A comparison of parallel rank-structured solvers

François-Henry Rouet

Livermore Software Technology Corporation, Lawrence Berkeley National Laboratory

Joint work with:

- LSTC: J. Anton, C. Ashcraft, C. Weisbecker
- LBNL: P. Ghysels, X. S. Li
- MUMPS project: P. R. Amestoy, A. Buttari, J.-Y. L'Excellent, T. Mary

SIAM Conference on Parallel Processing, April 15th, 2016

Low-rankness

 Low-rank/structured methods rely on data sparsity, similar to the Fast Multipole Method.

In algebraic terms: some off-diagonal blocks of the input matrix are low-rank; they can be compressed.

 NB: sometimes this applies to intermediate matrices (not the input matrix), e.g., in sparse factorizations.

Most structured matrices belong to the class of Hierarchical matrices $(\mathcal{H}-matrices)$ [Hackbusch, Bebendorf, Börm, Grasedyck...].

- \mathcal{H}^2 (Hackbusch, Börm, et al.)
- HSS (Chandrasekaran, Jia, et al.)
- HODLR (Darve et al.)
- BLR (Amestoy, Ashcraft, et al.)
- + SSS, MHS, ...

In this talk:

- We review some algorithmic and implementation differences.
- We discuss a comparison of HSS and BLR.

Three criteria differentiate all the low-rank formats:

Differences

Three criteria differentiate all the low-rank formats:

Clustering/partitioning: off-diagonal blocks can be refined or not.

The partitioning is defined by a single tree whose leaves cluster [1, n].

The partitioning is defined by the product of two trees (rows \times columns).

Differences

Three criteria differentiate all the low-rank formats:

Clustering/partitioning: off-diagonal blocks can be refined or not.

VS

The partitioning is defined by a single tree whose leaves cluster [1, n].

Nested basis or not.

Blocks have independent compressed representations (bases).

The partitioning is defined by the product of two trees (rows \times columns).

Shared information:

 $U_3^{\mathrm{big}} = egin{bmatrix} U_1 & 0 \ 0 & U_2 \end{bmatrix} U_3$

Differences

Three criteria differentiate all the low-rank formats:

Clustering/partitioning: off-diagonal blocks can be refined or not.

VS

- The partitioning is defined by a single tree whose leaves cluster [1, n].
 - Nested basis or not.

Blocks have independent compressed representations (bases).

The partitioning is

defined by the

Shared information:

$$U_3^{
m big} = \begin{bmatrix} U_1 & 0 \\ 0 & U_2 \end{bmatrix} U_3$$

Buffer zone next to the diagonal or not ("strong admissibility").

Assumes interaction between two clusters is low-rank.

Blocks next to the diagonal not "admitted" (compressed).

Main classes of hierarchical matrices

HODLR (Darve et al.)

- No nested bases.
- No off-diagonal refinement.
- No buffer zone.

Main classes of hierarchical matrices

HSS (Chandrasekaran, Jia...)

- Nested bases.
- No off-diagonal refinement.
- No buffer zone.

Main classes of hierarchical matrices

BLR (Amestoy, Ashcraft, et al.)

- No nested bases.
- Refine off-diagonal blocks.
- Can do buffer zone.

Barnes-Hut ("tree code")

- No nested bases.
- Refine off-diagonal blocks.
- Buffer zone.

Fast Multipole Method (Greengard & Rokhlin)

- Nested bases.
- Refine off-diagonal blocks.
- Buffer zone.

Fast Multipole Method (Greengard & Rokhlin)

- Nested bases.
- Refine off-diagonal blocks.
- Buffer zone.

 $\mathcal{H} \rightarrow \mathcal{H}^2 \equiv \mathsf{Barnes}\text{-}\mathsf{Hut} \rightarrow \mathsf{FMM}$

The four formats

Compression of an $m \times n$ block B:

• SVD: optimal but costly $(O(mn^2))$.

Compression of an $m \times n$ block *B*:

- SVD: optimal but costly $(O(mn^2))$.
- Rank-Revealing QR (Householder or Gram-Schmidt). Cost O(mnk). Strong RRQR might reduce ranks but is more costly.

Compression of an $m \times n$ block *B*:

- SVD: optimal but costly $(O(mn^2))$.
- Rank-Revealing QR (Householder or Gram-Schmidt). Cost O(mnk). Strong RRQR might reduce ranks but is more costly.
- Interpolative Decomposition (ID) is RRQR + 1 step:

$$B = QR\Pi^{-1} = Q[R_1R_2]\Pi^{-1} = (QR_1)[I R_1^{-1}R_2]\Pi^{-1} = B(:,J)X$$

Compression of an $m \times n$ block *B*:

- SVD: optimal but costly $(O(mn^2))$.
- Rank-Revealing QR (Householder or Gram-Schmidt). Cost O(mnk). Strong RRQR might reduce ranks but is more costly.
- Interpolative Decomposition (ID) is RRQR + 1 step:

$$B = QR\Pi^{-1} = Q[R_1R_2]\Pi^{-1} = (QR_1)[IR_1^{-1}R_2]\Pi^{-1} = B(:,J)X$$

 Adaptive Cross Approximation (Bebendorf) is essentially rank-revealing LU and a similar trick to get

$$B = X B(I,J) Y$$

Cost $O(k^2n)$. In some applications people choose I, J a priori.

Compression of an $m \times n$ block *B*:

- SVD: optimal but costly $(O(mn^2))$.
- Rank-Revealing QR (Householder or Gram-Schmidt). Cost O(mnk). Strong RRQR might reduce ranks but is more costly.
- Interpolative Decomposition (ID) is RRQR + 1 step:

$$B = QR\Pi^{-1} = Q[R_1R_2]\Pi^{-1} = (QR_1)[IR_1^{-1}R_2]\Pi^{-1} = B(:,J)X$$

 Adaptive Cross Approximation (Bebendorf) is essentially rank-revealing LU and a similar trick to get

$$B = X B(I,J) Y$$

Cost $O(k^2n)$. In some applications people choose I, J a priori.

 CUR (Mahoney & Drineas), or pseudo-skeleton decomposition, is essentially a two-sided ID:

$$B = CUR = B(:, J) U B(I, :)$$

Compression of an $m \times n$ block *B*:

- SVD: optimal but costly $(O(mn^2))$.
- Rank-Revealing QR (Householder or Gram-Schmidt). Cost O(mnk). Strong RRQR might reduce ranks but is more costly.
- Interpolative Decomposition (ID) is RRQR + 1 step:

$$B = QR\Pi^{-1} = Q[R_1R_2]\Pi^{-1} = (QR_1)[IR_1^{-1}R_2]\Pi^{-1} = B(:,J)X$$

 Adaptive Cross Approximation (Bebendorf) is essentially rank-revealing LU and a similar trick to get

$$B = X B(I, J) Y$$

Cost $O(k^2n)$. In some applications people choose I, J a priori.

 CUR (Mahoney & Drineas), or pseudo-skeleton decomposition, is essentially a two-sided ID:

$$B = CUR = B(:, J) U B(I, :)$$

BDLR (Darve et al.) is a new technique that looks at the underlying graph to pick some interesting rows/columns.
 F.-H. Rouet, SIAM Conference on Parallel Processing, April 15th, 2016

Low-rank representations and sparse solvers

Many LR techniques embedded in the multifrontal method [Duff & Reid '83]. Related: "sweeping preconditioner" [Ying, Engquist,...], elliptic solver [Chavez et al. '16]...

Traverse the tree bottom-up; at each node (a.k.a. frontal matrix):

- Partial factorization (yields parts of L/U).
- Compute a contribution block (Schur complement) to be used at the parent.

Low-rank representations and sparse solvers

Many LR techniques embedded in the multifrontal method [Duff & Reid '83]. Related: "sweeping preconditioner" [Ying, Engquist,...], elliptic solver [Chavez et al. '16]...

Traverse the tree bottom-up; at each node (a.k.a. frontal matrix):

- Partial factorization (yields parts of L/U).
- Compute a contribution block (Schur complement) to be used at the parent.

Assembly/extend-add operation:

$$F = A_{I,J} \Leftrightarrow \mathsf{CB}_{\mathsf{child}\ 1} \Leftrightarrow \mathsf{CB}_{\mathsf{child}\ 2} \Leftrightarrow$$

How to do extend-add with compressed matrices? BLR: contribution blocks not compressed [Amestoy et al. '12].

How to do extend-add with compressed matrices?

- BLR: contribution blocks not compressed [Amestoy et al. '12].
- HSS, [Jia et al. '09], serial 2D code. HSS extend-add. Slow and hard to parallelize. Hard to extend to algebraic.

How to do extend-add with compressed matrices?

- BLR: contribution blocks not compressed [Amestoy et al. '12].
- HSS, [Jia et al. '09], serial 2D code. HSS extend-add. Slow and hard to parallelize. Hard to extend to algebraic.
- HSS, [Wang et al. '15], parallel geometric code. Contribution blocks not compressed. Simple but penalty on memory footprint.

How to do extend-add with compressed matrices?

- BLR: contribution blocks not compressed [Amestoy et al. '12].
- HSS, [Jia et al. '09], serial 2D code. HSS extend-add. Slow and hard to parallelize. Hard to extend to algebraic.
- HSS, [Wang et al. '15], parallel geometric code. Contribution blocks not compressed. Simple but penalty on memory footprint.
- HSS, [Ghysels et al. '15], parallel algebraic code with randomized sampling:
 - 1. After partial factorization, compute $Y = CB \cdot R$ with R random tall-skinny matrix. Y is a sample of the Schur Complement.
 - 2. At parent node, compute a sample of the frontal matrix *F* as:

 $F \cdot R = A \cdot R \ \downarrow \ Y_1 \ \downarrow \ Y_2 \dots$ Extend-add with "extension" only along rows.

F.-H. Rouet, SIAM Conference on Parallel Processing, April 15th, 2016

9/20

How to do extend-add with compressed matrices?

- BLR: contribution blocks not compressed [Amestoy et al. '12].
- HSS, [Jia et al. '09], serial 2D code. HSS extend-add. Slow and hard to parallelize. Hard to extend to algebraic.
- HSS, [Wang et al. '15], parallel geometric code. Contribution blocks not compressed. Simple but penalty on memory footprint.
- HSS, [Ghysels et al. '15], parallel algebraic code with randomized sampling:
 - 1. After partial factorization, compute $Y = CB \cdot R$ with R random tall-skinny matrix. Y is a sample of the Schur Complement.
 - 2. At parent node, compute a sample of the frontal matrix *F* as:

 $F \cdot R = A \cdot R \ \downarrow \ Y_1 \ \downarrow \ Y_2 \dots$ Extend-add with "extension" only along rows.

Software packages -1/2

Code	License	Authors	Format	Arch	Matrix
HLIBPro 2.4	Commercial (free academia)	Kriemann et al.	\mathcal{H} , \mathcal{H}^2	Shared (TBB), Dist. (MPI)	Dense, Sparse
HODLR 3.14	None	Ambikasaran, Darve	HODLR	Serial	Dense
MUMPS 5.X dev	$\stackrel{\sf Cecill-C}{\simeq}{\sf GPL}$	Amestoy, L'Excellent, et al.	BLR	Dist. (MPI), Shared (OpenMP)	Sparse (dense)
STRUMPACK -dense 1.1.1	BSD	R., Li , Ghysels	HSS	Dist. (MPI)	Dense
STRUMPACK -sparse 0.9.4	BSD	Ghysels, Li, R.	HSS	Shared (OpenMP)	Sparse

Other codes: H2lib [Boerm et al.], AHMED [Bebendorf & Rjasanov], BEM++ [Smigaj et al.], DMHM [Poulson & Li], H2tools [Mikhalev et al.]...

Software packages -2/2

Code	Matrix	Clustering	Compress	Factor	Solve	Extract	Matvec
HLIBPro	Dense	√(geo)	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark
	Sparse	√(graph)	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark
HODLR	Dense		\checkmark	\checkmark	\checkmark	\checkmark	\checkmark
MUMPS	Sparse	√(graph)		\checkmark	\checkmark		
	Dense			\checkmark	\checkmark		
STRUMPACK	Dense		\checkmark	\checkmark	\checkmark	\checkmark	\checkmark
	Sparse	√(graph)		\checkmark	\checkmark		

Software packages -2/2

Code	Matrix	Clustering	Compress	Factor	Solve	Extract	Matvec
HLIBPro	Dense	√(geo)	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark
	Sparse	√(graph)	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark
HODLR	Dense		\checkmark	\checkmark	\checkmark	\checkmark	\checkmark
MUMPS	Sparse	√(graph)		\checkmark	\checkmark		
	Dense			\checkmark	\checkmark		
STRUMPACK	Dense		\checkmark	\checkmark	\checkmark	\checkmark	\checkmark
	Sparse	√(graph)		\checkmark	\checkmark		

HLIBPro also has:

- *H*-matrix addition and multiplication,
- BEM-specific features,
- Iterative solvers,
- Visualization...

HODLR: there is a new code by A. Aminfar with sparse features.

STRUMPACK: HSS algorithms based on randomized sampling [Martinsson]. Sparse MPI+OpenMP solver to be released soon (P. Ghysel's talk).

MUMPS: BLR features implemented in the dissertations of C. Weisbecker and T. Mary, to be released soon.

- For dense matrices:
 - HODLR, HLIBPro and STRUMPACK 1/ compress the entire matrix then 2/ perform a structured factorization (e.g., ULV factorization for HSS).
 - MUMPS interleaves compressions and factorizations of panels.

- For dense matrices:
 - HODLR, HLIBPro and STRUMPACK 1/ compress the entire matrix then 2/ perform a structured factorization (e.g., ULV factorization for HSS).
 - MUMPS interleaves compressions and factorizations of panels.
- Compression kernel:
 - MUMPS and STRUMPACK use QR with column pivoting.
 - HODLR and HLIBPro use ACA.

- For dense matrices:
 - HODLR, HLIBPro and STRUMPACK 1/ compress the entire matrix then 2/ perform a structured factorization (e.g., ULV factorization for HSS).
 - MUMPS interleaves compressions and factorizations of panels.
- Compression kernel:
 - MUMPS and STRUMPACK use QR with column pivoting.
 - HODLR and HLIBPro use ACA.
- Compression threshold:
 - HLIBPro, HODLR and STRUMPACK use a relative threshold.

12/20

• MUMPS uses an absolute threshold on singular values.

- For dense matrices:
 - HODLR, HLIBPro and STRUMPACK 1/ compress the entire matrix then 2/ perform a structured factorization (e.g., ULV factorization for HSS).
 - MUMPS interleaves compressions and factorizations of panels.
- Compression kernel:
 - MUMPS and STRUMPACK use QR with column pivoting.
 - HODLR and HLIBPro use ACA.
- Compression threshold:
 - HLIBPro, HODLR and STRUMPACK use a relative threshold.
 - MUMPS uses an absolute threshold on singular values.
- Interface:
 - HLIBPro and HODLR require only a function that defines A_{i,j}.
 - MUMPS requires an explicit matrix A.
 - STRUMPACK can take either an explicit matrix, either an element function and samples of the row and column spaces of the matrix: S_r = A · R_r, S_c = A^T · R_c.

Settings:

- 10 dense matrices from various applications.
- N = 10,000 20,000.
- Benchmark: preconditioned GMRES.
- HODLR vs HLIBPro vs MUMPS-BLR vs STRUMPACK.

Comparison for dense problems (SIAM LA15) - 2/5

Quantum Chemistry Toeplitz matrix, n = 12,500.

Solver	Time(s)	Mem(MB)	#Iters
LAPACK	63.5	1192.1	1
HODLR 10 ⁻¹⁴	0.7	42.5	2
HODLR 10 ⁻⁰⁸	0.5	27.5	3
HODLR 10 ⁻⁰²	60.0	10.7	600
HLIBPro 10^{-14}	3.6	42.8	2
HLIBPro 10^{-08}	2.2	30.3	2
HLIBPro 10^{-02}	1.4	16.3	6
MUMPS-BLR 10 ⁻¹⁴	8.3	64.3	2
MUMPS-BLR 10 ⁻⁰⁸	9.0	58.4	3
MUMPS-BLR 10 ⁻⁰²	12.2	53.6	17
STRUMPACK 10 ⁻¹⁴	0.7	40.7	1
STRUMPACK 10 ⁻⁰⁸	0.5	22.7	3
STRUMPACK 10 ⁻⁰²	1.0	7.9	65

Very structured problem, hierarchical formats outperform BLR. Nested basis structure gives the edge to HSS. F.-H. Rouet, SIAM Conference on Parallel Processing, April 15th, 2016

14/20

Comparison for dense problems (SIAM LA15) - 3/5

Covariance matrix, n = 10,648 ($22 \times 22 \times 22$ mesh).

Solver	Time(s)	Mem(MB)	#Iters
LAPACK	41.0	865.0	1
HODLR 10 ⁻¹⁴	448.2	2250.1	2
HODLR 10 ⁻⁰⁸	89.6	935.7	9
HODLR 10 ⁻⁰²	NoCV	10.9	NoCV
HLIBPro 10^{-14}	247.8	764.7	1
HLIBPro 10^{-08}	191.5	577.5	3
HLIBPro 10^{-02}	NoCV	30.8	NoCV
MUMPS-BLR 10 ⁻¹⁴	48.9	865.0	2
MUMPS-BLR 10 ⁻⁰⁸	35.7	737.0	3
MUMPS-BLR 10 ⁻⁰²	49.6	203.3	130
STRUMPACK 10 ⁻¹⁴	277.7	1651.9	2
STRUMPACK 10 ⁻⁰⁸	97.8	945.1	6
STRUMPACK 10 ⁻⁰²	111.1	648.8	436

No compression with hierarchical formats except with large ε . Some limited gains with BLR.

Comparison for dense problems (SIAM LA15) - 4/5

BEM Acoustic Sphere, n = 10,002.

Solver	Time(s)	Mem(MB)	#Iters
LAPACK	53.0	921.8	1
HODLR 10 ⁻¹⁴	1.5	23.1	4
HODLR 10 ⁻⁰⁸	0.8	9.5	5
HODLR 10 ⁻⁰²	1.0	7.2	8
HLIBPro 10^{-14}	1.5	13.7	7
HLIBPro 10^{-08}	1.4	11.4	7
HLIBPro 10^{-02}	1.2	9.3	7
MUMPS-BLR 10 ⁻¹⁴	11.1	48.3	1
MUMPS-BLR 10 ⁻⁰⁸	9.1	40.6	2
MUMPS-BLR 10 ⁻⁰²	9.8	38.5	5
STRUMPACK 10 ⁻¹⁴	245.8	501.8	1
STRUMPACK 10 ⁻⁰⁸	8.8	22.7	2
STRUMPACK 10 ⁻⁰²	1.9	10.9	5

HODLR, HLIBPro, ahead.

No clear nested basis structure in this problem.

For our test suite (10 problems):

- Problems with very low-ranks (Toeplitz, 2D Laplacian): HLIBPro/HODLR/STRUMPACK dominate.
- Problems with large ranks (in A₁₂, A₂₁) (Covariance, 3D Laplacian): MUMPS-BLR faster.
- Some problems: no clear result, depends on threshold.
- MUMPS-BLR limits the worst-case: no huge increase in run time or memory for 10⁻¹⁴. It rejects blocks with large ranks. This is possible with HSS etc. but these codes don't do it.

We compared HSS (STRUMPACK) and BLR (MUMPS) for 2D Poisson and 3D Helmholtz.

- 2D Poisson: HSS slightly lower asymptotic complexity but higher prefactor.
- **3**D Helmholtz: asymptotic behaviors very similar.

Cf. next talk (Theo Mary) for experimental results with BLR and complexity study.

We experimented with 10 medium-sized matrices from UFL. (A22, Geo_1438, tdr190k, atmosmodd, nlpkkt80, Serena, torso3, Cube_Coup_dt0, spe10-aniso, Transport)

Lessons learnt:

- HSS can't be used as a direct solver (ε ≃ 10⁻¹⁶). Aggressive settings needed. Cf. P. Ghysels' talk for HSS vs ILU and other preconditioners.
- Gains with BLR as a function of ε more consistent.
- BLR has a wider range of applications. HSS more restricted (especially for sparse problems, not as much for dense).
- Parallelism, efficiency: HSS more complicated communication pattern (tree traversal). BLR similar to a traditional factorization; better flop rate.

Thank you for your attention!

Any questions?

F.-H. Rouet, SIAM Conference on Parallel Processing, April 15th, 2016

20/20