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Introduction

Systems of linear equations:

Ax = b, where A is sparse. In direct methods, 3 steps:

• analysis: nested dissection;

• factorization: A→ LU;

• solve: Ly = b and Ux = y .

C n = N × N n = N × N × N

Factorization Θ(N3) Θ(N6)
Solve Θ(N2 logN) Θ(N4)

Complexities on regular 2D/3D problems1. N is the grid size.

Factorization is usually the most expensive part, however solve
can be critical...
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Examples

Critical solve: one RHS multiple times, multiple RHS...
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Example of applications:
Helmholtz or Maxwell equations 0
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matrix n nrhs Tfacto Tsolve

SEISCOPE
5Hz 2.9M 2302 44 236

10Hz 17.2M 2302 779 2585

EMGS
H3 2.8M 8000 82 569

H17 17.4M 8000 1559 8118

Run on EOS computer, 90 nodes (full rank solve).

More attention should be given to the complexity of the solve
phase!
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Nested dissection

N n = N2
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Ordering

Nested dissection (ND): divide and conquer algorithm to reorder
variables of the matrix A to reduce fill-in and build the separator tree.
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Separator tree and solve algorithm

S

S4S3S2S1

×
D′1 D′2 D′3 D′4

• Separator tree: representation of the dependencies between
computations during the solve algorithm.

• Solve algorithm: Ly = b (resp. Ux = y) follows a bottom up
(resp. top down) traversal of the separator tree;

Critical path: longest path in the separator tree in terms of operations.
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At each node

Cdense(m) = Θ(mα): solve complexity for node of size m.

L

U X/B Full-rank (forward):

• y1 ← L−1
11 b1;

• b2 ← b2 − L21y1.

⇒ Cdense(m) = Θ(m2)

Block Low-rank (BLR): low-rank property on off-diagonal block:

C ≈ UV T , with U,V of size m × r ⇒ Cdense(m) = Θ(m1.5)

Complexity: Θ(N2 logN)→ Θ(N2) in 2D, Θ(N4)→ Θ(N3) in 3D2
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Complexity of the critical path versus total complexity

We consider the potential gain G(N) such that

G(N) =
C(N)

Cc(N)

where

• C(N) is the complexity of the solve phase;

• Cc(N) is the complexity of the critical path.

Two possible applications:

• Sparse RHS: since one RHS = O(1) branch of the separator tree,
G(N) is the potential gain when exploiting sparsity.

• Tree parallelism: G(N) is a metric to measure parallelism.
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Outline

1. Introduction
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3.1 RHS sparsity
3.2 Parallelism
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Complexity study
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Complexity on the separator tree

S

S4S3S2S1

D′1 D′2 D′3 D′4

4` nodes
logN

Solve phase and critical path:

Let m` be the size of frontal matrix at layer ` and Cdense = Θ(mα
` ) be

the dense complexity of the solve:

C(N) =
∑
`

#nodes` × Cdense(m`)

Cc(N) =
∑
`

��
���XXXXX#nodes` × Cdense(m`)
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Complexity on the separator tree

Nested dissection formulas 2D: #nodes` = 4`, m` = N/2`.

C(N) =

log N∑
`=0

Θ(4` × (N/2`)α) = Θ(Nα
log N∑
`=0

22−α)

Cc(N) =

log N∑
`=0

Θ(��SS4` × (N/2`)α) = Θ(Nα
log N∑
`=0

2−α)

Depending on the values of α:

C(N) Cc(N)

FR (α = 2) Θ(N2 logN) Θ(N2)
BLR (α = 1.5) Θ(N2) Θ(N1.5)

Complexity analysis results for 2D regular problems.
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Asymptotic complexity analysis

Same applies for 3D problems.

G2D(N) G3D(N)

FR (α = 2) Θ(logN) Θ(1)

BLR (α = 1.5) Θ(N1/2) Θ(logN)

Complexity analysis results for 2D and 3D regular problems.

⇒ Asymptotic value of G(N) increases more rapidely in BLR!
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Application



Exploiting RHS sparsity

Theorem

Computation follows paths in the separator tree from active nodes to
root. Each RHS requires to traverse one branch.
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When sufficiently sparse, computation of RHS vector amounts to
traverse Θ(1) branches.

Does this remain true with multiple RHS ?
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Extension to multiple RHS with multiple nonzeros
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Toward an optimal number of operations3

• Vertical sparsity: avoiding computation within columns;

• Horizontal sparsity: avoiding computation within rows;

• Column ordering: reducing interval sizes (Postorder or Flat Tree);

• Blocking: building minimal number of groups (BLK).
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Results on toy problems

Configuration: one RHS with one nonzero.

(a) 2D Poisson problem. (b) 3D Poisson problem.

Theory is confirmed by experimental results.
Asymptotic results were also confirmed for multiple RHS with

multiple nonzeros.
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Impact on real-life problems

H3 H17 5Hz 10Hz

OPS FR BLR FR BLR FR BLR FR BLR

DEN 72.01 36.8 813.41 286.15 15.51 12.85 184.68 117.77

ES 12.95 6.46 138.35 46.56 3.28 1.3 38.77 10.98

G(N) 5.56 5.69 5.87 6.14 4.72 9.88 4.76 10.72

Number of operations (×1012) of the forward elimination in BLR and FR.

H3 H17 5Hz 10Hz

Tf FR BLR FR BLR FR BLR FR BLR

DEN 377 273 3532 2008 50 43 456 251

ES 166 119 1339 630 23 16 186 85

Gt(N) 2.27 2.29 2.63 3.18 2.17 2.69 2.45 2.95

Times (s) of the forward elimination in BLR and FR. 90 nodes.

⇒ Potential gains from BLR and ES are both significative.
However, Gt(N) does not follow G(N).
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Tree parallelism
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Distribution of operations in the separator
tree.

G(N) is equivalent to theoretical
speed up:

Factorization Solve

G2D(N) G3D(N) G2D(N) G3D(N)

FR Θ(1) Θ(1) Θ(logN) Θ(1)

BLR Θ(logN) Θ(1) Θ(N1/2) Θ(logN)

Comparison with the factorization phase.

Consequences:

• more tree parallelism than factorization;

• should be taken into account in the design of parallel algorithms.
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Conclusion

Solve phase

• Some applications are bounded by the solve time;

• More attention should be given to the solve phase.

Sparsity

• Exploiting sparsity becomes more efficient as the problem size
grows.

Parallelism

• Exhibits more tree parallelism;

• Design solve-oriented algorithms.
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