-skinny matrix.
Y is a sample of the Schur Complement.

2. At parent node, compute a sample of the
frontal matrix F as:

F · R = A · R l Y1 l Y2 . . .
Extend-add with “extension” only along rows.

F.-H. Rouet, SIAM Conference on Parallel Processing, April 15th, 2016 9/20



Extend-add and low-rank representations

How to do extend-add with compressed matrices?
BLR: contribution blocks not compressed [Amestoy et
al. ’12].
HSS, [Jia et al. ’09], serial 2D code. HSS extend-add.
Slow and hard to parallelize. Hard to extend to
algebraic.
HSS, [Wang et al. ’15], parallel geometric code.
Contribution blocks not compressed. Simple but
penalty on memory footprint.

HSS, [Ghysels et al. ’15], parallel algebraic code with
randomized sampling:
1. After partial factorization, compute

Y = CB · R with R random tall-skinny matrix.
Y is a sample of the Schur Complement.

2. At parent node, compute a sample of the
frontal matrix F as:

F · R = A · R l Y1 l Y2 . . .
Extend-add with “extension” only along rows.

F.-H. Rouet, SIAM Conference on Parallel Processing, April 15th, 2016 9/20



Extend-add and low-rank representations

How to do extend-add with compressed matrices?
BLR: contribution blocks not compressed [Amestoy et
al. ’12].
HSS, [Jia et al. ’09], serial 2D code. HSS extend-add.
Slow and hard to parallelize. Hard to extend to
algebraic.
HSS, [Wang et al. ’15], parallel geometric code.
Contribution blocks not compressed. Simple but
penalty on memory footprint.
HSS, [Ghysels et al. ’15], parallel algebraic code with
randomized sampling:
1. After partial factorization, compute

Y = CB · R with R random tall-skinny matrix.
Y is a sample of the Schur Complement.

2. At parent node, compute a sample of the
frontal matrix F as:

F · R = A · R l Y1 l Y2 . . .
Extend-add with “extension” only along rows.

F.-H. Rouet, SIAM Conference on Parallel Processing, April 15th, 2016 9/20



Extend-add and low-rank representations

How to do extend-add with compressed matrices?
BLR: contribution blocks not compressed [Amestoy et
al. ’12].
HSS, [Jia et al. ’09], serial 2D code. HSS extend-add.
Slow and hard to parallelize. Hard to extend to
algebraic.
HSS, [Wang et al. ’15], parallel geometric code.
Contribution blocks not compressed. Simple but
penalty on memory footprint.
HSS, [Ghysels et al. ’15], parallel algebraic code with
randomized sampling:
1. After partial factorization, compute

Y = CB · R with R random tall-skinny matrix.
Y is a sample of the Schur Complement.

2. At parent node, compute a sample of the
frontal matrix F as:

F · R = A · R l Y1 l Y2 . . .
Extend-add with “extension” only along rows.

F.-H. Rouet, SIAM Conference on Parallel Processing, April 15th, 2016 9/20



Software packages – 1/2

Code License Authors Format Arch Matrix
HLIBPro Commercial Kriemann H, Shared (TBB), Dense,

2.4 (free academia) et al. H2 Dist. (MPI) Sparse
HODLR None Ambikasaran, HODLR Serial Dense
3.14 Darve

MUMPS Cecill-C Amestoy, BLR Dist. (MPI), Sparse
5.X dev ' GPL L’Excellent, et al. Shared (OpenMP) (dense)

STRUMPACK BSD R., Li , HSS Dist. (MPI) Dense
-dense 1.1.1 Ghysels
STRUMPACK BSD Ghysels, Li, HSS Shared (OpenMP) Sparse
-sparse 0.9.4 R.

Other codes: H2lib [Boerm et al.], AHMED [Bebendorf & Rjasanov],
BEM++ [Smigaj et al.], DMHM [Poulson & Li], H2tools [Mikhalev et al.]. . .

F.-H. Rouet, SIAM Conference on Parallel Processing, April 15th, 2016 10/20



Software packages – 2/2

Code Matrix Clustering Compress Factor Solve Extract Matvec
HLIBPro Dense X(geo) X X X X X

Sparse X(graph) X X X X X

HODLR Dense X X X X X

MUMPS Sparse X(graph) X X
Dense X X

STRUMPACK Dense X X X X X
Sparse X(graph) X X

HLIBPro also has:
H-matrix addition and
multiplication,
BEM-specific features,
Iterative solvers,
Visualization. . .

HODLR: there is a new code by A.
Aminfar with sparse features.

STRUMPACK: HSS algorithms based
on randomized sampling [Martinsson].
Sparse MPI+OpenMP solver to be
released soon (P. Ghysel’s talk).

MUMPS: BLR features implemented
in the dissertations of C. Weisbecker
and T. Mary, to be released soon.

F.-H. Rouet, SIAM Conference on Parallel Processing, April 15th, 2016 11/20



Software packages – 2/2

Code Matrix Clustering Compress Factor Solve Extract Matvec
HLIBPro Dense X(geo) X X X X X

Sparse X(graph) X X X X X

HODLR Dense X X X X X

MUMPS Sparse X(graph) X X
Dense X X

STRUMPACK Dense X X X X X
Sparse X(graph) X X

HLIBPro also has:
H-matrix addition and
multiplication,
BEM-specific features,
Iterative solvers,
Visualization. . .

HODLR: there is a new code by A.
Aminfar with sparse features.

STRUMPACK: HSS algorithms based
on randomized sampling [Martinsson].
Sparse MPI+OpenMP solver to be
released soon (P. Ghysel’s talk).

MUMPS: BLR features implemented
in the dissertations of C. Weisbecker
and T. Mary, to be released soon.

F.-H. Rouet, SIAM Conference on Parallel Processing, April 15th, 2016 11/20



Algorithmic and implementation differences

For dense matrices:
• HODLR, HLIBPro and STRUMPACK 1/ compress the entire

matrix then 2/ perform a structured factorization (e.g., ULV
factorization for HSS).

• MUMPS interleaves compressions and factorizations of panels.

Compression kernel:
• MUMPS and STRUMPACK use QR with column pivoting.
• HODLR and HLIBPro use ACA.

Compression threshold:
• HLIBPro, HODLR and STRUMPACK use a relative threshold.
• MUMPS uses an absolute threshold on singular values.

Interface:
• HLIBPro and HODLR require only a function that defines Ai,j .
• MUMPS requires an explicit matrix A.
• STRUMPACK can take either an explicit matrix, either an

element function and samples of the row and column spaces of
the matrix: Sr = A · Rr , Sc = AT · Rc .

F.-H. Rouet, SIAM Conference on Parallel Processing, April 15th, 2016 12/20



Algorithmic and implementation differences

For dense matrices:
• HODLR, HLIBPro and STRUMPACK 1/ compress the entire

matrix then 2/ perform a structured factorization (e.g., ULV
factorization for HSS).

• MUMPS interleaves compressions and factorizations of panels.
Compression kernel:

• MUMPS and STRUMPACK use QR with column pivoting.
• HODLR and HLIBPro use ACA.

Compression threshold:
• HLIBPro, HODLR and STRUMPACK use a relative threshold.
• MUMPS uses an absolute threshold on singular values.

Interface:
• HLIBPro and HODLR require only a function that defines Ai,j .
• MUMPS requires an explicit matrix A.
• STRUMPACK can take either an explicit matrix, either an

element function and samples of the row and column spaces of
the matrix: Sr = A · Rr , Sc = AT · Rc .

F.-H. Rouet, SIAM Conference on Parallel Processing, April 15th, 2016 12/20



Algorithmic and implementation differences

For dense matrices:
• HODLR, HLIBPro and STRUMPACK 1/ compress the entire

matrix then 2/ perform a structured factorization (e.g., ULV
factorization for HSS).

• MUMPS interleaves compressions and factorizations of panels.
Compression kernel:

• MUMPS and STRUMPACK use QR with column pivoting.
• HODLR and HLIBPro use ACA.

Compression threshold:
• HLIBPro, HODLR and STRUMPACK use a relative threshold.
• MUMPS uses an absolute threshold on singular values.

Interface:
• HLIBPro and HODLR require only a function that defines Ai,j .
• MUMPS requires an explicit matrix A.
• STRUMPACK can take either an explicit matrix, either an

element function and samples of the row and column spaces of
the matrix: Sr = A · Rr , Sc = AT · Rc .

F.-H. Rouet, SIAM Conference on Parallel Processing, April 15th, 2016 12/20



Algorithmic and implementation differences

For dense matrices:
• HODLR, HLIBPro and STRUMPACK 1/ compress the entire

matrix then 2/ perform a structured factorization (e.g., ULV
factorization for HSS).

• MUMPS interleaves compressions and factorizations of panels.
Compression kernel:

• MUMPS and STRUMPACK use QR with column pivoting.
• HODLR and HLIBPro use ACA.

Compression threshold:
• HLIBPro, HODLR and STRUMPACK use a relative threshold.
• MUMPS uses an absolute threshold on singular values.

Interface:
• HLIBPro and HODLR require only a function that defines Ai,j .
• MUMPS requires an explicit matrix A.
• STRUMPACK can take either an explicit matrix, either an

element function and samples of the row and column spaces of
the matrix: Sr = A · Rr , Sc = AT · Rc .

F.-H. Rouet, SIAM Conference on Parallel Processing, April 15th, 2016 12/20



Comparison for dense problems (SIAM LA15) – 1/5

Settings:
10 dense matrices from various applications.
N = 10, 000− 20, 000.
Benchmark: preconditioned GMRES.
HODLR vs HLIBPro vs MUMPS-BLR vs STRUMPACK.

F.-H. Rouet, SIAM Conference on Parallel Processing, April 15th, 2016 13/20



Comparison for dense problems (SIAM LA15) – 2/5

Quantum Chemistry Toeplitz matrix, n = 12, 500.
Solver Time(s) Mem(MB) #Iters
LAPACK 63.5 1192.1 1
HODLR 10−14 0.7 42.5 2
HODLR 10−08 0.5 27.5 3
HODLR 10−02 60.0 10.7 600
HLIBPro 10−14 3.6 42.8 2
HLIBPro 10−08 2.2 30.3 2
HLIBPro 10−02 1.4 16.3 6
MUMPS-BLR 10−14 8.3 64.3 2
MUMPS-BLR 10−08 9.0 58.4 3
MUMPS-BLR 10−02 12.2 53.6 17
STRUMPACK 10−14 0.7 40.7 1
STRUMPACK 10−08 0.5 22.7 3
STRUMPACK 10−02 1.0 7.9 65

Very structured problem, hierarchical formats outperform BLR.
Nested basis structure gives the edge to HSS.

F.-H. Rouet, SIAM Conference on Parallel Processing, April 15th, 2016 14/20



Comparison for dense problems (SIAM LA15) – 3/5

Covariance matrix, n = 10, 648 (22× 22× 22 mesh).
Solver Time(s) Mem(MB) #Iters
LAPACK 41.0 865.0 1
HODLR 10−14 448.2 2250.1 2
HODLR 10−08 89.6 935.7 9
HODLR 10−02 NoCV 10.9 NoCV
HLIBPro 10−14 247.8 764.7 1
HLIBPro 10−08 191.5 577.5 3
HLIBPro 10−02 NoCV 30.8 NoCV
MUMPS-BLR 10−14 48.9 865.0 2
MUMPS-BLR 10−08 35.7 737.0 3
MUMPS-BLR 10−02 49.6 203.3 130
STRUMPACK 10−14 277.7 1651.9 2
STRUMPACK 10−08 97.8 945.1 6
STRUMPACK 10−02 111.1 648.8 436

No compression with hierarchical formats except with large ε.
Some limited gains with BLR.

F.-H. Rouet, SIAM Conference on Parallel Processing, April 15th, 2016 15/20



Comparison for dense problems (SIAM LA15) – 4/5

BEM Acoustic Sphere, n = 10, 002.
Solver Time(s) Mem(MB) #Iters
LAPACK 53.0 921.8 1
HODLR 10−14 1.5 23.1 4
HODLR 10−08 0.8 9.5 5
HODLR 10−02 1.0 7.2 8
HLIBPro 10−14 1.5 13.7 7
HLIBPro 10−08 1.4 11.4 7
HLIBPro 10−02 1.2 9.3 7
MUMPS-BLR 10−14 11.1 48.3 1
MUMPS-BLR 10−08 9.1 40.6 2
MUMPS-BLR 10−02 9.8 38.5 5
STRUMPACK 10−14 245.8 501.8 1
STRUMPACK 10−08 8.8 22.7 2
STRUMPACK 10−02 1.9 10.9 5

HODLR, HLIBPro, ahead.
No clear nested basis structure in this problem.

F.-H. Rouet, SIAM Conference on Parallel Processing, April 15th, 2016 16/20



Comparison for dense problems (SIAM LA15) – 5/5

For our test suite (10 problems):
Problems with very low-ranks (Toeplitz, 2D Laplacian):
HLIBPro/HODLR/STRUMPACK dominate.
Problems with large ranks (in A12, A21) (Covariance, 3D
Laplacian): MUMPS-BLR faster.
Some problems: no clear result, depends on threshold.
MUMPS-BLR limits the worst-case: no huge increase in run time
or memory for 10−14. It rejects blocks with large ranks. This is
possible with HSS etc. but these codes don’t do it.

F.-H. Rouet, SIAM Conference on Parallel Processing, April 15th, 2016 17/20



Sparse problems – Regular grids

We compared HSS (STRUMPACK) and BLR (MUMPS) for 2D
Poisson and 3D Helmholtz.

2D Poisson: HSS slightly lower asymptotic complexity but higher
prefactor.
3D Helmholtz: asymptotic behaviors very similar.

Cf. next talk (Theo Mary) for experimental results with BLR and
complexity study.

F.-H. Rouet, SIAM Conference on Parallel Processing, April 15th, 2016 18/20



Sparse problems – General problems

We experimented with 10 medium-sized matrices from UFL.
(A22, Geo_1438, tdr190k, atmosmodd, nlpkkt80, Serena, torso3, Cube_Coup_dt0,
spe10-aniso, Transport)

Lessons learnt:
HSS can’t be used as a direct solver (ε ' 10−16). Aggressive
settings needed. Cf. P. Ghysels’ talk for HSS vs ILU and other
preconditioners.
Gains with BLR as a function of ε more consistent.
BLR has a wider range of applications. HSS more restricted
(especially for sparse problems, not as much for dense).
Parallelism, efficiency: HSS more complicated communication
pattern (tree traversal). BLR similar to a traditional
factorization; better flop rate.

F.-H. Rouet, SIAM Conference on Parallel Processing, April 15th, 2016 19/20



End

Thank you for your attention!

Any questions?

F.-H. Rouet, SIAM Conference on Parallel Processing, April 15th, 2016 20/20


