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Neural network inference

We consider the computation of the forward pass on a neural network with L
layers as:

hℓ = ϕℓ(Wℓhℓ−1), ℓ = 1, . . . , L

where

Wℓ are the weight matrices
ϕℓ are the activation functions
h0 = x is the input and hL is the output

The deployment of large scale models motivates the use of reduced precision
arithmetic for accelerating both training and inference

Yet, need to preserve model accuracy ⇒ mixed precision strategies
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Reduced/mixed precision quantization

Quantization stores the weights (Wℓ) in reduced precision

Many mixed precision variants have been proposed
[Lin et al., 2016, Dong et al., 2020, Dong et al., 2019, Yao et al., 2021,
Gong et al., 2019, Uhlich et al., 2019, Wang et al., 2019, Yang et al., 2021]

Accumulation is often kept in high precision

Because some specialized hardware provides efficient high precision accumulators
(e.g., NVIDIA tensor cores)
Because model accuracy is much more sensitive to accumulation precision than
storage precision

However, reducing accumulation precision can significantly improve performance,
especially in resource-limited environments
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Reduced precision accumulation

Several ideas to allow for reduced precision accumulation:

Stochastic rounding: [Gupta et al., 2015, El Arar et al., 2025]

Blocked summation: [Wang et al., 2018]

Scaling (overflow prevention): [Sakr et al., 2019, Xie et al., 2021, Ni et al., 2021,
Colbert et al., 2023, Colbert et al., 2024].

However, all these ideas only consider uniform precision accumulation
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Mixed precision accumulation

Mixed precision accumulation has been surprisingly little investigated.
Difficulties/questions:

Is it meaningful to accumulate different inner products in different precisions?

⇒ YES!

If so, can we derive a criterion to decide which inner product should be
accumulated in which precision?

⇒ YES!

If so, can we leverage this criterion into a practical algorithm?

⇒ Depends. . . but in many cases, YES!
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Normwise backward error analysis

Theorem (Beuzeville et al.)

The computed output of the network ĥL(x) satisfies

ĥL(x) = ϕL

(
(WL+∆WL)ϕL−1

(
. . . ϕ1

(
(W1+∆W1)x

)
. . .

))
, ∥∆Wi∥ ≤ γni+c/κϕ

∥Wi∥

Advantages:

Quantifies the normwise backward stability of neural network inference
⇒ not backward stable due to 1/κϕ!
Can inherit the sharper bounds of probabilistic analyses, e.g., γni → γ√ni

(mean-zero rounding errors) or even γc (mean-zero weights)

Limitations: does not allow for identifying significant mixed precision opportunities
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Componentwise forward error analysis

We are less interested in backward stability than identifying mixed precision
opportunities. Therefore:

We seek forward error bounds on ∥ĥL − hL∥∞ to directly relate the precisions used
to the accuracy of the final output

We seek componentwise error bounds to track the effect of each inner product
precision to the final accuracy
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Componentwise error model

We will use the following componentwise error model:

ĥℓ = ϕℓ

(
(Wℓ ◦ (1+∆Wℓ))ĥℓ−1

)
◦(1+∆ϕℓ), |∆Wℓ| ≤ εWℓ , |∆ϕℓ| ≤ εϕℓ ,

where

◦ denotes the Hadamard (componentwise) product
∆Wℓ ∈ Rnℓ×nℓ−1 and ∆ϕℓ ∈ Rnℓ are the errors incurred in the matrix–vector
product and in the activation (≡ the errors)

εWℓ ∈ Rnℓ and εϕℓ ∈ Rnℓ are nonnegative vectors whose components bound the
corresponding errors (≡ the precisions)
Note that (εWℓ )i = maxj=1: nℓ−1

|(∆Wℓ)ij | for i = 1: nℓ

This model is very generic since it allows for different precisions for:

inner products and activations (εW and εϕ can be different)
different layers (εℓ can be different for ℓ = 1: L)
different components ((εℓ)i can be different for i = 1: nℓ)
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Condition numbers

The following key quantities will appear in our analysis:

Condition number κvℓ of the matrix–vector products vℓ = Wℓĥℓ−1:(
Wℓ ◦ (1+∆Wℓ)

)
ĥℓ−1 = vℓ ◦ (1+∆vℓ), |∆vℓ| ≤ κvℓ ◦ ε

W
ℓ

where
κvℓ = (|Wℓ||ĥℓ−1|)⊘ |vℓ|

Condition number κϕℓ
of the activation functions:

ϕℓ

(
vℓ ◦ (1+∆vℓ)

)
= ϕℓ(vℓ) ◦

(
1+∆ϕℓ), |∆ϕℓ| ≤ κϕℓ

(vℓ) ◦ |∆vℓ|

where
κϕℓ

(vℓ) = |vℓ ◦ ϕ′
ℓ(vℓ)⊘ ϕℓ(vℓ)|
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Main theorem

Theorem

The computed output ĥℓ of any layer ℓ satisfies

ĥℓ = hℓ ◦ (1+∆hℓ), |∆hℓ| ≤ εhℓ ,

where εhℓ satisfies the first-order recurrence relation

εhℓ = κϕℓ
(vℓ) ◦ κvℓ ◦

(
εWℓ + ∥εhℓ−1∥∞

)
+ εϕℓ .

This yields the scalar recurrence

∥εhℓ∥∞ = ∥κϕℓ
(vℓ) ◦ κvℓ ◦ ε

W
ℓ ∥∞ + ∥κϕℓ

(vℓ) ◦ κvℓ∥∞∥εhℓ−1∥∞ + ∥εϕℓ ∥∞
and hence the formula

∥εhL∥∞ =
L∑

ℓ=1

[( L∏
k=ℓ+1

∥κϕk
(vk) ◦ κvk∥∞

)(
∥κϕℓ

(vℓ) ◦ κvℓ ◦ ε
W
ℓ ∥∞ + ∥εϕℓ ∥∞

)]
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Interpretation

L∑
ℓ=1

[( L∏
k=ℓ+1

∥κϕk
(vk) ◦ κvk∥∞

)(
∥κϕℓ

(vℓ) ◦ κvℓ ◦ ε
W
ℓ ∥∞ + ∥εϕℓ ∥∞

)]
Sum of terms ⇒ balance them

( L∏
k=ℓ+1

∥κϕk
(vk) ◦ κvk∥∞

)(
∥κϕℓ

(vℓ) ◦ κvℓ ◦ ε
W
ℓ ∥∞ + ∥εϕℓ ∥∞

)
Product of condition numbers of subsequent layers: technically depends on ℓ, but

∥ · ∥∞ likely to smudge most of the potential variations
not easy to estimate anyway

⇒ drop it

∥κϕℓ
(vℓ) ◦ κvℓ ◦ ε

W
ℓ ∥∞ + ∥εϕℓ ∥∞

Activation error only plays a role in ∥ · ∥∞ ⇒ drop it
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Interpretation

We are left with
∥κϕℓ

(vℓ) ◦ κvℓ ◦ ε
W
ℓ ∥∞

Large potential variations of condition numbers:
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⇒ The components (εWℓ )i should be chosen to be inversely proportional to
(κℓ)i := (κϕℓ

(vℓ) ◦ κvℓ)i ⇒ mixed precision opportunity!
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Ideal conceptual algorithm

for each layer ℓ do
Compute κℓ = κϕℓ

(vℓ) ◦ κvℓ

→ depends on vℓ = Wℓhℓ−1!

for each component i do
if (κℓ)i ≤ τ then

Compute (hℓ)i = ϕℓ((Wℓhℓ−1)i ) in precision ulow
else

Compute (hℓ)i = ϕℓ((Wℓhℓ−1)i ) in precision uhigh
end if

end for
end for

⇒ can we cheaply estimate κℓ?
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Estimating κ (part 1)

We only need to know the order of magnitude of κℓ ⇒ can compute it in low
precision?
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Estimating κ (part 2)

κϕℓ
(vℓ) = |vℓ ◦ ϕ′

ℓ(vℓ)⊘ ϕℓ(vℓ)| → almost for free as by-product of computing
hℓ = ϕℓ(vℓ) in low precision

κvℓ = (|Wℓ||ĥℓ−1|)⊘ |vℓ| → denominator is a by-product but not numerator!

⇒ Approximate κvℓ ≈ c1⊘ |vℓ|
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Practical algorithm

Input: W1, . . . ,WL, the weight matrices; h0 = x , the input vector; τ , a tolerance
controlling the precision choice; ulow, uhigh, the precisions.

Output: hL, the output of the network.
for ℓ = 1, . . . , L do

Compute vℓ = Wℓhℓ−1 in precision ulow.
Compute hℓ = ϕℓ(vℓ) in precision ulow.
Compute κϕℓ

(vℓ) = |vℓ ◦ ϕ′
ℓ(vℓ)| ⊘ |ϕℓ(vℓ)| in precision ulow.

Compute κℓ = κϕℓ
⊘ |vℓ| in precision ulow.

for every component (κℓ)i do
if (κℓ)i > τ then

Recompute (vℓ)i = (Wℓhℓ−1)i in precision uhigh.
Recompute (hℓ)i = ϕℓ((vℓ)i ) in precision uhigh.
Requantize (hℓ)i back to precision ulow.

end if
end for

end for
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Practical algorithm
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Cost model

This mixed precision algorithm will only be cost-effective if the number of inner
products that need to be recomputed is small

This can be modelled as follows:

cmixed = clow + ρchigh =

(
clow
chigh

+ ρ

)
chigh,

where

clow and chigh are the inference costs in uniform (low and high) precision
ρ ∈ [0, 1] is the fraction of inner products that need to be recomputed
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Experimental setting

We test multilayer perceptron networks

with 3, 5, or 8 layers
with either tanh or ReLU activations
trained on either the MNIST or FMNIST datasets (using FP32 precision)
we will show a sample of these tests, see paper for full results

We use FP16 as uhigh and FP8 (E4M3) as ulow ⇒ assuming chigh = 2clow, we
want ρ < 0.5

We report the test accuracy on 10,000 inputs
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Experimental results: tanh, 5 layers, FMNIST
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Experimental results: ReLU, 5 layers, FMNIST
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Experimental results: ReLU, 3 layers, FMNIST

0.81 0.82 0.83 0.84 0.85 0.86 0.87 0.88
Test accuracy

0.0

0.2

0.4

0.6

0.8

1.0

( =1) ( =0.5) ( =0.3) ( =0.1)

fp8

fp16Mixed fp8/fp16
Uniform fp8
Uniform fp16

20 / 21



Conclusion

Accumulation errors are proportional to the condition numbers of the inner
products and activation functions, componentwise

This observation can be leveraged into a practical mixed precision algorithm

With ReLU activations, can reach FP16-equivalent model accuracy while
computing > 80% of the inner products in FP8 ⇒ 40% expected time reduction

Thanks!
Questions?

https://hal.science/hal-04995708
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