Complexity and performance of the Block Low-Rank multifrontal factorization and its variants

T. Marv^{*,4}

P. Amestoy^{*,1} A. Buttari^{*,2} J.-Y. L'Excellent^{†,3} *Université de Toulouse [†]ENS Lyon ¹INPT-IRIT ²CNRS-IRIT ³INRIA-LIP ⁴UPS-IRIT

SIAM PP'16, Paris Apr. 12-15

Introduction

Multifrontal (Duff '83) with Nested Dissection (George '73)

Multifrontal (Duff '83) with Nested Dissection (George '73)

SIAM PP'16, Paris Apr. 12-15

${\cal H}$ and BLR matrices

 $\mathcal H ext{-matrix}$

${\cal H}$ and BLR matrices

 $\mathcal H ext{-matrix}$

BLR matrix

${\mathcal H}$ and BLR matrices

$\mathcal H ext{-matrix}$

A block *B* represents the interaction between two subdomains. If they have a small diameter and are far away their interaction is weak \Rightarrow rank is low.

\mathcal{H} and BLR matrices

\mathcal{H} -matrix

BI R matrix

A block B represents the interaction between two subdomains. If they have a small diameter and are far away their interaction is weak \Rightarrow rank is low.

$$\tilde{B} = XY^T$$
 such that rank $(\tilde{B}) = k_{\varepsilon}$ and $||B - \tilde{B}|| \le \varepsilon$
If $k_{\varepsilon} \ll \text{size}(B) \Rightarrow$ memory and flops can be reduced with a
controlled loss of accuracy ($\le \varepsilon$)
4/25

\mathcal{H} and BLR matrices

\mathcal{H} -matrix

BI R matrix

A block B represents the interaction between two subdomains. If they have a small diameter and are far away their interaction is weak \Rightarrow rank is low.

$$\tilde{B} = XY^T$$
 such that rank $(\tilde{B}) = k_{\varepsilon}$ and $||B - \tilde{B}|| \le \varepsilon$
If $k_{\varepsilon} \ll \text{size}(B) \Rightarrow$ memory and flops can be reduced with a
controlled loss of accuracy ($\le \varepsilon$)
4/25

${\mathcal H}$ and BLR matrices

 $\mathcal H$ -matrix

BLR matrix

- Leads to very low theoretical complexity
- Complex, hierarchical structure

- Simple structure
- Theoretical complexity?

${\mathcal H}$ and BLR matrices

 $\mathcal{H} ext{-matrix}$

BLR matrix

⇒ Our hope is to find a good comprise between theoretical complexity and performance/usability

Questions that will be answered in this talk

- Is the complexity of the BLR factorization asymptotically better than the full-rank one? (i.e., in $O(n^{\alpha})$, with $\alpha < 2$ and where n is the number of unknowns)
- What are the different variants of the BLR factorization? Do they improve its complexity?
- How well does the complexity improvement translate into a performance gain?
- How parallel is the BLR factorization? What about its variants?

• FSCU

• FSCU (Factor,

• FSCU (Factor, Solve,

• FSCU (Factor, Solve, Compress,

- FSCU (Factor, Solve, Compress, Update)
- FSCU+LUA

- FSCU (Factor, Solve, Compress, Update)
- FSCU+LUA
 - More natural in Left-looking

- FSCU (Factor, Solve, Compress, Update)
- FSCU+LUA
 - More natural in Left-looking

- FSCU (Factor, Solve, Compress, Update)
- FSCU+LUA
 - More natural in Left-looking

- FSCU (Factor, Solve, Compress, Update)
- FSCU+LUA
 - More natural in Left-looking

- FSCU (Factor, Solve, Compress, Update)
- FSCU+LUA
 - More natural in Left-looking

- FSCU (Factor, Solve, Compress, Update)
- FSCU+LUA
 - More natural in Left-looking

- FSCU (Factor, Solve, Compress, Update)
- FSCU+LUA
 - More natural in Left-looking

- FSCU (Factor, Solve, Compress, Update)
- FSCU+LUA
 - More natural in Left-looking

- FSCU (Factor, Solve, Compress, Update)
- FSCU+LUA
 - More natural in Left-looking

- FSCU (Factor, Solve, Compress, Update)
- FSCU+LUA
 - More natural in Left-looking

- FSCU (Factor, Solve, Compress, Update)
- FSCU+LUA
 - More natural in Left-looking

- FSCU (Factor, Solve, Compress, Update)
- FSCU+LUA
 - More natural in Left-looking

- FSCU (Factor, Solve, Compress, Update)
- FSCU+LUA
 - More natural in Left-looking
 - Better granularity in update operations

- FSCU (Factor, Solve, Compress, Update)
- FSCU+LUA
 - More natural in Left-looking
 - Better granularity in update operations
 - Potential recompression

- FSCU (Factor, Solve, Compress, Update)
- FSCU+LUA
 - More natural in Left-looking
 - Better granularity in update operations
 - Potential recompression

- FSCU (Factor, Solve, Compress, Update)
- FSCU+LUA
 - More natural in Left-looking
 - Better granularity in update operations
 - Potential recompression

- FSCU (Factor, Solve, Compress, Update)
- FSCU+LUA
 - More natural in Left-looking
 - Better granularity in update operations
 - Potential recompression

- FSCU (Factor, Solve, Compress, Update)
- FSCU+LUA
 - More natural in Left-looking
 - Better granularity in update operations
 - Potential recompression

- FSCU (Factor, Solve, Compress, Update)
- FSCU+LUA
 - More natural in Left-looking
 - Better granularity in update operations
 - Potential recompression
- FCSU(+LUA)
 - Restricted pivoting, e.g. to diagonal blocks

- FSCU (Factor, Solve, Compress, Update)
- FSCU+LUA
 - More natural in Left-looking
 - Better granularity in update operations
 - Potential recompression
- FCSU(+LUA)
 - Restricted pivoting, e.g. to diagonal blocks

- FSCU (Factor, Solve, Compress, Update)
- FSCU+LUA
 - More natural in Left-looking
 - Better granularity in update operations
 - Potential recompression
- FCSU(+LUA)
 - Restricted pivoting, e.g. to diagonal blocks

- FSCU (Factor, Solve, Compress, Update)
- FSCU+LUA
 - More natural in Left-looking
 - Better granularity in update operations
 - Potential recompression
- FCSU(+LUA)
 - Restricted pivoting, e.g. to diagonal blocks
 - Low-rank Solve
 - Better ratio BLAS-3/BLAS-2 in Solve

- FSCU (Factor, Solve, Compress, Update)
- FSCU+LUA
 - More natural in Left-looking
 - Better granularity in update operations
 - Potential recompression
- FCSU(+LUA)
 - Restricted pivoting, e.g. to diagonal blocks
 - Low-rank Solve
 - Better ratio BLAS-3/BLAS-2 in Solve

- FSCU (Factor, Solve, Compress, Update)
- FSCU+LUA
 - More natural in Left-looking
 - Better granularity in update operations
 - Potential recompression
- FCSU(+LUA)
 - Restricted pivoting, e.g. to diagonal blocks
 - Low-rank Solve
 - Better ratio BLAS-3/BLAS-2 in Solve

- FSCU (Factor, Solve, Compress, Update)
- FSCU+LUA
 - More natural in Left-looking
 - Better granularity in update operations
 - Potential recompression
- FCSU(+LUA)
 - Restricted pivoting, e.g. to diagonal blocks
 - Low-rank Solve
 - Better ratio BLAS-3/BLAS-2 in Solve

- FSCU (Factor, Solve, Compress, Update)
- FSCU+LUA
 - More natural in Left-looking
 - Better granularity in update operations
 - Potential recompression
- FCSU(+LUA)
 - Restricted pivoting, e.g. to diagonal blocks
 - Low-rank Solve
 - Better ratio BLAS-3/BLAS-2 in Solve

- FSCU (Factor, Solve, Compress, Update)
- FSCU+LUA
 - More natural in Left-looking
 - Better granularity in update operations
 - Potential recompression
- FCSU(+LUA)
 - Restricted pivoting, e.g. to diagonal blocks
 - Low-rank Solve
 - Better ratio BLAS-3/BLAS-2 in Solve

- FSCU (Factor, Solve, Compress, Update)
- FSCU+LUA
 - More natural in Left-looking
 - Better granularity in update operations
 - Potential recompression
- FCSU(+LUA)
 - Restricted pivoting, e.g. to diagonal blocks
 - Low-rank Solve
 - Better ratio BLAS-3/BLAS-2 in Solve

- FSCU (Factor, Solve, Compress, Update)
- FSCU+LUA
 - More natural in Left-looking
 - Better granularity in update operations
 - Potential recompression
- FCSU(+LUA)
 - Restricted pivoting, e.g. to diagonal blocks
 - Low-rank Solve
 - Better ratio BLAS-3/BLAS-2 in Solve

- FSCU (Factor, Solve, Compress, Update)
- FSCU+LUA
 - More natural in Left-looking
 - Better granularity in update operations
 - Potential recompression
- FCSU(+LUA)
 - Restricted pivoting, e.g. to diagonal blocks
 - Low-rank Solve
 - Better ratio BLAS-3/BLAS-2 in Solve

- FSCU (Factor, Solve, Compress, Update)
- FSCU+LUA
 - More natural in Left-looking
 - Better granularity in update operations
 - Potential recompression
- FCSU(+LUA)
 - Restricted pivoting, e.g. to diagonal blocks
 - Low-rank Solve
 - Better ratio BLAS-3/BLAS-2 in Solve

- FSCU (Factor, Solve, Compress, Update)
- FSCU+LUA
 - More natural in Left-looking
 - Better granularity in update operations
 - Potential recompression
- FCSU(+LUA)
 - Restricted pivoting, e.g. to diagonal blocks
 - Low-rank Solve
 - Better ratio BLAS-3/BLAS-2 in Solve

- FSCU (Factor, Solve, Compress, Update)
- FSCU+LUA
 - More natural in Left-looking
 - Better granularity in update operations
 - Potential recompression
- FCSU(+LUA)
 - Restricted pivoting, e.g. to diagonal blocks
 - Low-rank Solve
 - Better ratio BLAS-3/BLAS-2 in Solve
 - With LUA, no need to decompress accumulators

- FSCU (Factor, Solve, Compress, Update)
- FSCU+LUA
 - More natural in Left-looking
 - Better granularity in update operations
 - Potential recompression
- FCSU(+LUA)
 - Restricted pivoting, e.g. to diagonal blocks
 - Low-rank Solve
 - Better ratio BLAS-3/BLAS-2 in Solve
 - With LUA, no need to decompress accumulators

Complexity of the BLR factorization

Complexity of multifrontal BLR factorization

- Extended theoretical work on *H*-matrices by Hackbush and Bebendorf (2003) and Bebendorf (2005, 2007) to the BLR case. Proof and computation of the theoretical complexity are available in *On the Complexity of the Block Low-Rank Multifrontal Factorization*, P. Amestoy, A. Buttari, J.-Y. L'Excellent and T. Mary (in preparation)
- Today, regarding the complexity, we focus on:
 - Presenting some important properties of the BLR complexity
 - Validating these properties experimentally

Complexity of multifrontal BLR factorization

operations (OPC)		factor size (NNZ)	
r = O(1)	$r = O(n^{\frac{1}{3}})$	r = O(1)	$r = O(n^{\frac{1}{3}})$
$O(n^2)$	$O(n^2)$	$O(n^{\frac{4}{3}})$	$O(n^{\frac{4}{3}})$
	$O(n^{\frac{11}{6}})$	$O(n \log n)$	$O(n^{\frac{4}{3}})$
$O(n^{\frac{14}{9}})$	$O(n^{\frac{16}{9}})$	$O(n \log n)$	$O(n^{\frac{4}{3}})$
$O(n^{\frac{4}{3}})$	$O(n^{\frac{5}{3}}\log n)$	$O(n \log n)$	$O(n^{\frac{4}{3}})$
$O(n^{\frac{4}{3}})$	$O(n^{\frac{5}{3}})$	O(n)	$O(n^{\frac{7}{6}})$
0(n)	$O(n^{\frac{4}{3}})$	<i>O</i> (<i>n</i>)	$O(n^{\frac{7}{6}})$
	$\begin{vmatrix} r = O(1) \\ O(n^2) \\ O(n^{\frac{5}{3}}) \\ O(n^{\frac{14}{9}}) \\ O(n^{\frac{4}{3}}) \end{vmatrix}$	$\begin{vmatrix} r = O(1) & r = O(n^{\frac{1}{3}}) \\ O(n^{\frac{2}{3}}) & O(n^{\frac{2}{3}}) \\ O(n^{\frac{5}{3}}) & O(n^{\frac{11}{6}}) \\ O(n^{\frac{14}{9}}) & O(n^{\frac{16}{9}}) \\ O(n^{\frac{4}{3}}) & O(n^{\frac{5}{3}} \log n) \\ \end{vmatrix}$	$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$

in the 3D case (similar analysis possible for 2D)

Important properties:

- The complexity of the standard BLR variant (FSCU) has a lower exponent than the full-rank one
- Each variant further improves the complexity, with the best one (FCSU+LUA) being not so far from the ${\cal H}\text{-}{\rm case}$
- These properties hold for different rank bound assumptions, e.g. r = O(1) or $r = O(N) = O(n^{\frac{1}{3}})$

Experimental Setting: Matrices

1. Poisson: N^3 grid with a 7-point stencil with u=1 on the boundary $\partial\Omega$

 $\Delta u = f$

2. Helmholtz: N^3 grid with a 27-point stencil, ω is the angular frequency, v(x) is the seismic velocity field, and $u(x, \omega)$ is the time-harmonic wavefield solution to the forcing term $s(x, \omega)$.

$$\left(-\Delta - \frac{\omega^2}{\mathsf{v}(\mathsf{x})^2}\right) u(\mathsf{x},\omega) = \mathsf{s}(\mathsf{x},\omega)$$

 ω is fixed and equal to 4Hz.

Experimental MF complexity: operations

good agreement with theoretical complexity

Experimental MF complexity: operations

- good agreement with theoretical complexity
- ε only plays a role in the constant factor

Performance results

Experimental Setting: Machines

- 1. Distributed memory experiments are done on the **eos** supercomputer at the CALMIP center of Toulouse (grant 2014-P0989):
 - Two Intel(r) 10-cores Ivy Bridge @ 2,8 GHz
 - Peak per core is 22.4 GF/s
 - 64 GB memory per node
 - Infiniband FDR interconnect
- 2. Shared memory experiments are done on grunch at the LIP laboratory of Lyon:
 - Two Intel(r) 14-cores Haswell @ 2,3 GHz
 - Peak per core is 36.8 GF/s
 - Total memory is 768 GB

Scalability of the BLR factorization (distributed)

MPI+OpenMP parallelism (10 threads/MPI process, 1 MPI/node)

- each time the number of processes doubles, speedup of ~ 1.6
- both FR and BLR scale reasonably well
- gain due to BLR remains constant

Gains due to BLR (distributed, MPI+OpenMP)

Poisson ($\varepsilon = 10^{-6}$)

Helmholtz ($\varepsilon = 10^{-4}$)

- gains increase with problem size
- gain in flops does not fully translate into gain in time
- multithreaded efficiency lower in LR than in FR
- same remarks apply to Helmoltz, to a lesser extent

Gains due to BLR (distributed, MPI+OpenMP)

Poisson ($\varepsilon = 10^{-6}$)

Helmholtz ($\varepsilon = 10^{-4}$)

- gains increase with problem size
- gain in flops does not fully translate into gain in time
- multithreaded efficiency lower in LR than in FR
- same remarks apply to Helmoltz, to a lesser extent

⇒ improve multithreading with variants SIAM PP'16, Paris Apr. 12-15

Focus on the Update step (which includes the Decompress)									
	1 th	read	28 threads						
		RL	LL	RL	LL				
Poisson $(N = 256)$	FR BLR		65208s 1544s	3772s 662s	4092s 183s				
Helmholtz $(N = 256)$	FR BLR			9862s 1694s	10234s 1435s				

Focus on the Update step (which includes the Decompress)								
1 thr			read	28 t	hreads			
		RL	LL	RL	LL			
Poisson $(N = 256)$	FR BLR	62294s 2516s	65208s 1544s	3772s 662s	4092s 183s			
Helmholtz $(N = 256)$	FR BLR			9862s 1694s	10234s 1435s			

Focus on the Update step (which includes the Decompress)								
		1 th	read	28 tl				
		RL	LL	RL				
Poisson	FR	62294s	65208s	3772s	4092s			
(N = 256)	BLR	2516s	1544s	662s	183s			
Helmholtz	FR			9862s	10234s			
(N = 256)	BLR			1694s	1435s			

- in RL: FR (green) block is accessed many times; LR (blue) blocks are accessed once
- in LL: FR (green) block is accessed once; LR (blue) blocks are accessed many times

Focus on the Update step (which includes the Decompress)								
	1 th	read	28 threads					
		RL	LL	RL	LL			
Poisson $(N = 256)$	FR BLR	62294s 2516s	65208s 1544s	3772s 662s	4092s 183s			
Helmholtz $(N = 256)$	FR BLR			9862s 1694s	10234s 1435s			

- in RL: FR (green) block is accessed many times; LR (blue) blocks are accessed once
- in LL: FR (green) block is accessed once; LR (blue) blocks are accessed many times
- ⇒ lower volume of memory transfers (more critical in multithreaded)

Focus on the Update step (which includes the Decompress)								
	ead	28 threads						
	RL	LL	RL	LL				
Poisson FR $(N = 256)$ BLF	62294s 2516s	65208s 1544s	3772s 662s	4092s 183s				
Helmholtz FR $(N = 256)$ BLF			9862s 1694s	10234s 1435s				

- in RL: FR (green) block is accessed many times; LR (blue) blocks are accessed once
- in LL: FR (green) block is accessed once; LR (blue) blocks are accessed many times
- ⇒ lower volume of memory transfers (more critical in multithreaded)

 \Rightarrow the Decompress part (135s) remains the bottleneck of the Update (183s)

Performance of LUA (shared, 28 threads)

benchmark of Decompress 25 20 15 Gflops/s 10 b=256 -b=512 20 10 30 40 50 Decompress Size Poisson (N = 256) Helmholtz (N = 256) LL IUA IUA 11 IUA IUA +Rec.* +Rec.* Flops in Update ($\times 10^{13}$) 1.0 1.0 0.58 43 43 30 27.1 12.7 31.3 264.2 136.8 Avg. decompress size 3.8 Time in Update 183s 87s 110s 1435s 1.304s 1295s% of peak reached 5% 11% 5% 59% 65% 45%

Double precision (d) performance

⁶ All metrics include the Recompression overhead

Performance of LUA (shared, 28 threads)

Double precision (d) performance benchmark of Decompress

		P		20 30 Decompress Size		
	Pois LL	son (N = LUA	= 256) LUA +Rec.*	Helm LL	holtz (N = LUA	= 256) LUA +Rec.*
Flops in Update (×10 ¹³) Avg. decompress size Time in Update % of peak reached	1.0 3.8 183s 5%	1.0 27.1 87s 11%	0.58 12.7 110s 5%	43 31.3 1435s 59%	43 264.2 1304s 65%	30 136.8 1295s 45%

* All metrics include the Recompression overhead

Performance of LUA (shared, 28 threads)

Double precision (d) performance benchmark of Decompress

		, decord		20 30 Decompress Size		
	Pois LL	son (N = LUA	= 256) LUA +Rec.*	Helm LL	holtz (N = LUA	= 256) LUA +Rec.*
Flops in Update (×10 ¹³) Avg. decompress size Time in Update % of peak reached	1.0 3.8 183s 5%	1.0 27.1 87s 11%	0.58 12.7 110s 5%	43 31.3 1435s 59%	43 264.2 1304s 65%	30 136.8 1295s 45%

* All metrics include the Recompression overhead

 Non-computational time (~ 300s) is not included ⇒ addressed in MPI by tree parallelism and in OpenMP by W. Sid-Lakhdar's PhD thesis work (2014)

- Non-computational time (~ 300s) is not included ⇒ addressed in MPI by tree parallelism and in OpenMP by W. Sid-Lakhdar's PhD thesis work (2014)
- FCSU: Factor+Solve greatly reduced

- Non-computational time (~ 300s) is not included ⇒ addressed in MPI by tree parallelism and in OpenMP by W. Sid-Lakhdar's PhD thesis work (2014)
- FCSU: Factor+Solve greatly reduced
- LL: Update reduced thanks to lower volume of communications

- Non-computational time (~ 300s) is not included ⇒ addressed in MPI by tree parallelism and in OpenMP by W. Sid-Lakhdar's PhD thesis work (2014)
- FCSU: Factor+Solve greatly reduced
- LL: Update reduced thanks to lower volume of communications
- LUA: Update (Decompress) reduced thanks to better granularities

- Non-computational time (~ 300s) is not included ⇒ addressed in MPI by tree parallelism and in OpenMP by W. Sid-Lakhdar's PhD thesis work (2014)
- FCSU: Factor+Solve greatly reduced
- LL: Update reduced thanks to lower volume of communications
- LUA: Update (Decompress) reduced thanks to better granularities
- Recompression: potential flop reduction not translated into a time gain yet
 SIAM PP'16, Paris Apr. 12-15

Conclusion and perspectives

Complexity results

- Theoretical complexity of the BLR (multifrontal) factorization is asymptotically better than FR
- Studied BLR variants to further reduce complexity by achieving higher compression
- Numerical experiments show experimental complexity in agreement with theoretical one

Performance results

- BLR variants possess better properties (efficiency, granularity, volume of communications, number of operations) ⇒ leads to a considerable speedup w.r.t. standard BLR variant...
- ...which itself achieves up to 4.7 (Poisson) and 2.7 (Helmholtz) speedup w.r.t. FR

Perspectives

- Implementation and performance analysis of the BLR variants in distributed memory (MPI+OpenMP parallelism)
- Efficient strategies to recompress accumulators (cf. J. Anton's talk)
- Pivoting strategies compatible with the BLR variants
- Influence of the BLR variants on the accuracy of the factorization

Perspectives

- Implementation and performance analysis of the BLR variants in distributed memory (MPI+OpenMP parallelism)
- Efficient strategies to recompress accumulators (cf. J. Anton's talk)
- Pivoting strategies compatible with the BLR variants
- Influence of the BLR variants on the accuracy of the factorization

Acknowledgements

- CALMIP, BULL and LIP for providing access to the machines
- SEISCOPE for providing the Helmholtz Generator
- LSTC members for scientific discussions

Thanks! Questions?

Backup Slides

- Weight recompression on $\{C_i\}_i$ \Rightarrow With absolute threshold ε_i each C_i can be compressed separately
- Redundancy recompression on $\{Q_i\}_i$

 \Rightarrow Bigger recompression overhead, when is it worth it?

Experimental MF complexity: entries in factor

- good agreement with theoretical complexity
- ε only plays a role in the constant factor