Complexity and performance of the Block Low-Rank multifrontal factorization and its variants

P. Amestoy*,1 A. Buttari*,2 J.-Y. L'Excellent ${ }^{\dagger, 3} \quad \underline{\text { T. Mary }}{ }^{*, 4}$

* Université de Toulouse ${ }^{\dagger}$ ENS Lyon
${ }^{1}$ INPT-IRIT ${ }^{2}$ CNRS-IRIT ${ }^{2}$ INRIA-LIP ${ }^{4}$ UPS-IRIT

SIAM PP'16, Paris Apr. 12-15

Introduction

Multifrontal (Duff '83) with Nested Dissection (George '73)

Multifrontal (Duff '83) with Nested Dissection (George '73)

3D problem cost \propto
\rightarrow Flops: $O\left(n^{2}\right)$, mem: $O\left(n^{4 / 3}\right)$

\mathcal{H} and BLR matrices

\mathcal{H}-matrix

\mathcal{H} and BLR matrices

\mathcal{H}-matrix

BLR matrix

\mathcal{H} and BLR matrices

\mathcal{H}-matrix

BLR matrix

A block B represents the interaction between two subdomains. If they have a small diameter and are far away their interaction is weak \Rightarrow rank is low.

\mathcal{H} and BLR matrices

\mathcal{H}-matrix

BLR matrix
A block B represents the interaction between two subdomains. If they have a small diameter and are far away their interaction is weak \Rightarrow rank is low.

$$
\tilde{B}=X Y^{\top} \text { such that } \operatorname{rank}(\tilde{B})=k_{\varepsilon} \text { and }\|B-\tilde{B}\| \leq \varepsilon
$$

If $k_{\varepsilon} \ll \operatorname{size}(B) \Rightarrow$ memory and flops can be reduced with a controlled loss of accuracy ($\leq \varepsilon$)

\mathcal{H} and BLR matrices

\mathcal{H}-matrix

BLR matrix

A block B represents the interaction between two subdomains. If they have a small diameter and are far away their interaction is weak \Rightarrow rank is low.

$$
\tilde{B}=X Y^{\top} \text { such that } \operatorname{rank}(\tilde{B})=k_{\varepsilon} \text { and }\|B-\tilde{B}\| \leq \varepsilon
$$

If $k_{\varepsilon} \ll \operatorname{size}(B) \Rightarrow$ memory and flops can be reduced with a controlled loss of accuracy ($\leq \varepsilon$)

\mathcal{H} and BLR matrices

\mathcal{H}-matrix

BLR matrix

- Leads to very low theoretical complexity
- Complex, hierarchical structure
- Simple structure
- Theoretical complexity?

\mathcal{H} and BLR matrices

\mathcal{H}-matrix

BLR matrix
\Rightarrow Our hope is to find a good comprise between theoretical complexity and performance/usability

Questions that will be answered in this talk

- Is the complexity of the BLR factorization asymptotically better than the full-rank one? (i.e., in $O\left(n^{\alpha}\right)$, with $\alpha<2$ and where n is the number of unknowns)
- What are the different variants of the BLR factorization? Do they improve its complexity?
- How well does the complexity improvement translate into a performance gain?
- How parallel is the BLR factorization? What about its variants?

Variants of the BLR factorization

Variants of the BLR LU factorization

- FSCU

Variants of the BLR LU factorization

- FSCU (Factor,

Variants of the BLR LU factorization

- FSCU (Factor, Solve,

Variants of the BLR LU factorization

- FSCU (Factor, Solve, Compress,

Variants of the BLR LU factorization

- FSCU (Factor, Solve, Compress, Update)

Variants of the BLR LU factorization

- FSCU (Factor, Solve, Compress, Update)

Variants of the BLR LU factorization

- FSCU (Factor, Solve, Compress, Update)

Variants of the BLR LU factorization

\square

- FSCU (Factor, Solve, Compress, Update)

Variants of the BLR LU factorization

- FSCU (Factor, Solve, Compress, Update)

Variants of the BLR LU factorization

- FSCU (Factor, Solve, Compress, Update)

Variants of the BLR LU factorization

- FSCU (Factor, Solve, Compress, Update)

Variants of the BLR LU factorization

- FSCU (Factor, Solve, Compress, Update)

Variants of the BLR LU factorization

- FSCU (Factor, Solve, Compress, Update)

Variants of the BLR LU factorization

- FSCU (Factor, Solve, Compress, Update)
- FSCU+LUA

Variants of the BLR LU factorization

- FSCU (Factor, Solve, Compress, Update)
- FSCU+LUA

Variants of the BLR LU factorization

- FSCU (Factor, Solve, Compress, Update)
- FSCU+LUA

Variants of the BLR LU factorization

- FSCU (Factor, Solve, Compress, Update)
- FSCU+LUA

Variants of the BLR LU factorization

- FSCU (Factor, Solve, Compress, Update)
- FSCU+LUA
- More natural in Left-looking

Variants of the BLR LU factorization

- FSCU (Factor, Solve, Compress, Update)
- FSCU+LUA
- More natural in Left-looking

Variants of the BLR LU factorization

- FSCU (Factor, Solve, Compress, Update)
- FSCU+LUA
- More natural in Left-looking

Variants of the BLR LU factorization

- FSCU (Factor, Solve, Compress, Update)
- FSCU+LUA
- More natural in Left-looking

Variants of the BLR LU factorization

- FSCU (Factor, Solve, Compress, Update)
- FSCU+LUA
- More natural in Left-looking

Variants of the BLR LU factorization

- FSCU (Factor, Solve, Compress, Update)
- FSCU+LUA
- More natural in Left-looking

Variants of the BLR LU factorization

- FSCU (Factor, Solve, Compress, Update)
- FSCU+LUA
- More natural in Left-looking

Variants of the BLR LU factorization

- FSCU (Factor, Solve, Compress, Update)
- FSCU+LUA
- More natural in Left-looking

Variants of the BLR LU factorization

\square
\square

- FSCU (Factor, Solve, Compress, Update)
- FSCU+LUA
- More natural in Left-looking

Variants of the BLR LU factorization

- FSCU (Factor, Solve, Compress, Update)
- FSCU+LUA
- More natural in Left-looking

Variants of the BLR LU factorization

- FSCU (Factor, Solve, Compress, Update)
- FSCU+LUA
- More natural in Left-looking

Variants of the BLR LU factorization

- FSCU (Factor, Solve, Compress, Update)
- FSCU+LUA
- More natural in Left-looking

Variants of the BLR LU factorization

- FSCU (Factor, Solve, Compress, Update)
- FSCU+LUA
- More natural in Left-looking
- Better granularity in update operations

Variants of the BLR LU factorization

- FSCU (Factor, Solve, Compress, Update)
- FSCU+LUA
- More natural in Left-looking
- Better granularity in update operations
- Potential recompression

Variants of the BLR LU factorization

- FSCU (Factor, Solve, Compress, Update)
- FSCU+LUA
- More natural in Left-looking
- Better granularity in update operations
- Potential recompression

Variants of the BLR LU factorization

- FSCU (Factor, Solve, Compress, Update)
- FSCU+LUA
- More natural in Left-looking
- Better granularity in update operations
- Potential recompression

Variants of the BLR LU factorization

- FSCU (Factor, Solve, Compress, Update)
- FSCU+LUA
- More natural in Left-looking
- Better granularity in update operations
- Potential recompression

Variants of the BLR LU factorization

- FSCU (Factor, Solve, Compress, Update)
- FSCU+LUA
- More natural in Left-looking
- Better granularity in update operations
- Potential recompression

Variants of the BLR LU factorization

- FSCU (Factor, Solve, Compress, Update)
- FSCU+LUA
- More natural in Left-looking
- Better granularity in update operations
- Potential recompression
- FCSU(+LUA)
- Restricted pivoting, e.g. to diagonal blocks

Variants of the BLR LU factorization

- FSCU (Factor, Solve, Compress, Update)
- FSCU+LUA
- More natural in Left-looking
- Better granularity in update operations
- Potential recompression
- FCSU(+LUA)
- Restricted pivoting, e.g. to diagonal blocks

Variants of the BLR LU factorization

- FSCU (Factor, Solve, Compress, Update)
- FSCU+LUA
- More natural in Left-looking
- Better granularity in update operations
- Potential recompression
- FCSU(+LUA)
- Restricted pivoting, e.g. to diagonal blocks

Variants of the BLR LU factorization

- FSCU (Factor, Solve, Compress, Update)
- FSCU+LUA
- More natural in Left-looking
- Better granularity in update operations
- Potential recompression
- FCSU(+LUA)
- Restricted pivoting, e.g. to diagonal blocks
- Low-rank Solve
- Better ratio BLAS-3/BLAS-2 in Solve

Variants of the BLR LU factorization

- FSCU (Factor, Solve, Compress, Update)
- FSCU+LUA
- More natural in Left-looking
- Better granularity in update operations
- Potential recompression
- FCSU(+LUA)
- Restricted pivoting, e.g. to diagonal blocks
- Low-rank Solve
- Better ratio BLAS-3/BLAS-2 in Solve

Variants of the BLR LU factorization

- FSCU (Factor, Solve, Compress, Update)
- FSCU+LUA
- More natural in Left-looking
- Better granularity in update operations
- Potential recompression
- FCSU(+LUA)
- Restricted pivoting, e.g. to diagonal blocks
- Low-rank Solve
- Better ratio BLAS-3/BLAS-2 in Solve

Variants of the BLR LU factorization

- FSCU (Factor, Solve, Compress, Update)
- FSCU+LUA
- More natural in Left-looking
- Better granularity in update operations
- Potential recompression
- FCSU(+LUA)
- Restricted pivoting, e.g. to diagonal blocks
- Low-rank Solve
- Better ratio BLAS-3/BLAS-2 in Solve

Variants of the BLR LU factorization

\square
\square

- FSCU (Factor, Solve, Compress, Update)
- FSCU+LUA
- More natural in Left-looking
- Better granularity in update operations
- Potential recompression
- FCSU(+LUA)
- Restricted pivoting, e.g. to diagonal blocks
- Low-rank Solve
- Better ratio BLAS-3/BLAS-2 in Solve

Variants of the BLR LU factorization

- FSCU (Factor, Solve, Compress, Update)
- FSCU+LUA
- More natural in Left-looking
- Better granularity in update operations
- Potential recompression
- FCSU(+LUA)
- Restricted pivoting, e.g. to diagonal blocks
- Low-rank Solve
- Better ratio BLAS-3/BLAS-2 in Solve

Variants of the BLR LU factorization

- FSCU (Factor, Solve, Compress, Update)
- FSCU+LUA
- More natural in Left-looking
- Better granularity in update operations
- Potential recompression
- FCSU(+LUA)
- Restricted pivoting, e.g. to diagonal blocks
- Low-rank Solve
- Better ratio BLAS-3/BLAS-2 in Solve

Variants of the BLR LU factorization

- FSCU (Factor, Solve, Compress, Update)
- FSCU+LUA
- More natural in Left-looking
- Better granularity in update operations
- Potential recompression
- FCSU(+LUA)
- Restricted pivoting, e.g. to diagonal blocks
- Low-rank Solve
- Better ratio BLAS-3/BLAS-2 in Solve

Variants of the BLR LU factorization

- FSCU (Factor, Solve, Compress, Update)
- FSCU+LUA
- More natural in Left-looking
- Better granularity in update operations
- Potential recompression
- FCSU(+LUA)
- Restricted pivoting, e.g. to diagonal blocks
- Low-rank Solve
- Better ratio BLAS-3/BLAS-2 in Solve

Variants of the BLR LU factorization

- FSCU (Factor, Solve, Compress, Update)
- FSCU+LUA
- More natural in Left-looking
- Better granularity in update operations
- Potential recompression
- FCSU(+LUA)
- Restricted pivoting, e.g. to diagonal blocks
- Low-rank Solve
- Better ratio BLAS-3/BLAS-2 in Solve

Variants of the BLR LU factorization

- FSCU (Factor, Solve, Compress, Update)
- FSCU+LUA
- More natural in Left-looking
- Better granularity in update operations
- Potential recompression
- FCSU(+LUA)
- Restricted pivoting, e.g. to diagonal blocks
- Low-rank Solve
- Better ratio BLAS-3/BLAS-2 in Solve

Variants of the BLR LU factorization

- FSCU (Factor, Solve, Compress, Update)
- FSCU+LUA
- More natural in Left-looking
- Better granularity in update operations
- Potential recompression
- FCSU(+LUA)
- Restricted pivoting, e.g. to diagonal blocks
- Low-rank Solve
- Better ratio BLAS-3/BLAS-2 in Solve
- With LUA, no need to decompress accumulators

Variants of the BLR LU factorization

- FSCU (Factor, Solve, Compress, Update)
- FSCU+LUA
- More natural in Left-looking
- Better granularity in update operations
- Potential recompression
- FCSU(+LUA)
- Restricted pivoting, e.g. to diagonal blocks
- Low-rank Solve
- Better ratio BLAS-3/BLAS-2 in Solve
- With LUA, no need to decompress accumulators

Complexity of the BLR factorization

- Extended theoretical work on \mathcal{H}-matrices by Hackbush and Bebendorf (2003) and Bebendorf $(2005,2007)$ to the BLR case. Proof and computation of the theoretical complexity are available in On the Complexity of the Block Low-Rank Multifrontal Factorization, P. Amestoy, A. Buttari, J.-Y. L'Excellent and T. Mary (in preparation)
- Today, regarding the complexity, we focus on:
- Presenting some important properties of the BLR complexity
- Validating these properties experimentally

Complexity of multifrontal BLR factorization

	operations (OPC)		factor size (NNZ)	
	$r=O(1)$	$r=O\left(n^{\frac{1}{3}}\right)$	$r=O(1)$	$r=O\left(n^{\frac{1}{3}}\right)$
FR	$O\left(n^{2}\right)$	$O\left(n^{2}\right)$	$O\left(n^{\frac{4}{3}}\right)$	$O\left(n^{\frac{4}{3}}\right)$
BLR FSCU	$O\left(n^{\frac{5}{3}}\right)$	$O\left(n^{\frac{11}{6}}\right)$	$O(n \log n)$	$O\left(n^{\frac{4}{3}}\right)$
BLR FSCU+LUA	$O\left(n^{\frac{14}{9}}\right)$	$O\left(n^{\frac{16}{9}}\right)$	$O(n \log n)$	$O\left(n^{\frac{4}{3}}\right)$
BLR FCSU+LUA	$O\left(n^{\frac{4}{3}}\right)$	$O\left(n^{\frac{5}{3}} \log n\right)$	$O(n \log n)$	$O\left(n^{\frac{4}{3}}\right)$
\mathcal{H}	$O\left(n^{\frac{4}{3}}\right)$	$O\left(n^{\frac{5}{3}}\right)$	$O(n)$	$O\left(n^{\frac{7}{6}}\right)$
\mathcal{H} (fully struct.)	$O(n)$	$O\left(n^{\frac{4}{3}}\right)$	$O(n)$	$O\left(n^{\frac{7}{6}}\right)$

in the 3D case (similar analysis possible for 2D)
Important properties:

- The complexity of the standard BLR variant (FSCU) has a lower exponent than the full-rank one
- Each variant further improves the complexity, with the best one (FCSU+LUA) being not so far from the \mathcal{H}-case
- These properties hold for different rank bound assumptions, e.g. $r=O(1)$ or $r=O(N)=O\left(n^{\frac{1}{3}}\right)$

1. Poisson: N^{3} grid with a 7 -point stencil with $u=1$ on the boundary $\partial \Omega$

$$
\Delta u=f
$$

2. Helmholtz: N^{3} grid with a 27-point stencil, ω is the angular frequency, $v(x)$ is the seismic velocity field, and $u(x, \omega)$ is the time-harmonic wavefield solution to the forcing term $s(x, \omega)$.

$$
\left(-\Delta-\frac{\omega^{2}}{v(x)^{2}}\right) u(x, \omega)=s(x, \omega)
$$

ω is fixed and equal to 4 Hz .

Experimental MF complexity: operations

OPC (Poisson, $\varepsilon=10^{-10}$)

OPC (Helmholtz, $\varepsilon=10^{-5}$)

- good agreement with theoretical complexity

Experimental MF complexity: operations

OPC (Poisson, $\varepsilon=10^{-6}$)

OPC (Helmholtz, $\varepsilon=10^{-4}$)

- good agreement with theoretical complexity
- ε only plays a role in the constant factor

Performance results

1. Distributed memory experiments are done on the eos supercomputer at the CALMIP center of Toulouse (grant 2014-P0989):

- Two Intel(r) 10-cores Ivy Bridge @ 2,8 GHz
- Peak per core is 22.4 GF/s
- 64 GB memory per node
- Infiniband FDR interconnect

2. Shared memory experiments are done on grunch at the LIP laboratory of Lyon:

- Two Intel(r) 14-cores Haswell @ 2,3 GHz
- Peak per core is $36.8 \mathrm{GF} / \mathrm{s}$
- Total memory is 768 GB

Poisson ($\varepsilon=10^{-6}, N=192$)

Helmholtz ($\varepsilon=10^{-4}, N=192$)

MPI+OpenMP parallelism (10 threads/MPI process, $1 \mathrm{MPI} /$ node)

- each time the number of processes doubles, speedup of ~ 1.6
- both FR and BLR scale reasonably well
- gain due to BLR remains constant

Gains due to BLR (distributed, MPI+OpenMP)

Poisson $\left(\varepsilon=10^{-6}\right)$

Helmholtz $\left(\varepsilon=10^{-4}\right)$

- gains increase with problem size
- gain in flops does not fully translate into gain in time
- multithreaded efficiency lower in LR than in FR
- same remarks apply to Helmoltz, to a lesser extent

Gains due to BLR (distributed, MPI+OpenMP)

Poisson $\left(\varepsilon=10^{-6}\right)$

Helmholtz $\left(\varepsilon=10^{-4}\right)$

- gains increase with problem size
- gain in flops does not fully translate into gain in time
- multithreaded efficiency lower in LR than in FR
- same remarks apply to Helmoltz, to a lesser extent
\Rightarrow improve multithreading with variants

Focus on the Update step (which includes the Decompress)

		1 thread		28 threads	
		RL	LL	RL	LL
Poisson	FR	62294 s	65208 s	3772 s	4092 s
$(\mathrm{~N}=256)$	BLR	2516 s	1544 s	662 s	183 s
Helmholtz	FR			9862 s	10234 s
$(\mathrm{~N}=256)$	BLR			1694 s	1435 s

Right Looking Vs. Left-Looking (shared)

Focus on the Update step (which includes the Decompress)

		1 thread		28 threads	
		RL	LL	RL	LL
Poisson	FR	62294 s	65208 s	3772 s	4092 s
$(\mathrm{~N}=256)$	BLR	2516 s	1544 s	662 s	183 s
Helmholtz	FR			9862 s	10234 s
$(\mathrm{~N}=256)$	BLR			1694 s	1435 s

Right Looking Vs. Left-Looking (shared)

Focus on the Update step (which includes the Decompress)

		1 thread		28 threads	
		RL	LL	RL	LL
Poisson	FR	62294 s	65208 s	3772 s	4092 s
$(N=256)$	BLR	2516 s	1544 s	662 s	183 s
Helmholtz	FR			9862 s	10234 s
$(N=256)$	BLR			1694 s	1435 s

Right Looking Vs. Left-Looking (shared)

Focus on the Update step (which includes the Decompress)

		1 thread		28 threads	
		RL	LL	RL	LL
Poisson	FR	62294 s	65208s	3772 s	4092 s
$(N=256)$	BLR	2516 s	1544 s	662 s	183 s
Helmoltz	FR			9862 s	10234 s
$(N=256)$	BLR			1694 s	1435 s

- in RL: FR (green) block is accessed many times; LR (blue) blocks are accessed once
- in LL: FR (green) block is accessed once; LR (blue) blocks are accessed many times
\Rightarrow lower volume of memory transfers (more critical in multithreaded)

Right Looking Vs. Left-Looking (shared)

Focus on the Update step (which includes the Decompress)

		1 thread		28 threads	
		RL	LL	RL	LL
Poisson	FR	62294 s	65208s	3772 s	4092 s
$(\mathrm{~N}=256)$	BLR	2516 s	1544s	662 s	183 s
Helmoltz	FR			9862 s	10234 s
$(\mathrm{~N}=256)$	BLR			1694 s	1435 s

- in RL: FR (green) block is accessed many times; LR (blue) blocks are accessed once
- in LL: FR (green) block is accessed once; LR (blue) blocks are accessed many times
\Rightarrow lower volume of memory transfers (more critical in multithreaded)
\Rightarrow the Decompress part (135s) remains the bottleneck of the Update (183s)

Performance of LUA (shared, 28 threads)

Double precision (d) performance benchmark of Decompress

	Poisson ($N=256$)			Helmholtz ($N=256$)		
	LL	LUA	LUA +Rec.*	LL	LUA	LUA +Rec.*
Flops in Update ($\times 10^{13}$)	1.0	1.0	0.58	43	43	30
Avg. decompress size	3.8	27.1	12.7	31.3	264.2	136.8
Time in Update	183s	87s	110s	1435s	1304s	1295s
\% of peak reached	5\%	11\%	5\%	59\%	65\%	45\%

* All metrics include the Recompression overhead

Performance of LUA (shared, 28 threads)

Double precision (d) performance benchmark of Decompress

	Poisson ($N=256$)			Helmholtz ($N=256$)		
	LL	LUA	LUA +Rec.*	LL	LUA	LUA +Rec.*
Flops in Update ($\times 10^{13}$)	1.0	1.0	0.58	43	43	30
Avg. decompress size	3.8	27.1	12.7	31.3	264.2	136.8
Time in Update	183s	87s	110s	1435s	1304s	1295s
\% of peak reached	5\%	11\%	5\%	59\%	65\%	45\%

* All metrics include the Recompression overhead

Performance of LUA (shared, 28 threads)

Double precision (d) performance benchmark of Decompress

	Poisson ($N=256$)			Helmholtz ($N=256$)		
	LL	LUA	LUA +Rec.*	LL	LUA	LUA +Rec.*
Flops in Update ($\times 10^{13}$)	1.0	1.0	0.58	43	43	30
Avg. decompress size	3.8	27.1	12.7	31.3	264.2	136.8
Time in Update	183s	87s	110s	1435s	1304s	1295s
\% of peak reached	5\%	11\%	5\%	59\%	65\%	45\%

* All metrics include the Recompression overhead

Performance of BLR variants (shared, 28 threads)

Poisson ($\varepsilon=10^{-6}, N=256$)

Helmholtz ($\varepsilon=10^{-3}, N=256$)

- Non-computational time (~ 300 s) is not included \Rightarrow addressed in MPI by tree parallelism and in OpenMP by W. Sid-Lakhdar's PhD thesis work (2014)

Poisson ($\varepsilon=10^{-6}, N=256$)

Helmholtz ($\varepsilon=10^{-3}, N=256$)

- Non-computational time (~ 300 s) is not included \Rightarrow addressed in MPI by tree parallelism and in OpenMP by W. Sid-Lakhdar's PhD thesis work (2014)
- FCSU: Factor+Solve greatly reduced

Poisson ($\varepsilon=10^{-6}, N=256$)

Helmholtz ($\varepsilon=10^{-3}, N=256$)

- Non-computational time (~ 300 s) is not included \Rightarrow addressed in MPI by tree parallelism and in OpenMP by W. Sid-Lakhdar's PhD thesis work (2014)
- FCSU: Factor+Solve greatly reduced
- LL: Update reduced thanks to lower volume of communications

Poisson ($\varepsilon=10^{-6}, N=256$)

Helmholtz ($\varepsilon=10^{-3}, N=256$)

- Non-computational time (~ 300 s) is not included \Rightarrow addressed in MPI by tree parallelism and in OpenMP by W. Sid-Lakhdar's PhD thesis work (2014)
- FCSU: Factor+Solve greatly reduced
- LL: Update reduced thanks to lower volume of communications
- LUA: Update (Decompress) reduced thanks to better granularities

Poisson ($\varepsilon=10^{-6}, N=256$)

Helmholtz ($\varepsilon=10^{-3}, N=256$)

- Non-computational time (~ 300 s) is not included \Rightarrow addressed in MPI by tree parallelism and in OpenMP by W. Sid-Lakhdar's PhD thesis work (2014)
- FCSU: Factor+Solve greatly reduced
- LL: Update reduced thanks to lower volume of communications
- LUA: Update (Decompress) reduced thanks to better granularities
- Recompression: potential flop reduction not translated into a time gain yet

Conclusion and perspectives

Complexity results

- Theoretical complexity of the BLR (multifrontal) factorization is asymptotically better than FR
- Studied BLR variants to further reduce complexity by achieving higher compression
- Numerical experiments show experimental complexity in agreement with theoretical one

Performance results

- BLR variants possess better properties (efficiency, granularity, volume of communications, number of operations) \Rightarrow leads to a considerable speedup w.r.t. standard BLR variant...
- ...which itself achieves up to 4.7 (Poisson) and 2.7 (Helmholtz) speedup w.r.t. FR

Perspectives

- Implementation and performance analysis of the BLR variants in distributed memory (MPI+OpenMP parallelism)
- Efficient strategies to recompress accumulators (cf. J. Anton's talk)
- Pivoting strategies compatible with the BLR variants
- Influence of the BLR variants on the accuracy of the factorization

Perspectives

- Implementation and performance analysis of the BLR variants in distributed memory (MPI+OpenMP parallelism)
- Efficient strategies to recompress accumulators (cf. J. Anton's talk)
- Pivoting strategies compatible with the BLR variants
- Influence of the BLR variants on the accuracy of the factorization

Acknowledgements

- CALMIP, BULL and LIP for providing access to the machines
- SEISCOPE for providing the Helmholtz Generator
- LSTC members for scientific discussions

Thanks! Questions?

Backup Slides

Accumulator recompression

Accumulator recompression

\section*{| C | |
| :---: | :---: |
| | C |
| | Q^{T} |}

- Weight recompression on $\left\{C_{i}\right\}_{i}$
\Rightarrow With absolute threshold $\varepsilon_{\text {, each }} C_{i}$ can be compressed separately
- Redundancy recompression on $\left\{Q_{i}\right\}_{i}$
\Rightarrow Bigger recompression overhead, when is it worth it?

Experimental MF complexity: entries in factor

NNZ (Poisson)

NNZ (Helmholtz)

- good agreement with theoretical complexity
- ε only plays a role in the constant factor

