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Introduction




Multifrontal (Duff '83) with Nested Dissection (George '73)

n=Nd
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3D problem cost
— Flops:O(n?), mem:0O(n*/3)
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H and BLR matrices

H-matrix BLR matrix
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H and BLR matrices

H-matrix BLR matrix

A block B represents the interaction between two subdomains. If
they have a small diameter and are far away their interaction is
weak = rank is low.
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H and BLR matrices

H-matrix BLR matrix

A block B represents the interaction between two subdomains. If
they have a small diameter and are far away their interaction is
weak = rank is low.

B = XY" such that rank(B) = k. and ||B — B|| < ¢

If k. < size(B) = memory and flops can be reduced with a

controlled loss of accuracy (<€)
25 PhD Days '16, Toulouse Sept. 27



H and BLR matrices

H-matrix BLR matrix

e Theoretical complexity can be e Theoretical complexity can be

as low as O(n) as low as O(n*/3)
e Complex, hierarchical e Simple structure
structure

4/25 PhD Days 16, Toulouse Sept. 27



H and BLR matrices

H-matrix BLR matrix

e Theoretical complexity can be e Theoretical complexity can be

as low as O(n) as low as O(n*/3)
e Complex, hierarchical e Simple structure
structure

= Our hope is to find a good comprise between theoretical

complexity and performance/usability
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Variants of the BLR
factorization




Variants of the BLR LU factorization

e FSCU
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Variants of the BLR LU factorization

e FSCU (Factor, Solve, Compress, Update)
e FSCU+LUAR
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e FSCU+LUAR
o Better granularity in Update operations

6/25 PhD Days 16, Toulouse Sept. 27



Variants of the BLR LU factorization

e FSCU (Factor, Solve, Compress, Update)
e FSCU+LUAR

o Beftter granularity in Update operations
o Potential for recompression = flop reduction

6/25 PhD Days 16, Toulouse Sept. 27



Variants of the BLR LU factorization

e FSCU (Factor, Solve, Compress, Update)
e FSCU+LUAR

o Beftter granularity in Update operations
o Potential for recompression = flop reduction

6/25 PhD Days 16, Toulouse Sept. 27



Variants of the BLR LU factorization

e FSCU (Factor, Solve, Compress, Update)
e FSCU+LUAR

o Beftter granularity in Update operations
o Potential for recompression = flop reduction

6/25 PhD Days 16, Toulouse Sept. 27



Variants of the BLR LU factorization

e FSCU (Factor, Solve, Compress, Update)
e FSCU+LUAR

o Beftter granularity in Update operations
o Potential for recompression = flop reduction

e FCSU(+LUAR)
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Variants of the BLR LU factorization
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o Beftter granularity in Update operations
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Variants of the BLR LU factorization

e FSCU (Factor, Solve, Compress, Update)
e FSCU+LUAR

o Beftter granularity in Update operations

o Potential for recompression = flop reduction
e FCSU(+LUAR)

o Restricted pivoting, e.g. to diagonal blocks

o Low-rank Solve = flop reduction
o Better BLAS-3/BLAS-2 ratio in Solve operations
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Experimental results




Experimental Setting: Machines

1. Distributed memory experiments are done on the eos

supercomputer at the CALMIP center of Toulouse (grant
2014-P0989):

o Two Intel(r) 10-cores lvy Bridge @ 2,8 GHz
o Peak per core is 22.4 GF/s

o 64 GB memory per node

o Infiniband FDR interconnect

2. Shared memory experiments are done on grunch at the LIP
laboratory of Lyon:
o Two Intel(r) 14-cores Haswell @ 2,3 GHz
o Peak per core is 36.8 GF/s
o Total memory is 768 GB
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Experimental Setting: Matrices (1/3)

Ey, BLR STRATEGY 2, IR=0, e = 1077

3D Electromagnetic Modeling
e [t Maxwell equation
Double complex (z) arithmetic
Symmetric LDLT factorization
Required accuracy: € = 1077
=emgs Credits: EMGS

matrix n nnz | flops  storage
S3 3.3M 43M | 78TF 189 GB
S4 21M 266M | 25PF 2.1 7TB

D4 30M 384M | 3.6 PF  3.0TB

Full-Rank statistics
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Experimental Setting: Matrices (2/3)

s e 3D Seismic Modeling
Helmholtz equation
Single complex (c) arithmetic

Unsymmetric LU factorization

Required accuracy: € = 1073
Credits: SEISCOPE

matrix n nnz| flops  storage
THz ™ 177M| 410TF 211 GB

10Hz 17M 446M | 2600 TF 722 GB
Full-Rank statistics
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Experimental Setting: Matrices (3/3)

3D Structural Mechanics

OD) \ Double real (d) arithmetic
))) Symmetric LDLT factorization
Required accuracy: € = 1077

Credits: Code_Aster (EDF)

matrix n nnz | flops  storage

perfOO8ar 4M  159M | 378 TF 148 GB
Full-Rank statistics
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Performance on 900 cores

Low-rank threshold ¢ is set according to the application's target

MUMPS-(Full-Rank) BLR
time sp-up®  %peak e time

10Hz | 1017s 257 26% | 1073 280s
S4 1538s 371 32% | 1077 412s
D4 2221s 373 33% | 1077 515s

*estimated speedup on 90 x 10 cores

matrix

® good speedup and %peak 0N 900 cores = good FR reference

e BLR improves performance by a substantial factor of order 4
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Performance on 900 cores

Low-rank threshold ¢ is set according to the application's target

MUMPS-(Full-Rank) BLR
time sp-up®  %peak e time

10Hz | 1017s 257 26% | 1073 280s
S4 1538s 371 32% | 1077 412s
D4 2221s 373 33% | 1077 515s

*estimated speedup on 90 x 10 cores

matrix

® good speedup and %peak 0N 900 cores = good FR reference

e BLR improves performance by a substantial factor of order 4

= but does BLR scale as well as FR?
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Scalability of the BLR factorization (distributed)

MPI+OpenMP parallelism (10 threads/MPI process, 1 MPI/node)

THz matrix (extracted from MUMPS-SEISCOPE research work submitted to Geophysics)

Time (s)

1x10  2x10  4x10 8x10 16x10 32x10 64x10
Number of MPIs x Number of cores

e ecach time the number of processes doubles, speedup of ~ 1.6
for FR and ~ 1.5 for BLR

= both FR and BLR scale reasonably well

= ability to maintain gain due to BLR when the number of
processes grows
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Scalability of the BLR factorization (distributed)

MPI+OpenMP parallelism (10 threads/MPI process, 1 MPI/node)

THz matrix (extracted from MUMPS-SEISCOPE research work submitted to Geophysics)

Time (s)

1x10  2x10  4x10 8x10 16x10 32x10 64x10
Number of MPIs x Number of cores

e ecach time the number of processes doubles, speedup of ~ 1.6
for FR and ~ 1.5 for BLR

= both FR and BLR scale reasonably well

= ability to maintain gain due to BLR when the number of

processes grows
= so, we are happy?
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Gain due to BLR: impact of multithreading
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e gain in flops (black line) does not fully translate into gain in time

e multithreaded efficiency lower in LR than in FR
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e gain in flops (black line) does not fully translate into gain in time

e multithreaded efficiency lower in LR than in FR

= improve efficiency of operations

and multithreading with variants
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Right Looking Vs. Left-Looking (shared)

Focus on the Update step (which includes the Decompress)

1 thread 28 threads
RL LL RL LL
s3 FR 468s 526s
BLR 8L47s 763s | 112s 89s
FR 663s T166s
perfO08ar o o | 2174s 2005s | 2365 161s
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Right Looking Vs. Left-Looking (shared)

Focus on the Update step (which includes the Decompress)

1 thread 28 threads
RL LL RL LL
<3 FR 468s  526s
BLR 8L47s 763s | 112s 89s
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perfO08ar o o | 2174s 2005s | 2365 161s

® in RL: FR (green) block is accessed many
times; LR (blue) blocks are accessed once

® in LL: FR (green) block is accessed once; LR
(blue) blocks are accessed many times
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Right Looking Vs. Left-Looking (shared)

Focus on the Update step (which includes the Decompress)

1 thread 28 threads
RL LL RL LL
<3 FR 468s  526s
BLR 8L47s 763s | 112s 89s
FR 663s T166s
perfO08ar o o | 2174s 2005s | 2365 161s

® in RL: FR (green) block is accessed many
times; LR (blue) blocks are accessed once

® in LL: FR (green) block is accessed once; LR
(blue) blocks are accessed many times

= lower volume of memory transfers (more
critical in multithreaded)

= the Decompress part remains the
bottleneck of the Update
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Performance of Update step with LUA(R) (shared, 28 threads)

Double precision (d) performance
benchmark of Decompress

—
I/

|
|
|
|
|
I
0 10 20 30 40 50

Decompress Size
S3 perfOO8ar
LL LUA  LUAR™ | LL LUA LUAR™
Flops in Update (x10'?) | 40 40 2.9 Ll L4 33
Avg. decompress size 106 41.8 227 233 897 481
Time in Update 89s 59s 6lLs 161s 123s 119s

* All metrics include the Recompression overhead
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Double precision (d) performance

benchmark of Decompress
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Performance of Update step with LUA(R) (shared, 28 threads)

Double precision (d) performance

benchmark of Decompress

Hx:
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Decompress Size
S3 perfOO8ar
LL LUA  LUAR* | LL LUA LUAR™
Flops in Update (x10'?) | 40 40 2.9 Ll L4 33
Avg. decompress size 106 41.8 227 233 897 481
Time in Update 89s 59s 64s 161ls 123s 119s

* All metrics include the Recompression overhead
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Performance of BLR+ (FCSU+LL+LUA)
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Performance of BLR+ (FCSU+LL+LUA)
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= is there still room for improvement?
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Relative weight of bottom fronts in FR/BLR

Computationally

Intensive

Not Computationally

%nci
Intensive
28 threads
| time Yonci |
FR 585s 18%

S3 matrix
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Relative weight of bottom fronts in FR/BLR

Computationally

Intensive

Not Computationally

Intensive

28 threads

| time Yonci |

FR 585s 18%
BLR 315s  34%
BLR+ | 223s 48%

S3 matrix
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Exploiting tree-based multithreading in MF solvers

Node
parallelism

thr0-3  thr0-3  thr0-3 thr0-3
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Exploiting tree-based multithreading in MF solvers

Node
parallelism

LO layer

Tree

parallelism

thrQ thrl thr2 thr3

e Work based on W. M. Sid-Lakhdar's PhD thesis

o LO layer computed with a variant of the Geist-Ng algorithm
o NUMA-aware implementation
o use of Idle Core Recycling technique (variant of work-stealing)
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Exploiting tree-based multithreading in MF solvers

Node
parallelism

LO layer

Tree

parallelism

thrQ thrl thr2 thr3

e Work based on W. M. Sid-Lakhdar's PhD thesis

o LO layer computed with a variant of the Geist-Ng algorithm
o NUMA-aware implementation
o use of Idle Core Recycling technique (variant of work-stealing)

= how big an impact can tree-based multithreading make?
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Impact of tree-based multithreading on BLR/BLR+

Computationally

Intensive

Not Computationally

o,
A’nci

Intensive

28 threads 28 threads

+ tree MT
| time Yonci | time Yonci
FR 585s 18% | 519s 8%

BLR 315s  34%
BLR+ | 223s 48%

S3 matrix
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Impact of tree-based multithreading on BLR/BLR+

21/25

o,
A’nci

Computationally

Intensive

Not Computationally

Intensive

28 threads 28 threads

+ tree MT

| time Ponci | time Yonci

FR 585s 18% | 519s 8%
BLR 315s 34% | 239s 10%
BLR+ | 223s 48% | 136s 9%

S3 matrix
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Conclusion and
perspectives




Performance results on real-life problems

e Standard BLR variant (FSCU) achieves speedups of order 4 on
900 cores w.rt. FR

e Scalability of BLR factorization is comparable to FR one

e But flop reduction is not fully translated into performance gain,
especially with multithreading

e Improved BLR variants (BLR+) possess better properties
(efficiency, granularity, volume of communications, number of
operations)

e Tree-based multithreading becomes critical in BLR, especially
BLR+

e Combination of tree MT and BLR+ leads to speedups of order
3 on 28 threads w.rt. standard BLR




e |mplementation and performance analysis of the BLR variants
in distributed memory (MPI+OpenMP parallelism)

e Efficient strategies to recompress LR updates
e Pivoting strategies compatible with the BLR variants

e |Influence of the BLR variants on the accuracy of the
factorization
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Thanks!

Questions?
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Accumulator recompression
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Accumulator recompression

%e BT

e Weight recompression on {C;}
= With absolute threshold ¢, each C; can be compressed separately

e Redundancy recompression on {Q;}

= Bigger recompression overhead, when is it worth it?
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