Performance and scalability of the Block Low-Rank multifrontal factorization

*Université de Toulouse [†]ENS Lyon ¹INPT-IRIT ²CNRS-IRIT ³INRIA-LIP ⁴UPS-IRIT

PhD Days '16, Toulouse Sept. 27

P. Amestoy^{*,1} A. Buttari^{*,2} J.-Y. L'Excellent^{\dagger ,3}

Introduction

Multifrontal (Duff '83) with Nested Dissection (George '73)

Multifrontal (Duff '83) with Nested Dissection (George '73)

${\cal H}$ and BLR matrices

 $\mathcal H ext{-matrix}$

BLR matrix

PhD Days '16, Toulouse Sept. 27

${\mathcal H}$ and BLR matrices

$\mathcal{H} ext{-matrix}$

BLR matrix

A block *B* represents the interaction between two subdomains. If they have a small diameter and are far away their interaction is weak \Rightarrow rank is low.

${\mathcal H}$ and BLR matrices

\mathcal{H} -matrix

BLR matrix

A block *B* represents the interaction between two subdomains. If they have a small diameter and are far away their interaction is weak \Rightarrow rank is low.

$$\tilde{B} = XY^T$$
 such that rank $(\tilde{B}) = k_{\varepsilon}$ and $\|B - \tilde{B}\| \leq \varepsilon$

If $k_{\varepsilon} \ll \text{size}(B) \Rightarrow$ memory and flops can be reduced with a controlled loss of accuracy ($\leq \varepsilon$) 4/25 PhD Days '16, Toulouse Sept. 27

${\cal H}$ and BLR matrices

 $\mathcal H$ -matrix

- Theoretical complexity can be as low as O(n)
- Complex, hierarchical structure

BLR matrix

- Theoretical complexity can be as low as $O(n^{4/3})$
- Simple structure

${\mathcal H}$ and BLR matrices

 $\mathcal H$ -matrix

• Theoretical complexity can be

as low as O(n)

• Complex, hierarchical structure

BLR matrix

- Theoretical complexity can be as low as $O(n^{4/3})$
- Simple structure
- Our hope is to find a good comprise between theoretical
 4/25 complexity and performance/usability
 PhD Days '16, Toulouse Sept. 27

• FSCU

• FSCU (Factor,

• FSCU (Factor, Solve,

• FSCU (Factor, Solve, Compress,

• FSCU (Factor, Solve, Compress, Update)

PhD Days '16, Toulouse Sept. 27

• FSCU (Factor, Solve, Compress, Update)

PhD Days '16, Toulouse Sept. 27

- FSCU (Factor, Solve, Compress, Update)
- FSCU+LUAR

- FSCU (Factor, Solve, Compress, Update)
- FSCU+LUAR
 - Better granularity in Update operations

- FSCU (Factor, Solve, Compress, Update)
- FSCU+LUAR
 - Better granularity in Update operations
 - $\circ~$ Potential for recompression \Rightarrow flop reduction

- FSCU (Factor, Solve, Compress, Update)
- FSCU+LUAR
 - Better granularity in Update operations
 - $\circ~$ Potential for recompression \Rightarrow flop reduction

- FSCU (Factor, Solve, Compress, Update)
- FSCU+LUAR
 - Better granularity in Update operations
 - $\circ~$ Potential for recompression \Rightarrow flop reduction

- FSCU (Factor, Solve, Compress, Update)
- FSCU+LUAR
 - Better granularity in Update operations
 - $\circ~$ Potential for recompression \Rightarrow flop reduction
- FCSU(+LUAR)

- FSCU (Factor, Solve, Compress, Update)
- FSCU+LUAR
 - Better granularity in Update operations
 - $\circ~$ Potential for recompression \Rightarrow flop reduction
- FCSU(+LUAR)
 - Restricted pivoting, e.g. to diagonal blocks

- FSCU (Factor, Solve, Compress, Update)
- FSCU+LUAR
 - Better granularity in Update operations
 - $\circ~$ Potential for recompression \Rightarrow flop reduction
- FCSU(+LUAR)
 - Restricted pivoting, e.g. to diagonal blocks
Variants of the BLR LU factorization

- FSCU (Factor, Solve, Compress, Update)
- FSCU+LUAR
 - Better granularity in Update operations
 - $\circ~$ Potential for recompression \Rightarrow flop reduction
- FCSU(+LUAR)
 - Restricted pivoting, e.g. to diagonal blocks
 - \circ Low-rank Solve \Rightarrow flop reduction
 - Better BLAS-3/BLAS-2 ratio in Solve operations

Variants of the BLR LU factorization

- FSCU (Factor, Solve, Compress, Update)
- FSCU+LUAR
 - Better granularity in Update operations
 - $\circ~$ Potential for recompression \Rightarrow flop reduction
- FCSU(+LUAR)
 - Restricted pivoting, e.g. to diagonal blocks
 - \circ Low-rank Solve \Rightarrow flop reduction
 - Better BLAS-3/BLAS-2 ratio in Solve operations

Experimental results

Experimental Setting: Machines

- Distributed memory experiments are done on the eos supercomputer at the CALMIP center of Toulouse (grant 2014-P0989):
 - Two Intel(r) 10-cores Ivy Bridge @ 2,8 GHz
 - Peak per core is 22.4 GF/s
 - 64 GB memory per node
 - Infiniband FDR interconnect
- 2. Shared memory experiments are done on grunch at the LIP laboratory of Lyon:
 - Two Intel(r) 14-cores Haswell @ 2,3 GHz
 - Peak per core is 36.8 GF/s
 - Total memory is 768 GB

Experimental Setting: Matrices (1/3)

3D Electromagnetic Modeling Maxwell equation Double complex (z) arithmetic Symmetric LDL^{T} factorization Required accuracy: $\varepsilon = 10^{-7}$ Credits: EMGS

matrix	n	nnz	flops	storage
S3	3.3M	43M	78 TF	189 GB
S4	21M	266M	2.5 PF	2.1 TB
D4	30M	384M	3.6 PF	3.0 TB
	50101		5.011	5.0 1

Full-Rank statistics

Experimental Setting: Matrices (2/3)

3D Seismic Modeling Helmholtz equation Single complex (c) arithmetic Unsymmetric LU factorization Required accuracy: $\varepsilon = 10^{-3}$ Credits: SEISCOPE

matrix	n	nnz	flops	storage
7Hz	7M	177M	410 TF	211 GB
10Hz	17M	446M	2600 TF	722 GB
	Fι	ull-Rank :	statistics	

Experimental Setting: Matrices (3/3)

3D Structural Mechanics Double real (d) arithmetic Symmetric LDL^{T} factorization Required accuracy: $\varepsilon = 10^{-9}$ Credits: Code_Aster (EDF)

matrix	n	nnz	flops	storage
perf008ar	4M	159M	378 TF	148 GB
	Full	-Rank sta	atistics	

Low-rank threshold arepsilon is set according to the application's target

no atriv	MUM	PS-(Full-F	BI	LR	
Mallix	time	sp-up*	$\%_{peak}$	ε	time
10Hz	1017s	257	26%	10^{-3}	280s
S4	1538s	371	32%	10^{-7}	412s
D4	2221s	373	33%	10^{-7}	515s

*estimated speedup on 90×10 cores

- good speedup and $\%_{peak}$ on 900 cores \Rightarrow good FR reference
- BLR improves performance by a substantial factor of order 4

Low-rank threshold arepsilon is set according to the application's target

no atriv	MUM	PS-(Full-F	BI	LR	
Mallix	time	sp-up*	$\%_{peak}$	ε	time
10Hz	1017s	257	26%	10^{-3}	280s
S4	1538s	371	32%	10^{-7}	412s
D4	2221s	373	33%	10^{-7}	515s

*estimated speedup on 90×10 cores

- good speedup and $\%_{peak}$ on 900 cores \Rightarrow good FR reference
- BLR improves performance by a substantial factor of order 4

 \Rightarrow but does BLR scale as well as FR?

Scalability of the BLR factorization (distributed)

MPI+OpenMP parallelism (10 threads/MPI process, 1 MPI/node)

7Hz matrix (extracted from MUMPS-SEISCOPE research work submitted to Geophysics)

- each time the number of processes doubles, speedup of ~ 1.6 for FR and ~ 1.5 for BLR
- \Rightarrow both FR and BLR scale reasonably well
- $\Rightarrow\,$ ability to maintain gain due to BLR when the number of processes grows

Scalability of the BLR factorization (distributed)

MPI+OpenMP parallelism (10 threads/MPI process, 1 MPI/node)

7Hz matrix (extracted from MUMPS-SEISCOPE research work submitted to Geophysics)

- each time the number of processes doubles, speedup of ~ 1.6 for FR and ~ 1.5 for BLR
- \Rightarrow both FR and BLR scale reasonably well
- ⇒ ability to maintain gain due to BLR when the number of processes grows

⇒ so, we are happy? PhD Days '16, Toulouse Sept. 27

Gain due to BLR: impact of multithreading

- gain in flops (black line) does not fully translate into gain in time
- multithreaded efficiency lower in LR than in FR

Gain due to BLR: impact of multithreading

• gain in flops (black line) does not fully translate into gain in time

• multithreaded efficiency lower in LR than in FR

⇒ improve efficiency of operations and multithreading with variants PhD Days '16, Toulouse Sept. 27

Focus on the Update step (which includes the Decompress)							
		1 th	read	28 th	reads		
		RL	LL	RL	LL	_	
< 3 <	FR			468s	526s	-	
	BLR	847s	763s	112s	89s	_	
norf008ar	FR			663s	766s	-	
penoooai	BLR	2174s	2005s	236s	161s		

Focus on th	focus on the Update step (which includes the Decompress)						
		1 th	read	28 th	reads		
		RL	LL	RL	LL		
< 3	FR			468s	526s		
	BLR	847s	763s	112s	89s		
norf008ar	FR			663s	766s		
penoooai	BLR	2174s	2005s	236s	161s		

Focus on the Update step (which includes the Decompress)						
		1 th	read	28 th	reads	
		RL	LL	RL	LL	
C 3	FR			468s	526s	
	BLR	847s	763s	112s	89s	
norf008ar	FR			663s	766s	
penoodai	BLR	2174s	2005s	236s	161s	

- in RL: FR (green) block is accessed many times; LR (blue) blocks are accessed once
- in LL: FR (green) block is accessed once; LR (blue) blocks are accessed many times

Focus on the Update step (which includes the Decompress)						
		1 th 1	read	28 th	reads	
		RL	LL	RL	LL	
< 3	FR			468s	526s	
	BLR	847s	763s	112s	89s	
porf008ar	FR			663s	766s	
penoodal	BLR	2174s	2005s	236s	161s	

- in RL: FR (green) block is accessed many times; LR (blue) blocks are accessed once
- in LL: FR (green) block is accessed once; LR (blue) blocks are accessed many times
- ⇒ lower volume of memory transfers (more critical in multithreaded)

Focus on the Update step (which includes the Decompress)						
		1 th	read	28 th	reads	
		RL	LL	RL	LL	
< 3	FR			468s	526s	
	BLR	847s	763s	112s	89s	
porf008ar	FR			663s	766s	
penoodal	BLR	2174s	2005s	236s	161s	

- in RL: FR (green) block is accessed many times; LR (blue) blocks are accessed once
- in LL: FR (green) block is accessed once; LR (blue) blocks are accessed many times
- ⇒ lower volume of memory transfers (more critical in multithreaded)

⇒ the Decompress part remains the bottleneck of the Update

PhD Days '16, Toulouse Sept. 27

Performance of Update step with LUA(R) (shared, 28 threads)

Double precision (d) performance benchmark of Decompress

25 20 Gflops/s 10 5 b=256 -b=512 10 20 0 30 40 50 Decompress Size S3 perf008ar LUA LL LUA LUAR* LL LUAR* Flops in Update ($\times 10^{12}$) 4.0 4.0 2.9 44 44 33 41.8 22.7 23.3 89.7 48.1 Avg. decompress size 10.6 Time in Update 89s 59s 64s 161s 123s 119s

All metrics include the Recompression overhead

Performance of Update step with LUA(R) (shared, 28 threads)

Double precision (d) performance benchmark of Decompress

		Giloneks		20 30 Decompress Si		50
	LL	S3 LUA	LUAR*	r LL	berf008a LUA	ar LUAR*
Flops in Update ($\times 10^{12}$) Avg. decompress size Time in Update	4.0 10.6 89s	4.0 41.8 59s	2.9 22.7 64s	44 23.3 161s	44 89.7 123s	33 48.1 119s

* All metrics include the Recompression overhead

_

Performance of Update step with LUA(R) (shared, 28 threads)

benchmark of Decompress 25 20 Gflops/s 10 5 b=256 -b=512 10 20 0 30 40 50 Decompress Size S3 perf008ar LUA LL LUA LUAR* LL LUAR*

2.9

22.7

64s

44

23.3

161s

Double precision (d) performance

44

89.7

123s

33

48.1

119s

4.0

10.6

89s

4.0

41.8

59s

All metrics include the Recompression overhead

Flops in Update ($\times 10^{12}$)

Avg. decompress size

Time in Update

Performance of BLR+ (FCSU+LL+LUA)

PhD Days '16, Toulouse Sept. 27

Performance of BLR+ (FCSU+LL+LUA)

 \Rightarrow is there still room for improvement?

PhD Days '16, Toulouse Sept. 27

Relative weight of bottom fronts in FR/BLR

	28 th	reads					
	time	% _{nci}					
FR	585s	18%					
	S3 matrix						

Relative weight of bottom fronts in FR/BLR

	28 threads		
	time	% _{nci}	
FR BLR	585s 315s	18% 34%	
S3 matrix			

Relative weight of bottom fronts in FR/BLR

		16803	
	time	% _{nci}	
FR	585s	18%	
BLR	315s	34%	
BLR+	223s	48%	

S3 matrix

Exploiting tree-based multithreading in MF solvers

Exploiting tree-based multithreading in MF solvers

- Work based on W. M. Sid-Lakhdar's PhD thesis
 - LO layer computed with a variant of the Geist-Ng algorithm
 - NUMA-aware implementation
 - use of Idle Core Recycling technique (variant of work-stealing)

Exploiting tree-based multithreading in MF solvers

- Work based on W. M. Sid-Lakhdar's PhD thesis
 - LO layer computed with a variant of the Geist-Ng algorithm
 - NUMA-aware implementation
 - use of Idle Core Recycling technique (variant of work-stealing)

 \Rightarrow how big an impact can tree-based multithreading make?

Impact of tree-based multithreading on BLR/BLR+

	28 threads		28 threads + tree MT	
	time	% _{nci}	time	% _{nci}
FR BLR	585s 315s	18% 34%	519s	8%
BLR+	223s	48%		

S3 matrix

Impact of tree-based multithreading on BLR/BLR+

	28 threads		28 threads + tree MT	
	time	% _{nci}	time	% _{nci}
FR	585s	18%	519s	8%
BLR	315s	34%	239s	10%
BLR+	223s	48%	136s	9%

S3 matrix

Conclusion and perspectives

Performance results on real-life problems

- Standard BLR variant (FSCU) achieves speedups of order 4 on 900 cores w.r.t. FR
- Scalability of BLR factorization is comparable to FR one
- But flop reduction is not fully translated into performance gain, especially with multithreading
- Improved BLR variants (BLR+) possess better properties (efficiency, granularity, volume of communications, number of operations)
- Tree-based multithreading becomes critical in BLR, especially BLR+
- Combination of tree MT and BLR+ leads to speedups of order 3 on 28 threads w.r.t. standard BLR

Perspectives

- Implementation and performance analysis of the BLR variants in distributed memory (MPI+OpenMP parallelism)
- Efficient strategies to recompress LR updates
- Pivoting strategies compatible with the BLR variants
- Influence of the BLR variants on the accuracy of the factorization

Acknowledgements

- CALMIP and LIP for providing access to the machines
- EMGS, SEISCOPE and EDF for providing the test matrices
- LSTC members for scientific discussions

Thanks! Questions?

Backup Slides

- Weight recompression on $\{C_i\}_i$ \Rightarrow With absolute threshold ε_i each C_i can be compressed separately
- Redundancy recompression on $\{Q_i\}_i$

 \Rightarrow Bigger recompression overhead, when is it worth it?