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The Generalized Minimal Residual method (GMRES) for the solution of general square linear systems
Ax = b is often combined with a preconditioner to improve the convergence speed of the method.
Successful mixed precision implementations for the application of the preconditioner inside GMRES
have been previously proposed: certain strategies prescribe to apply the preconditioner in low precision
to reduce overall time and memory consumption, and other strategies propose to apply the matrix A
and the preconditioner in higher precision to improve robustness and accuracy. These existing studies
tend to focus on one kind of preconditioner combined with one kind of preconditioning technique (left-,
right-, and flexible-preconditioning). In this article, we wish to unify most of the state-of-the-art mixed
precision implementations for preconditioned GMRES under the same comprehensive theory, give a
clear and exhaustive list of the possible strategies to set the precisions, and explain how these strategies
compare numerically. To achieve this, we derive rounding error analyses with generic preconditioners for
the left-, right-, and flexible-preconditioned GMRES processes in mixed precision and obtain descriptive
bounds for the attainable forward errors of the computed solutions. Specifically, we substantially improve
the sharpness of the right- and flexible-preconditioned GMRES forward error bounds compared with
the existing literature. From the study of these bounds, we discover new meaningful mixed precision
implementations that were not previously known; these new strategies achieve new tradeoffs between
the employment of computationally effective low precision and accuracy. Moreover, we also uncover
critical differences in robustness and accuracy between left-, right-, and flexible-preconditioning for
a same given set of precisions: the choice among the three preconditioning techniques therefore
has higher stakes in mixed precision. We substantiate our theoretical findings with a comprehensive
experimental study on random dense and real-life sparse matrices from the SuiteSparse collection with
various preconditioners: low precision LU factorization, incomplete LU, sparse approximate inverse, and
polynomial preconditioners.
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1. Introduction

A popular choice of Krylov-based iterative solvers for the efficient solution of square nonsingular linear
systems

Ax = b, A ∈ Rn×n, 0 ̸= b ∈ Rn, (1.1)

is the Generalized Minimal Residual method [32] (GMRES). As for most Krylov-based iterative
solvers, a critical element to help reduce the number of iterations of GMRES is preconditioning [36].
It consists in transforming the original linear system (1.1) into one which shares the same solution but
which is easier to solve:

(left) M−1
L Ax = M−1

L b or AM−1
R xR = b with xR = MRx (right), (1.2)

where ML ∈Rn×n and MR ∈Rn×n are nonsingular. Depending on which preconditioned system is solved
in (1.2), we refer to the method as left- or right-preconditioned GMRES.

Over the past years, GMRES has substantially benefited from the increasing availability of low
precisions in supercomputers, which are often accessible in accelerators like GPUs and have opened
up new opportunities for resource savings. Unfortunately, employing low precision tends to introduce
inexactness in the computation. To counterbalance this effect, mixed precision algorithms compute
strategic parts of the computation with high precision to preserve or recover accuracy. Mixed precision
has been widely employed within GMRES and has proven to be effective. Some of the earliest studies
on the topic date back to the 90s [34]. Since then, the literature around mixed precision Krylov solvers,
and specifically GMRES, has flourished. A popular and successful mixed precision strategy is to
employ an inner-outer layout, where the inner GMRES solver is operated in low precision and the
outer iterative solver in high precision to improve accuracy cheaply. For instance, combining GMRES
with an outer iterative refinement process in mixed precision has been extensively studied; see [6], [26],
[28], [15], [3], [4], or [12]. Another example of such a mixed precision strategy is proposed in [10]
where both inner and outer solvers are GMRES. Other mixed precision strategies prescribe to compute
some GMRES operations and kernels in different precisions: mixed precision in the orthogonalization
process [37], in the SpMV [20], for storing the basis [2][1], or for storing the preconditioner [5].
Lastly, some strategies change the precisions with which GMRES is performed as the iterations go.
The work [33], [19], or [21] demonstrated that the precisions for computing the matrix–vector and
scalar products could be reduced as we lose orthogonality on the computed basis. Conversely, [29]
prescribes to increase progressively the GMRES precision between restarts if the accuracy of the
computed solution stagnates or diverges. Note that these different mixed precision strategies are not
necessarily exclusive and can be combined to some extent.

In this article, we reduce the scope of mixed precision implementations to the simple yet generic
layout outlined in Algorithm 1. This layout considers preconditioned GMRES using Modified Gram-
Schmidt (MGS) orthonormalization, and assumes that the application of the preconditioner to vectors is
performed in precision um, the matrix–vector product with A is performed in precision ua, and the rest of
the GMRES operations are performed in precision ug. We represent the left- and right-preconditioned
variants of this algorithm, respectively, on the left-side and right-side of Algorithm 1. In addition to
left- and right-preconditioning, we will also consider another preconditioning technique called flexible-
preconditioned GMRES [31], which is a reformulation of the right-preconditioned GMRES where the
vectors z j in Algorithm 1 are stored persistently in memory in an additional basis Zk = [z1, . . . ,zk]. In this
case, lines 17 and 18 of Algorithm 1 (right) are computed as xk = x0 +Zkyk instead. At the additional
cost of storing another set of k vectors in memory, flexible-preconditioning allows the preconditioner
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Algorithm 1 Preconditioned MGS-GMRES in mixed precision.

Input: an n×n matrix A and a preconditioner M, a right-hand side b, and a number of iteration k.
Output: a computed solution to Ax = b.

1: Initialize x0 (e.g., x0 = M−1b)
2: r0 = Ax0 −br0 = Ax0 −br0 = Ax0 −b uuuaaa
3: s0 = M−1r0s0 = M−1r0s0 = M−1r0 uuummm
4: β = ∥s0∥2, v1 = s0/β , V1 = [v1] ug
5: for j = 1 : k do
6: w′

j = Av jw′
j = Av jw′
j = Av j uuuaaa

7: w j = M−1w′
jw j = M−1w′
jw j = M−1w′
j uuummm

8: for l = 1 : j do
9: hl, j = vT

l w j ug
10: w j = w j −hl, jvl ug
11: end for
12: h j+1, j = ∥w j∥2 ug
13: v j+1 = w j/h j+1, j ug
14: Vj+1 = [Vj, v j+1]
15: end for
16: yk = argminy ∥βe1 − H̄ky∥2 ug
17:
18: xk = x0 +Vkyk ug

1: Initialize x0 (e.g., x0 = M−1b)
2: r0 = Ax0 −br0 = Ax0 −br0 = Ax0 −b uuuaaa
3:
4: β = ∥r0∥2, v1 = r0/β , j=0 ug
5: for j = 1 : k do
6: z j = M−1v jz j = M−1v jz j = M−1v j uuummm
7: w j = Az jw j = Az jw j = Az j uuuaaa
8: for l = 1 : j do
9: hl, j = vT

l w j ug
10: w j = w j −hl, jvl ug
11: end for
12: h j+1, j = ∥w j∥2 ug
13: v j+1 = w j/h j+1, j ug
14: Vj+1 = [Vj, v j+1]
15: end for
16: yk = argminy ∥βe1 − H̄ky∥2 ug
17: y′k =Vkyk ug

18: xk = x0 +M−1y′kxk = x0 +M−1y′kxk = x0 +M−1y′k uuummm

MR to vary from one iteration to another. In this study, however, the preconditioner MR is fixed for all
iterations, and flexible-preconditioned GMRES is equivalent in exact arithmetic to right-preconditioned
GMRES. Yet, even if both are equivalent in exact arithmetic, the former can offer extra stability in
inexact arithmetic, as remarked in [8].

Earlier work already assessed some combinations of the precisions um, ua, and ug in Algorithm 1; we
will address them exhaustively in section 4.2 when presenting the associated strategies for choosing the
precisions. However, many of these earlier studies are dedicated to one specific kind of preconditioner
and one specific kind of preconditioning technique (left-, right-, or flexible-preconditioning). In
particular, they often do not make it clear whether the proposed mixed precision strategies would be
viable for other kinds of preconditioners or preconditioning techniques. They also do not relate or
compare their given mixed precision strategy for choosing um, ua, and ug to other existing ones, and, as
we will show, they only account for a limited subset of the possible combinations of the precisions um,
ua, and ug with the three preconditioning techniques.

In this context, the core purpose of this article is to answer the question: what are (all) the
numerically meaningful ways to set um, ua, and ug for left-, right-, and flexible-preconditioned GMRES
and how do they compare? Here, “numerically meaningful” means that a given combination of these
precisions should present a tradeoff between accuracy, number of iterations, and the employment of
computationally effective low precision. Ultimately, we aim for this article to stand as a practical guide
that lists all meaningful options for setting the precisions um, ua, and ug in Algorithm 1. To achieve this,
we introduce our set of notations and mathematical tools which will be used throughout the article
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in section 2. In section 3, we proceed to the rounding error analysis of left-, right-, and flexible-
preconditioned GMRES to derive bounds for the attainable forward errors. To this end, we rework
a key result of [11] which provides modular and generic error bounds for GMRES algorithms. Using
this rework, we derive descriptive bounds using generic preconditioners. Specifically, our analysis leads
to substantial improvements for the right- and flexible-preconditioned GMRES forward error bounds
compared with the existing literature. In section 4, we use these bounds combined with numerical
experiments on random dense matrices to identify meaningful mixed precision strategies; each strategy
prescribes how to set um, ua, and ug to achieve a specific tradeoff between accuracy and employment of
low precision. We recover existing combinations of the precisions um, ua, and ug already introduced in
the literature, we uncover new ones, and we study and compare them for left-, right-, and flexible-
preconditioned GMRES. In particular, we unveil major differences in robustness and accuracy for
each preconditioning technique given a same combination of precisions. We conclude that left-, right-,
and flexible-preconditioning present different strengths and weaknesses and that, in some cases, using
one over the others is preferable or even critical. Finally, in section 5, we validate our findings with
numerical experiments on real-life problems from the SuiteSparse collection [18] using a variety of
commonly used preconditioners: incomplete LU factorization, low precision LU factorization, sparse
approximate inverse, and polynomial preconditioners. We provide our concluding remarks in section 6.

We let the reader know that this article builds upon certain unpublished ideas presented in the
PhD thesis [35, chap. 7] of the fourth author of this article. Some of these ideas have also been
cited and extended in [13] which focuses on applying the preconditioners in mixed precision for split-
preconditioned GMRES. We do not address the split-preconditioning case, and we recommend a reader
interested in the topic to read [13], which naturally complements this article’s content.

2. Notations

For convenience, the notations um, ua, and ug can refer to both the floating-point arithmetic or its
unit roundoff, depending on the context. Throughout the rounding error analysis of section 3, these
three precision parameters are unspecified and can represent any floating-point arithmetic as long as the
associated unit roundoff is substantially lower than 1. Later in the experimental sections 4 and 5, we
will assign um, ua, and ug to specific arithmetics. We list in Table 1 the ones we use; they are a sample
of some of the widely accessible floating-point arithmetics in supercomputers.

TABLE 1 Parameters for floating-point arithmetics: symbol used in this
paper, number of bits for the significand (including the implicit leading bit),
number of bits for the exponent, unit roundoff, and range.
Arithmetic Symbol Significand Exponent Unit roundoff Range
bfloat16 B 8 8 3.9×10−3 10±38

fp32 S 24 8 6.0×10−8 10±38

fp64 D 53 11 1.1×10−16 10±308

fp128 Q 113 15 9.6×10−35 10±4932

We use the notations ML to refer to the left-preconditioner and MR to refer to the right-
preconditioner. When the context does not need to differentiate between left- and right-preconditioner,
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we simply write M. Identically, we use the notation Ã to refer to the preconditioned matrix M−1
L A or

AM−1
R .
We use the standard model of floating-point arithmetic [23, sect. 2.2] and we use the notation fl(·)

to denote the computed value of a given expression.
Our analysis is a traditional worst case analysis and the error bounds obtained depend on some

constants related to the problem dimension n and the number of GMRES iterations k. We gather these
constants into generic functions c(n,k). We guarantee that these functions c(n,k) are polynomials in n
and k of low degree, but since they are known to be pessimistic [24], we do not always keep track of
their precise values.

We use the notations ≲ and ≈ when dropping negligible second order terms in the error bounds,
and the notation Θ1 ≫ Θ2 to indicate that Θ1 is much greater than Θ2. In particular, we consider that if
Θ1 ≫ Θ2, then we can safely assess that Θ1 ≫ c(n,k)Θ2. We also use the notation ≡, which means that
we can take the quantity on the left, which is in our control and is not fixed, to be equal to the quantity
on the right.

We write σmin(B) and σmax(B) for the smallest and largest singular value of a rectangular matrix
B ∈ Rn×m, respectively. Our error analysis uses both the 2-norm and the Frobenius norm, denoted
by ∥ · ∥2 and ∥ · ∥F . The 2-norm of a matrix B ∈ Rn×m refers to the induced norm. We define the
normwise condition numbers of a square nonsingular matrix B ∈ Rn×n by κF(B) = ∥B−1∥F∥B∥F ,
κ2(B) = σmax(B)/σmin(B), and κF,2 = ∥B∥F/σmin(B). Because of the equivalence of the 2-norm and
Frobenius norm, the context often does not require differentiating these quantities and we simply write
κ(B).

The forward error of a computed solution x̂ by Algorithm 1 of the linear system (1.1) is defined as

∥x̂− x∥2

∥x∥2
. (2.1)

3. Bounds on the attainable forward errors

The choice of preconditioner and precisions um, ua, and ug affects both the convergence rate and the
attainable errors of GMRES. Regarding the convergence rate, a practical rule of thumb is to consider
that the more the preconditioner reduces the condition number of the original matrix A and clusters the
eigenvalues, the better the convergence. Hence, the ideal scenario is to obtain κ2(Ã) ≈ 1 where M−1

is computed and/or applied cheaply. Unfortunately, because “any nonincreasing convergence curve is
possible for GMRES” [22], there is actually very little we can theoretically ensure about how much a
given preconditioner will improve the convergence. For this reason, our theoretical analysis will mostly
focus on identifying how the choice of preconditioner and precisions affects the attainable forward
error, and subsequently rely on these results to identify the meaningful strategies to set the precisions.
Nevertheless, we will assess both the convergence rate and the attainable errors in the experimental
sections.

Note that we focus our analysis solely on the forward error (2.1) of the linear system (1.1). Backward
error [23, sec. 7.1] bounds can also be obtained for preconditioned GMRES, but they would require
dedicated developments which we cannot add concisely to this article.

3.1. Modular error bound

To derive bounds on the attainable forward errors for left-, right-, and flexible-preconditioned GMRES,
we wish to use the modular framework for the backward error analysis of GMRES developed in [11].
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Particularly, we need to develop and call an improved version of [11, Thm. 3.1], which provides
sharper bounds on the attainable forward errors of the preconditioned GMRES implementations we
consider. Our rework of [11, Thm. 3.1] will be presented in the following Theorem 3.1 and, contrary
to [11, Thm. 3.1], which can handle many orthogonalization methods, will be specialized to GMRES
employing MGS orthogonalization as in Algorithm 1. We will then use this result to study individually
left-, right-, and flexible-preconditioned GMRES in sections 3.2, 3.3, and 3.4, respectively.

We follow a similar approach to [11] by remarking that Algorithm 1 can be compacted and rewritten
under the form of Algorithm 2. In Algorithm 2, Z̃k is an input and refers to the basis that spans the search
space; that is, the space from which we extract the approximation xk to the exact solution x. In exact
arithmetic, we simply have Z̃k ≡ Zk = M−1

R Vk, where Vk = [v1, . . . ,vk] is the orthogonal Krylov basis
computed exactly. More specifically, Vk is constructed iteratively from the QR factorization [b̃,Ck] =
Vk+1[βe1, H̄k] computed with MGS and yielding the relation

min
y

∥b̃−Cky∥2 = min
y

∥βe1 − H̄ky∥2, (3.1)

where Ck and b̃ are formed, respectively, at lines 1 and 2 of Algorithm 2, and where Vk+1 = [Vk,vk+1] ∈
Rn×(k+1), H̄k ∈ R(k+1)×k upper Hessenberg, e1 = (1,0, . . . ,0) ∈ Rk+1, and β = ∥b̃∥2. If we are using a
left-preconditioner, ML ̸= I and MR ≡ I; conversely, if we are using a right- or flexible-preconditioner,
ML ≡ I and MR ̸= I.

When computed in floating-point arithmetic, the four operations of Algorithm 2 are subject to
rounding errors which affect the final attainable accuracy of the computed solution of the linear
system (1.1). In this case, we note V̂k = [v̂1, . . . , v̂k] to refer to the inexactly computed Krylov basis. To
derive attainable error bounds for GMRES algorithms, it is often beneficial to identify a search space
spanned by Z̃k that absorbs some of these rounding errors. A natural choice for Z̃k is the computed basis
Ẑk = [ẑ1, . . . , ẑk], where ẑ j = fl(M−1

R v̂ j) for j ≤ k. However, this choice may not lead to the best attainable
errors so that we keep these two quantities distinct. The difference between Z̃k and Ẑk is technical, and
only affects proofs in appendices.

Algorithm 2 Modular GMRES

1: Compute Ck = M−1
L AZ̃k.

2: Compute b̃ = M−1
L b.

3: Solve yk = argminy ∥b̃−Cky∥2 with MGS yielding [b̃,Ck] = [Vk,vk+1][βe1, H̄k] and Givens rotations.
4: Compute the solution approximation xk = Z̃kyk.

The framework of [11] provides a generic and implementation-independent rounding error model
for each operation of Algorithm 2. For this reason, it can be applied to many variations of the GMRES
algorithm. For instance, the rounding error model of the matrix–matrix product at line 1 reads as follows

Ĉk = fl
(
M−1

L AZ̃k
)
= M−1

L AZ̃k +∆c, ∥∆c∥F ≤ εc∥M−1
L AZ̃k∥F , (3.2)

where Ĉk ∈ Rn×k is the result of the computed products between M−1
L , A, and the computed basis

Z̃k spanning the search space. The term εc is a parameter bounding the magnitude of the error and
describing the accuracy of the operation. Ultimately, depending on the kind of preconditioners we
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use, how the products with these preconditioners are implemented, and the precisions in which these
products are performed, we can obtain different levels of accuracy and, so, different values for εc. We
emphasize that the modularity offered by the error model is crucial because it will allow us to cover a
wide range of preconditioners and mixed precision implementations.

In the same vein, the model assumes that the computed preconditioned right-hand side b̂ at line 2
satisfies

b̂ = fl
(
M−1

L b
)
= b̃+∆b, ∥∆b∥2 ≤ εb∥b̃∥2, (3.3)

with accuracy parameter εb.
The least squares problem at line 3 is solved identically for all the preconditioned GMRES

implementations considered in this article. Namely, it consists of the MGS orthogonalization of [b̃,Ck]
to reduce the least squares problem at line 3 to the one in (3.1), followed by Givens rotations to
triangularize H̄k, and, lastly, the application of one triangular solve to recover the solution yk; this
is the classic implementation proposed in the GMRES founding article [32]. This process has been
studied for instance in [30, sect. 7] or [11, sect. 5.3] under rounding errors, and delivers a computed
solution ŷk satisfying for all j ≤ k+1

ŷk = argmin
y

∥b̂+∆
b
ls −

(
Ĉk +∆

c
ls

)
y∥2, ∥

[
∆

b
ls,∆

c
ls

]
e j∥2 ≤ c(n,k)ug∥

[
b̂,Ĉk

]
e j∥2,

if Ĉk is not numerically singular, that is, ugκ(Ĉk)≪ 1.
Lastly, the computed approximate solution x̂k at line 4 satisfies

x̂k = fl
(
Z̃kŷk

)
= Z̃kŷk +∆x, ∥∆x∥2 ≤ εx∥Z̃kŷk∥2, (3.4)

with accuracy parameter εx.
The original description of the rounding error models (3.2) to (3.4) can be found in [11, sect. 3.1].

Note that, for the sake of capturing a sharper forward error bound, the model (3.4) associated with
the computation of the approximate solution at line 4 has been slightly changed. Moreover, contrary
to [11], we do not need a rounding error model for the least squares problem at line 3. The accuracy of
this process is already established since we enforce the use of MGS orthogonalization.

In addition to the previous error models, we must ensure that the remaining conditions [11, eqs. (3.5)
to (3.8)] are met. Because we use specifically the MGS orthogonalization, these conditions reduce to
verifying that

(εc + εb +ug)κ(M−1
L AZ̃k)≪ 1. (3.5)

and
εx ≪ 1. (3.6)

The last condition (3.6) was previously [11, eq. (3.5)] which requires the basis Z̃k not to be numerically
rank deficient to the accuracy parameter εx. Because of the change operated in the rounding error
model (3.4), the new condition (3.6) is actually less stringent.

Under the previous error models and conditions, we write Theorem 3.1 which provides an improved
attainable forward error bound.

Theorem 3.1 Suppose that Algorithm 2 is applied with a full-rank basis Z̃k ∈ Rn×k of increasing
dimension k ≤ n and a nonsingular left-preconditioner ML ∈ Rn×n to solve Ax = b. Then, there exists a
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dimension k ≤ n for Z̃k at which the resulting computed Krylov basis V̂k is well-conditioned

σ
−1
min(V̂k)≤ 4/3 and σmax(V̂k)≤ 4/3, (3.7)

and for which, if conditions (3.2) to (3.6) are met for given parameters εc, εb, and εx, then for any
nonsingular MR ∈ Rn×n, the computed solution x̂k by Algorithm 2 has a forward error satisfying

∥x̂k − x∥2

∥x∥2
≲ c(n,k)ξ κ

(
M−1

L AM−1
R
)
, ξ = αεc +βεb +βug +λεx (3.8)

with

α =
κ
(
MR
)

σmin(MRZ̃k)

∥M−1
L AZ̃k∥F

∥M−1
L AM−1

R ∥F
, λ = 1/κ

(
M−1

L AM−1
R
)
,

β = max

(
1,

∥M−1
L AZ̃k∥F

∥M−1
L AM−1

R ∥F
/σmin(MRZ̃k)

)
κ
(
MR
)
,

where c(n,k) are polynomials in n and k of low degree.

Proof Proof in Appendix A. □

Remark 1. A notable achievement of Theorem 3.1 is to show that the forward error bound (3.8) is
proportional to κ(M−1

L AM−1
R )κ(MR), where the previous state-of-the-art forward error bounds [11,

eq. (3.10)] and [13, eq. (2.11)] achieve κ(M−1
L A)κ(MR)

1. By using this improvement, we will be able to
derive more descriptive bounds for the attainable forward errors of right- and flexible-preconditioned
GMRES.

3.2. Error bound for left-preconditioned GMRES

We first consider the left-preconditioned case outlined in Algorithm 1 (left) for which ML ̸= I and
MR ≡ I. The successive matrix–vector products M−1

L Av̂ j for j ≤ k computed at lines 6 and 7 of
Algorithm 1 can be compacted and rewritten under the form of the matrix–matrix product M−1

L AV̂k
at line 1 of Algorithm 2. We assume that these successive products are operated by the application of
a standard matrix–vector product with the matrix A in precision ua followed by the application of the
preconditioner M−1

L on the resulting vector in precision um. To study this kernel with the least amount of
assumptions on the preconditioner, we assume that the application of ML to a vector yields a computed
result satisfying

fl
(
M−1

L ŵ′
j
)
=
(

M−1
L +∆M( j)

L

)
ŵ′

j, ∥∆M( j)
L ∥F ≤ c(n,k)umηL∥M−1

L ∥F , (3.9)

where ∆M( j)
L models a generic error bounded in norm by the precision um and a scalar ηL, which

quantifies the magnitude of the error. The value of ηL varies depending on the kind of preconditioner
and how it is applied to a vector.

1 In [13, eq. (2.11)], the authors actually use the term ∥Ẑk∥F∥MR(x̂k − x̂0)∥2/∥x̂k∥2 instead of κ(MR), and argue that the former
can be smaller, where x̂0 is the initial guess. While this may be true for certain linear systems and choices of preconditioner, we
have not observed it to be true in general. For this reason we prefer using κ(MR) in our bounds, which we find easier to read and
interpret. However, a deeper investigation of the term ∥Ẑk∥F∥MR(x̂k − x̂0)∥2/∥x̂k∥2 is certainly of interest.
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Identically, we assume that the computation of the preconditioned right-hand side at line 2 of
Algorithm 2 corresponds to one application of the preconditioner ML to b satisfying (3.9). Moreover,
we assume that the solution approximation x̂k obtained at line 4 is computed through a standard
matrix–vector product with V̂k in precision ug.

Lastly, we define the two following quantities to express our bound:

umρ
L
M = max

j≤k

(
∥A−1ML∆M( j)

L Av̂ j∥2

)
(3.10)

and

umρ
L
b = c(n,k)umηL

∥M−1
L ∥F∥b∥2

∥M−1
L b∥2

. (3.11)

These two quantities are used to account for the possible cancellation in the products Av̂ j and M−1
L b,

and simplifications that can occur depending on the form of the error ∆M( j)
L .

Under this rounding error model for applying the left-preconditioner in GMRES, we provide the
following theorem which bounds the attainable forward error of the computed solution.

Theorem 3.2 Consider the left-preconditioned GMRES described by Algorithm 1 for the solution of
a nonsingular linear system Ax = b. In addition, assume that

max
(

ugκ
(
M−1

L A
)
,umρ

L
bκ
(
M−1

L A
)
,umρ

L
M,uaκ

(
A
))

≪ 1. (3.12)

Then, there exists an iteration k ≤ n at which the computed solution x̂k has a forward error satisfying

∥x̂k − x∥2

∥x∥2
≲ c(n,k)

((
umρ

L
b +ug

)
κ
(
M−1

L A
)
+uaκ

(
A
)
+umρ

L
M

)
. (3.13)

Proof Proof in Appendix B. □

Remark 2. Condition (3.12) of Theorem 3.2 is inconsequential in the sense that not meeting (3.12)
implies that the right-hand side of (3.13) is of order at least 1 and, so, even if the bound (3.13) was
applicable, it would not be useful. Indeed, a forward error higher than 1 implies that the computed
solution has no correct digits.

3.3. Error bound for right-preconditioned GMRES

We now consider the right-preconditioned case outlined in Algorithm 1 (right) for which ML ≡ I
and MR ̸= I. Identically to the left-preconditioned case, we assume that the successive matrix–vector
products AM−1

R v̂ j are operated by applying the matrix A in precision ua and the preconditioner M−1
R in

precision um. In particular, we assume that the application of the right-preconditioner MR to a vector
yields

fl
(
M−1

R v̂ j
)
=
(

M−1
R +∆M( j)

R

)
v̂ j, ∥∆M( j)

R ∥F ≤ c(n,k)umηR∥M−1
R ∥F , (3.14)

where ηR is a scalar that quantifies the magnitude of the error. Moreover, we consider that the solution
approximation x̂k at line 4 of Algorithm 2 is computed with a standard matrix–vector product with V̂k
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in precision ug followed by the application of the right-preconditioner MR in precision um. Without
left-preconditioner, we have b̃ ≡ b at line 2 of Algorithm 2, and no computation is needed.

Finally, we require the following quantity to express our bound; we define

ρ
R
A =

∥|Ẑk||ŷk|∥2

∥Ẑkŷk∥2
, (3.15)

where Ẑk = [ẑ1, . . . , ẑk] and ẑ j = fl(M−1
R v̂ j) for j ≤ k.

With this previous rounding error model, we derive the right-preconditioned counterpart to
Theorem 3.2.

Theorem 3.3 Consider the right-preconditioned GMRES described by Algorithm 1 for the solution of
a nonsingular linear system Ax = b. In addition, assume that

max
(

ugκ(AM−1
R ),ugκ

(
MR
)
,umηRκ

(
MR
)
,uaκ

(
A
)
ρ

R
A,uaκ

(
AM−1

R
)
κ
(
MR
))

≪ 1. (3.16)

Then, there exists an iteration k ≤ n at which the computed solution x̂k has a forward error satisfying

∥x̂k − x∥2

∥x∥2
≲ c(n,k)

(
ugκ
(
AM−1

R
)
κ
(
MR
)
+umηRκ

(
MR
)
+uaκ

(
A
)
ρ

R
A

)
. (3.17)

Proof Proof in Appendix C. □

Remark 3. Condition (3.16) of Theorem 3.3 requiring uaκ
(
AM−1

R

)
κ
(
MR
)
≪ 1 is likely pessimistic. It

could be replaced by
c(n,k)ugκ(AZ̃k)≪ 1, (3.18)

which would also guarantee (3.17), but involves the quantity Z̃k instead of MR. We can use ∆ = AZ̃k −
AM−1

R V̂k to relate σmin(AZ̃k) to σmin(AM−1
R ), which then serves to relate κ(AZ̃k) to κ(AM−1

R ). In the
worst case scenario, the error ∆ can present a specific structure that will decrease σmin(AZ̃k) and bring
AZ̃k closer to rank deficiency. Namely, using (3.7), we obtain the following lower bound

σmin(AZ̃k)≥ 3σmin(AM−1
R )/4−∥∆∥F , (3.19)

and we require uaκ
(
AM−1

R

)
κ
(
MR
)
≪ 1 to guarantee ∥∆∥F ≪ σmin(AM−1

R ) in the proof of Theorem 3.3.
However, because ∆ is the result of the rounding errors generated by the application of the
preconditioner and the matrix A, we expect it to behave like noise and not to exhibit such structure.
Recent studies such as [9] even suggest that rounding errors can exhibit regularization effects that
could increase the smallest singular values of the matrix AZ̃k.

3.4. Error bound for flexible-preconditioned GMRES

Finally, we consider the flexible-preconditioned GMRES using a fixed preconditioner M( j)
R = MR ̸= I for

all j ≤ k and ML ≡ I. In exact arithmetic, this algorithm is mathematically equivalent to the previously
studied right-preconditioned GMRES. However, the slight implementation difference leads to critical
differences for mixed precision implementations.
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We assume that the computation of the successive matrix–vector products AM−1
R v̂ j is identical to

right-preconditioned GMRES, and we use the same rounding error model (3.14) for the application of
M−1

R . As for the computation of the solution approximation at line 4, flexible-preconditioned GMRES
is slightly, but yet critically different compared with the right-preconditioned GMRES. In the case of
flexible-preconditioning, the basis Ẑk = [ẑ1, . . . , ẑk] with ẑ j = fl(M−1

R v̂ j) is stored explicitly, and so the
solution approximation is obtained directly from a standard matrix–vector product with Ẑk in precision
ug. Specifically, we do not reapply the preconditioner M−1

R as for the right-preconditioned counterpart.
Under these changes, Theorem 3.3 for the right-preconditioned case can be adapted as follows to

the flexible-preconditioned GMRES algorithm.

Theorem 3.4 Consider the flexible-preconditioned GMRES described by Algorithm 1 for the solution
of a nonsingular linear system Ax = b. In addition, assume that

max
(

ugκ(AM−1
R ),ugκ

(
MR
)
,umηRκ

(
MR
)
,uaκ

(
A
)
ρ

R
A,uaκ

(
AM−1

R
)
κ
(
MR
))

≪ 1. (3.20)

Then, there exists an iteration k ≤ n at which the computed solution x̂k has a forward error satisfying

∥x̂k − x∥2

∥x∥2
≲ c(n,k)

(
ugκ
(
AM−1

R
)
κ
(
MR
)
+uaκ

(
A
)
ρ

R
A

)
. (3.21)

Proof Proof in Appendix D. □

Remark 4. Comparing the previous bound (3.21) with (3.17), we can observe that without the
requirement to reapply the preconditioner M−1

R for computing line 4 of Algorithm 2, flexible-
preconditioning can spare the term umηRκ(MR) and remove the dependence on the precision um.

Remark 5. Similarly to the previous Remark 3, we expect the requirements umηRκ
(
MR
)
≪ 1 and

uaκ
(
AM−1

R

)
κ
(
MR
)
≪ 1 in condition (3.20) to be likely pessimistic.

3.5. Summary and discussion

For easing the discussion of our theoretical findings, we will work on simplified versions of the forward
error bounds (3.13), (3.17), and (3.21). To simplify them, we use the following assumptions.

• The terms ηL and ηR defined by (3.9) and (3.14) are small of order some constants. This is the case,
for instance, when M−1

L and M−1
R are computed and formed explicitly, such that the linear actions of

the preconditioners to vectors are performed with standard matrix–vector products.
• The term ρL

b in the bound (3.13), which is associated with the error generated while computing the
preconditioned right-hand side, is small of order some constant. While it is possible to encounter
examples where ∥M−1

L b∥2 ≪∥M−1
L ∥F∥b∥2 and so where ρL

b ≫ 1, the error umρL
b can be mitigated in

these cases, sometimes without much resource overheads, by applying the preconditioner in higher
precision only once to form the preconditioned right-hand side.

• The term ρR
A in the bound (3.17) is small of order some constant. Throughout the numerical

experiments reported in section 4, we have observed ∥|Ẑk||ŷk|∥2 to be of the same order of magnitude
as ∥Ẑkŷk∥2 leading to ρR

A = c(n,k). Note, however, that in many instances we obtained ∥Ẑk∥F∥ŷk∥2 ≫
∥|Ẑk||ŷk|∥2 which is an observation that was also made by the authors of [7]. While we will not
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provide further investigation on this term in this article, we recognize that a better understanding
of ρR

A might be of interest; in particular, we managed to generate extreme non-practical cases, not
reported in this article, where ρR

A was of order κ(MR).
• The polynomials c(n,k) are not descriptive and can be safely ignored.
• The conditions (3.12), (3.16), and (3.20) imposing restrictions on κ(A), κ(M), and κ(Ã) for the

bounds (3.13), (3.17), and (3.21) to be applicable, respectively, can be safely ignored. This is because
they are either inconsequential (see remark 2) or pessimistic (see remarks 3 and 5).

Under these assumptions, the bounds on the attainable forward error for left-, right-, and flexible-
preconditioned GMRES become

(left) ugκ
(
M−1

L A
)
+um max

(
ρ

L
M,κ

(
M−1

L A
))

+uaκ
(
A
)
, (3.22)

(right) ugκ
(
AM−1

R
)
κ
(
MR
)
+umκ

(
MR
)
+uaκ

(
A
)
, (3.23)

(flexible) ugκ
(
AM−1

R
)
κ
(
MR
)
+uaκ

(
A
)
. (3.24)

If the bounds (3.22) to (3.24) are descriptive, they quantify the effect of the precisions ug, um, and
ua on the attainable forward errors. It is critical to observe that, because the multiplicative terms in
front of each of these precisions can be orders of magnitude apart, the precisions ug, um, and ua can
each affect the forward errors very differently. For instance, taking the bound (3.22), the multiplicative
term κ(M−1

L A) associated with ug can be far lower than the term κ(A) that multiplies ua. In such a
configuration, the precision ug can be lowered to balance the two terms ugκ(M−1

L A) and uaκ(A) without
altering the attainable forward error. This creates opportunities for mixed precision strategies.

Another major observation is that, given one of the precisions ug, um, or ua, the multiplicative
term associated with this precision can depend on the preconditioning strategy. Taking for instance
the precision ug, we have κ(M−1

L A) for the left-preconditioned GMRES bound (3.22), but we have
κ(AM−1

R )κ(MR) for the right- and flexible-preconditioning counterparts (3.23) and (3.24). In cases
where κ(MR) is high such that κ(AM−1

R )κ(MR) ≫ κ(M−1
L A), this indicates that left-preconditioned

GMRES might achieve superior accuracy with respect to variations of the precision ug, particularly
when it is set lower than the other precisions.

Finally, we note that if no preconditioner is employed (that is, M = I), then κ(Ã) = κ(A) and
κ2(M) = 1, and the bounds (3.22) to (3.24) become (ua + ug)κ(A). In this case, we emphasize that
there is no room for mixed precision, and setting ug ̸= ua is not meaningful, at least according to our
theory.

4. Mixed precision strategies

In this section, we use our simplified forward error bounds (3.22), (3.23), and (3.24) alongside
experiments on synthetic random dense problems to establish the different meaningful mixed
precision strategies for setting the three precision parameters ug, um, and ua in Algorithm 1. Each
presented strategy achieves different tradeoffs between leveraging resource-efficient low precision,
accuracy, robustness, and number of iterations. In the process, we unify the existing combinations
of the precisions ug, um, and ua already given in the literature for left-, right-, and flexible-
preconditioning under the same comprehensive analysis, and extend the range of possibilities to
various new combinations. As importantly, we perform a thorough comparison of left-, right-, and
flexible-preconditioning for each mixed precision strategy and highlight critical numerical differences.



MIXED PRECISION STRATEGIES FOR PRECONDITIONED GMRES 13

4.1. Numerical experiments on random dense matrices

In order to validate our bounds on the attainable forward errors and to help identifying the different
meaningful mixed precision strategies, we first introduce our numerical experiments on synthetic
random dense problems.

4.1.1. Random dense generator
We use the following random generator to create A and an associated preconditioner M. Given a
logarithmic distribution of the singular values {1 = σ1 > σ2 > · · ·> σn > 0}, we build A with a target
condition number κ2(A) such that

A =U diag(σ1,σ2, . . . ,σn)V,

where U ∈Rn×n and V ∈Rn×n are randomly generated orthogonal matrices. Doing so, we have κ2(A) =
1/σn. Then we build its preconditioner M with a target condition number κ2(M)≤ κ2(A) by truncating
the previous distribution of singular values at the first j such that 1/σ j > κ2(M); the remaining singular
values are replaced with σ j−1:

M =U diag(σ1, . . . ,σ j−1, . . . ,σ j−1)V.

In exact arithmetic, this setup guarantees that

κ2
(
Ã
)
=

σ j−1

σn
=

κ2
(
A
)

κ2
(
M
) . (4.1)

Hence, with this generator, a preconditioner M reducing κ2(Ã) close to 1 satisfies κ2(M) ≈ κ2(A)
and, conversely, a preconditioner satisfying κ2(M) ≪ κ2(A) provides κ2(Ã) ≫ 1. This behavior is
close to practice since, for practical preconditioners as well, if A is ill-conditioned and Ã is very well-
conditioned, then M must be ill-conditioned.

The primary interest of the previously described random generator is that it allows us to control the
quantities κ(A), κ(M), and κ(Ã). It is especially useful because the forward error bounds (3.22), (3.23),
and (3.24) are functions of these condition numbers. Thus, except for the ρL

M term, all the quantities
involved in the forward error bounds are in our control, and we can derive a thorough experimental
evaluation of the sharpness and descriptiveness of these bounds. It also allows us to understand the
roles and effects of the conditioning of each quantity on the numerical behaviors of our mixed precision
preconditioned GMRES implementations.

4.1.2. Experimental settings
We have written Julia implementations of left-, right-, and flexible-preconditioned GMRES in mixed
precision as described by Algorithm 1, and we use these implementations for our experiments. We have
made the source code available publicly2.

We generate the exact solution x of the linear system (1.1) randomly with uniformly distributed
entries between [0,1]. The right-hand side is then obtained by computing Ax in quadruple precision
to avoid introducing conflicting rounding errors. We compute the initial guess to the solution as x̂0 =
M−1b. Both A and M are generated in double precision with the generator described in section 4.1.1. The

2 https://github.com/bvieuble/XGMRES.jl

https://github.com/bvieuble/XGMRES.jl
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linear action of M−1 to a vector is performed by decomposing M into LU triangular factors subsequently
used in substitution algorithms. We compute the LU triangular factors in quadruple precision to avoid
introducing conflicting rounding errors and preserving the property (4.1), and then we cast them in
precision um.

To refer to a specific arithmetic, we will use the symbols B, S, D, and Q listed in Table 1. To refer
to left-, right-, or flexible-preconditioning, we use the symbols L, R, and F, respectively. In addition,
throughout the rest of the article, each variant of preconditioned GMRES will be presented in the form of
a quadruplet ({L-,R-,F-},ua,ug,um), so R-DSS means right-preconditioned GMRES with ua = D, ug = S,
and um = S. When we only use a triplet (ua,ug,um), such as writing DSS, it refers to the combination of
precision independently of the preconditioning technique.

The attainable forward error of preconditioned GMRES in mixed precision varies according to
the condition numbers of A, M, and Ã, the preconditioning technique (left-, right-, and flexible-
preconditioning), and the set of precisions used. In order to provide a fair experimental comparison
of our different implementations of preconditioned GMRES, we employ an iterative refinement process
to improve all the forward errors to the same prescribed accuracy ∥x̂− x∥2/∥x∥2 ≤ 10−10. Hence, the
methods are always compared over delivering solutions of equivalent quality. We implement iterative
refinement as a restarted GMRES algorithm where the linear system residual ri =Ax̂i−b at the ith restart
is computed in quadruple precision and the update of the solution x̂i+1 = x̂i + d̂i where d̂i = fl(Ẑkŷk) is
computed in double precision. Specifically, we refer to d̂i as the ith correction, and it can be viewed as
the computed solution of the correction system Adi = r̂i by preconditioned GMRES in mixed precision
with x0 = 0 in Algorithm 1. The study of iterative refinement combined with GMRES is not the topic
of this article. We refer readers interested in this topic to [14], [15], [4], or [11]. In particular, the link
between iterative refinement and restarting is explained in [11, sect. 4]. We restart GMRES based on a
tolerance τ on the preconditioned backward error

∥M−1
L Ad̂i −M−1

L ri∥2

∥M−1
L ri∥2

≤ τ.

We monitor the cumulated number of inner GMRES iterations over all the restart iterations; we often
refer to it simply as “the number of GMRES iterations”. Because restarting more or less frequently can
lead to substantially different numbers of GMRES iterations, we run mixed precision preconditioned
GMRES on each problem for ten values of τ (10−12, 10−10, 10−8, 10−6, 10−5, 10−4, 10−3, 10−2, 10−1,
and 5×10−1), and we keep the best number to reach the prescribed accuracy ∥x̂i − x∥2/∥x∥2 ≤ 10−10.

4.1.3. Experimental results
Figures 1 to 6 are heatmaps of the average number of GMRES iterations over κ2(A) = 10c on the x-
axis and κ2(M) = 10c on the y-axis for c = 0: 16. Each figure illustrates one mixed precision strategy
that we will present in the next section 4.2. For a given pair (κ2(A),κ2(M)), the average number of
iterations is computed by generating 10 random 50×50 matrices A and M of corresponding condition
numbers. In particular, A and M satisfy the property (4.1) and, so, for each pair (κ2(A),κ2(M)) we
have κ2(Ã) = κ2(A)/κ2(M). Each pair is represented by a tile with a specific color tone; the lighter
the color, the higher the number of iterations. If the tile is fully blank, it means that the method is
unable to provide a solution with the prescribed accuracy ∥x̂i − x∥2/∥x∥2 ≤ 10−10. Because we are
using a restarted/iterative refinement process, a blank tile indicates that mixed precision preconditioned
GMRES is unable to compute corrections d̂i with at least a few correct digits, or equivalently, with a
forward error reasonably lower than 1. Thus, because of the restart process, these figures do not report a
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direct measurement of the attainable forward errors by Algorithm 1. Instead, through colored and blank
tiles, they describe when Algorithm 1 computes solutions with forward errors lower or higher than 1.

We note that we have observed a few instances where a prescribed accuracy of order ∥x̂i −
x∥2/∥x∥2 ≤ 10−10 was achievable but one of order 10−16 (i.e., double precision accuracy) was not.
When this happens, we also observed that the forward errors of the computed corrections d̂i are not
always lower than 1, even though the corresponding tile is colored since the prescribed accuracy is
reached. As 10−10 is satisfactory in most practical cases, we recorded our result based on this accuracy.
Nevertheless, we will mention these cases in the coming section 4.2.

Note that the upper-left triangular parts of the plots are always blank because we do not allow
κ2(M) > κ2(A). Overall, from this set of colored tiles, we define what we call the experimental
robustness of a given variant of mixed precision preconditioned GMRES; that is, the set of
triplets (κ2(A),κ2(M),κ2(Ã)) for which the (restarted) variant provides computed solutions for our
synthetic problems meeting the prescribed accuracy. Finally, a white dot in the tile means that
the theoretical forward error bound of a given variant, obtained from (3.22), (3.23), or (3.24), is
below 1. Hence, on these white dotted tiles, the variant is guaranteed theoretically to provide a
solution meeting the prescribed accuracy ∥x̂i − x∥2/∥x∥2 ≤ 10−10 after, if necessary, a few restarts.
Particularly, for the left-preconditioned GMRES bound (3.22), we used the pessimistic assertion
umρL

M ≲ c(n,k)umκ(M−1
L A)κ(ML) to compute the dots. The set of white-dotted tiles defines what we

call the theoretical robustness of the variant.
We monitor in total fourteen combinations of precisions spread over Figures 1 to 6: DDD, SSS,

BBB, DSD, DBD, SBS, DDS, DDB, SSB, DSS, DBB, SBB, DSB, DBS, each run for left-, right-, and
flexible-preconditioned GMRES. These combinations have been picked to be good representatives of
existing and new mixed precision strategies, illustrate critical differences between left-, right-, and
flexible-preconditioning, and validate our theoretical forward error bounds.

To illustrate how these heatmaps can be read, let us take variant L-SSS on the second row of Figure 1.
For simplicity of exposition, we write κ(·) without subscript, but emphasize that the figures measure
κ2(·). On this plot, we observe that the variant is only able to provide correct solutions for κ(A)≤ 108

because the tiles corresponding to κ(A) > 108 are blank. In addition, we observe that the color tone
is darker near the diagonal (i.e., κ(A) ≈ κ(M)) and gets lighter below, meaning that we do fewer
iterations when κ(A) ≈ κ(M); for example, see the tile (κ(A) = 106,κ(M) = 106) compared with the
tile (κ(A) = 106,κ(M) = 100).

4.2. Identifying the mixed precision strategies

Throughout sections 4.2.1 to 4.2.6, we present six different strategies for choosing the precisions ug,
um, and ua. These strategies are motivated theoretically through studying the bounds on the attainable
forward errors (3.22), (3.23), and (3.24), and are then validated experimentally through the analysis of
Figures 1 to 6. For conciseness, our selection of six strategies does not cover the totality of the possible
combinations of ua , ug , and um, but only those satisfying ua ≤ min(ug,um). Nevertheless, we provide
remarks and theoretical insights for combinations satisfying ua ≫ min(ug,um) in section 4.3.

We summarize in Table 2 the mixed precision strategies that we will present in sections 4.2.1
to 4.2.6. For each of these strategies, we provide the dominant term in the bounds (3.22), (3.23),
and (3.24) which we derive by assuming that max(κ(Ã),κ(M)) ≤ κ(A). If reducing any of the three
precisions worsens the bound, the strategy is considered (theoretically) meaningful and we represent
it as a white cell in Table 2. Conversely, a gray cell corresponds to a strategy where the study of the
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TABLE 2 List of the mixed precision strategies presented in section 4.2 with their
associated dominant term in the bounds (3.22), (3.23), and (3.24) for left-, right-, and
flexible-preconditioned GMRES. We provide citations to the relevant studies when the
strategy has already been proven meaningful by the literature, otherwise we write “new”.
White cells correspond to strategies where the study of the forward error bounds alone can
conclude that the strategy is meaningful.

Left Right Flexible

ua = ug = um
Section 4.2.1

Figure 1

umρL
M +uaκ

(
A
)

[32]
ugκ
(
AM−1

R

)
κ
(
MR
)

[32]
ugκ
(
AM−1

R

)
κ
(
MR
)

[31]

ua = um ≪ ug
Section 4.2.2

Figure 2

ugκ
(
M−1

L A
)
+umρL

M
+uaκ

(
A
)

[14] [15] [4] [3] [17]
[29] [16]§£

ugκ
(
AM−1

R

)
κ
(
MR
)

new$

ugκ
(
AM−1

R

)
κ
(
MR
)

new$

ua = ug ≪ um
Section 4.2.3

Figure 3

um max
(
ρL

M,κ
(
M−1

L A
))

+uaκ
(
A
)

newC

ugκ
(
AM−1

R

)
κ
(
MR
)

+umκ
(
MR
)

new

ugκ
(
AM−1

R

)
κ
(
MR
)

[7] [25] [13] [11] [12]

ua ≪ ug = um
Section 4.2.4

Figure 4

um max
(
ρL

M,κ
(
M−1

L A
))

+uaκ
(
A
)

new£

ugκ
(
AM−1

R

)
κ
(
MR
)

new$

ugκ
(
AM−1

R

)
κ
(
MR
)

new$

ua ≪ ug ≪ um
Section 4.2.5

Figure 5

um max
(
ρL

M,κ
(
M−1

L A
))

+uaκ
(
A
)

newC

ugκ
(
AM−1

R

)
κ
(
MR
)

+umκ
(
MR
)

new$

ugκ
(
AM−1

R

)
κ
(
MR
)

new$

ua ≪ um ≪ ug
Section 4.2.6

Figure 6

ugκ
(
M−1

L A
)

+um max
(
ρL

M,κ
(
M−1

L A
))

+uaκ
(
A
)

new

ugκ
(
AM−1

R

)
κ
(
MR
)

new$

ugκ
(
AM−1

R

)
κ
(
MR
)

new$

§ Previous analyses dedicated only to specific preconditioners less general than this work.
£ Unpublished analysis in [35, chap. 7] also featured in [13].
$ The bounds on the attainable forward errors alone cannot conclude that the strategy is meaningful, but
experiments on synthetic and real-life problems show that it can be.
C The bounds on the attainable forward errors and the synthetic experiments conclude that the strategy is not
meaningful, but experiments on real-life problems show that it can be for some cases.

theoretical forward error bounds alone cannot conclude the meaningfulness. However, we highlight
experimentally that many of these strategies can still be meaningful.

4.2.1. ua = ug = um
First, consider the basic case where all operations are performed in the same precision ug. This use case
is represented by the variants BBB, SSS, and DDD in Figure 1, respectively. For all three variants, the
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left-, right-, and flexible-preconditioned GMRES behave almost identically with respect to the number
of iterations and the experimental and theoretical robustness. Specifically, we observe that the variants
can provide a solution with prescribed accuracy when the condition number of A is approximately no
more than u−1

g . This observation is consistent with our bounds (3.22) to (3.24) whose dominant terms
are listed in the first row of Table 2 and which, under our synthetic problem property (4.1), all become
uaκ(A). We can also see by comparing BBB to SSS and SSS to DDD that when we increase the precision,
we increase the robustness of the solver with respect to κ(A).

Hence, left-, right-, and flexible-preconditioning are all equivalent on our synthetic problems: no
one preconditioning variant is better than the others in terms of robustness and number of iterations.
Note, however, that the analysis of the bounds (3.22) to (3.24) might indicate a robustness superiority
of the left-preconditioned GMRES for cases where κ(A)≪ κ(Ã)κ(M). Those cases are not exhibited
in Figures 1 to 6 due to the property (4.1), but seem to be corroborated in the coming section 5 on the
experiments with the sparse approximate inverse preconditioner.

4.2.2. ua = um ≪ ug
Now consider the mixed precision strategy where both the matrix A and the preconditioner M are applied
with higher precision than the rest of the operations of GMRES. To our knowledge, this strategy was
first proposed in [14] to improve the robustness of left-preconditioned GMRES coupled with iterative
refinement. This strategy has been further studied and extended in [15] and [4]; the latter provided a
first rounding error analysis of left-preconditioned GMRES for the case ua = um ≤ ug, but dedicated to
LU factors preconditioner. This mixed precision strategy has been employed in various other studies,
often coupling GMRES with an iterative refinement process; see for instance [3], [13], [17], [29],
or [16]. Except for the unpublished work [35, chap. 7] whose results are recalled in [13], the existing
literature only provides analyses of this strategy for left-preconditioned GMRES with very specific
preconditioners; for example, LU or QR-based factorization and sparse approximate inverse. The
existing literature has not investigated this strategy for right- and flexible-preconditioning.

This mixed precision strategy is represented by the variants SBS, DBD, and DSD in Figure 2.
Focusing on L-DSD first, increasing sufficiently the precision um and ua will make the term ugκ(M−1

L A)
dominant in the bound (3.22); see second row of Table 2, and where “sufficiently” means that we satisfy
max(uaκ(A),umρL

M) ≪ ugκ(M−1
L A). Because κ(A) is no longer limiting, we can observe in Figure 2

that convergence is achieved for tiles with κ(A) > 108, unlike L-SSS in Figure 1. The set of colored
tiles forms a subdiagonal band that corresponds to the set of tiles for which κ(M−1

L A) ≤ 108. This is
consistent with our bound (3.22), which prescribes that the term ug ≈ 6× 10−8 can absorb at most
κ(M−1

L A) = 107 ∼ 108 for the forward error to remain less than 1. The same comments can be made for
L-SBS and L-DBD, for which ug can absorb at most κ(M−1

L A) = 102 ∼ 103, so that the set of colored
tiles forms a thinner subdiagonal band. Note also that the experimental and theoretical robustness are
very close; that is, most of the tiles on which we experimentally attain the prescribed accuracy are
guaranteed theoretically to attain this accuracy. For these variants, our bounds are thus descriptive.

Take now R-DSD and F-DSD. Both variants behave very similarly in terms of robustness and number
of iterations. This is consistent with the bounds (3.23) and (3.24) that are both dominated by the same
term ugκ(AM−1

R )κ(MR) when ua = um ≪ ug; see second row of Table 2. In our experiments, these two
variants also behave very similarly to L-DSD. They provide correct solutions on almost the same tiles
as L-DSD and with roughly the same number of iterations; there are some exceptions near κ(A)≈ 1016

where L-DSD converges and R-DSD and F-DSD do not or need more iterations. However, comparing R-
DBD and F-DBD with L-DBD, one can observe a clear robustness superiority of left-preconditioning over
right- and flexible-preconditioning. Indeed, R-DSD stops converging at roughly κ(A)> 1012 where, in
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the meantime, L-DBD can reach κ(A) = 1016. We also observe that F-DBD is less experimentally robust
than R-DBD, but it is unclear how to interpret this phenomenon and its significance. Particularly, we
were unable to reproduce this observation in the experiments on real-life problems featured in the
coming section 5.

Our experimental observations on right- and flexible-preconditioning are more optimistic than what
the theory prescribed. Indeed, under property (4.1), we have κ2(AM−1

R )κ2(MR)≈ κ2(A) such that, with
ug = S, the bounds (3.23) and (3.24) can only guarantee the convergence for the tiles κ(A)≤ 1.7×107.
Surprisingly, we observed on logs not reported in this document that many tiles on which R-DSD and
F-DSD successfully converge to the prescribed accuracy of order 10−10 for κ(A)> 108 cannot achieve
a prescribed accuracy of order 10−16. From the iterative refinement theory, it means that R-DSD and F-
DSD do not always compute corrections with forward errors reasonably lower than 1. This suggests that
our forward error bounds (3.23) and (3.24) are not necessarily pessimistic for these cases. Instead, we
believe that some numerical mechanisms, that we do not fully understand, allow the first few corrections
to be computed accurately until a certain point is reached where the corrections become inaccurate; that
is, without correct digits.

Overall, we showed that setting ua = um ≪ ug in left-preconditioned GMRES can be a valid
strategy to leverage tradeoffs between, for instance, L-SSS and L-DDD (equivalently between L-BBB
and L-SSS or L-BBB and L-DDD). Namely, L-DSD achieves better numerical properties than L-SSS but
worse than L-DDD. The strategy can be particularly effective if the computational bottleneck is on the
orthogonalization process and the storage of the Krylov basis. For this approach to be meaningful
numerically, the theory prescribes that we need to be in a configuration where min(κ(A),ρL

M) ≫
κ(M−1

L A). We also conclude that, while not covered by our theory, this strategy can be successful for
right- and flexible-preconditioned GMRES. Nevertheless, we recommend using the left-preconditioned
variant which exhibits better theoretical and experimental robustness.

4.2.3. ua = ug ≪ um
One can improve the solver’s performance by applying the preconditioner with lower precision than the
rest of the operations; that is, ua = ug ≪ um. This strategy has been first proposed in [7] for flexible-
preconditioned GMRES using LU factors preconditioner computed and applied in low precision. In
this configuration, the LU factorization done once before the GMRES iterations is generally the most
expensive part of the algorithm. Hence, computing the factorization in a low precision um ≫ ug and
keeping the resulting factors in low precision in memory can achieve substantial resource savings.
Note that a large part of the theoretical analysis of [7] is not specific to LU factors preconditioner,
but is generic and covers a wide variety of preconditioners. Flexible-preconditioned GMRES using
low precision LU factors as preconditioner has been implemented in the HSL MA79 sparse solver [25].
Another proof of the results of [7] is provided in [11]. This mixed precision strategy has also been further
extended in [13] and the subsequent associated study [12] to split-preconditioned flexible GMRES.
Except for early comments in the unpublished work [35, chap. 7] for the left-preconditioned case that
are further substantiated in [13], the existing literature did not investigate this strategy for left- and
right-preconditioned GMRES and focused solely on flexible-preconditioned GMRES.

We use the variants SSB, DDB, and DDS in Figure 3 to illustrate this mixed precision strategy.
We comment on the left-preconditioned case first. The theory supports the idea that switching from
ua = um = ug to ua = ug ≪ um by decreasing the precision um will increase the bound (3.22). The
dominant term then becomes um max(ρL

M,κ(M−1
L A)) if ua is small enough compared with um (third row

of Table 2), and is greater than the dominant term uaκ(A) for ua = um = ug (first row of Table 2). This
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translates effectively into a robustness decrease in our experiments. Indeed, comparing L-DDD and L-
DDS where um is reduced from D to S, we observe that L-DDS converges on significantly fewer tiles than
L-DDD in Figure 1. On the other hand, L-DDS presents a better experimental robustness than L-SSS and,
therefore, achieves a tradeoff between L-DDD and L-SSS; the same conclusion applies to L-DDB and
L-SSB. We will develop in more details on what makes this tradeoff possible in the next section 4.2.4,
where we also explain that a mixed precision strategy using strictly lower precision can achieve the
same robustness as L-SSB, L-DDB, or L-DDS and should therefore be preferred. We recall that, because
it is inconvenient to compute ρL

M , the white dots in Figure 3 and other figures have been obtained using
the pessimistic assertion umρL

M ≲ c(n,k)umκ(M−1
L A)κ(ML).

The conclusion is very different for the flexible-preconditioned GMRES case. Indeed, one can
observe that the associated forward error bound (3.24) is independent of the precision um in which the
preconditioner is applied. In other words, switching from ua = um = ug to ua = ug ≪ um by decreasing
the precision um leaves the dominant term ugκ(AM−1

R )κ(MR) unaffected in the bound (3.24); compare
the first and third row of Table 2. Hence, regardless of how low the precision um is, the attainable forward
error of flexible-preconditioned GMRES remains identical. This is a critically desirable property. For
instance, comparing F-DDD with F-DDS, we see that both variants exhibit the same experimental
robustness; that is, they compute correct solutions with prescribed accuracy on the same tiles. Reducing
the precision um further from S to B by taking the variant F-DDB, we still achieve the same experimental
robustness. Note also that as the white dots for F-DDS and F-DDB overlap perfectly with the colored
tiles, our theoretical bound (3.24) is very descriptive for this use case. However, it should be remarked
that while reducing the precision does not impact the experimental robustness, it significantly increases
the number of iterations. The same comments apply when comparing F-SSB to F-SSS.

Finally, we discuss the right-preconditioned variants R-SSB, R-DDB, and R-DDS. Compared with
the flexible-preconditioning bound (3.24), the right-preconditioned GMRES forward error bound (3.23)
exhibits a dependence on the precision um. The bound (3.23) has an additional term umκ(MR) which
becomes the dominant term if ua = ug ≪ um such that ugκ

(
AM−1

R

)
κ
(
MR
)
≪ umκ(MR); see the third row

of Table 2. Ultimately, contrary to flexible-preconditioned GMRES, setting the precision um low while
having an ill-conditioned preconditioner will worsen the forward error of right-preconditioned GMRES.
We recover in some sense the conclusion of [8] on the robustness superiority of flexible-preconditioning
over right-preconditioning. Our theory translates into the experiments. Comparing R-DDB to R-DDD, we
see that decreasing the precision um from D to B reduces the robustness theoretically and experimentally.
Moreover, the effect of the dominant term umκ(MR) on the experimental robustness of R-DDB can be
observed very distinctly: it limits the convergence to the horizontal band of tiles satisfying κ(MR)≤ 104.
We also observe that increasing the precision um in R-DDB from B to S increases the robustness. This
is justified by the theory since the term umκ(MR) will be reduced, and justified by our experiments
by comparing R-DDB and R-DDS. When compared with flexible-preconditioning, it is worth pointing
out that while R-DDB is less robust than F-DDB, F-DDB has to store two bases and, for an identical
number of iterations, requires double the amount of memory. Moreover, right-preconditioning offers a
more controlled loss of robustness when decreasing the precision um than left-preconditioning. Because
of the complex form of ρL

M , it is not convenient to compare the theoretical dominant terms umρL
M

(left-preconditioning) and umκ(MR) (right-preconditioning) directly. Nonetheless, the experiments are
strikingly clear: R-SSB, R-DDB, and R-DDS outperform their left-preconditioned counterparts. Lastly,
to comment specifically on R-SSB, we see that this variant exhibits both the limitations of having
ua = ug = S which requires κ(A) ≤ 1.7× 107, and having um = B which requires κ(M) ≤ 2.6× 102

similarily to R-DDB.
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Setting ua = ug ≪ um can lead to substantial resource savings if the application of the preconditioner
is the computational bottleneck of the algorithm. We recover the conclusion of the existing literature
stating that the attainable forward error of flexible-preconditioning is insensitive to the choice of
precision um, and is therefore particularly attractive for this strategy. On the other hand, we found
this strategy to be suitable for right-preconditioning. While it would not offer the same level of
robustness as flexible-preconditioned GMRES, it presents a more controlled loss of robustness than
left-preconditioning, and it may achieve a better memory footprint than flexible-preconditioning.

4.2.4. ua ≪ ug = um
The previous strategy ua = um ≪ ug described in section 4.2.2 makes it possible to compute the
orthogonalization and store the Krylov basis in lower precision. On the other hand, the strategy
ua = ug ≪ um developed in section 4.2.3 allows the preconditioner to be applied and stored in a lower
precision. Yet, there are instances where both the orthogonalization and the preconditioner can be costly.
In the following, we demonstrate that applying only A in high precision while having um = ug in lower
precision can preserve some of the numerical benefits of the previously presented mixed precision
strategies. This approach appeared in the unpublished work [35, chap. 7] and has been subsequently
employed in [13] and in the follow-up study [12].

This mixed precision strategy is represented by the variants SBB, DBB, and DSS in Figure 4.
Focusing first on left-preconditioning, the bound (3.22) tells us that the forward error will be driven by
the term um max(ρL

M,κ(M−1
L A))+uaκ(A); see the fourth row of Table 2. Compared with a combination

of precision ua = ug = um whose forward error is driven by the term uaκ(A) if ρL
M ≤ κ(A), increasing the

precision ua alone to obtain ua ≪ ug = um will improve the forward error if max(ρL
M,κ(M−1

L A))≪ κ(A).
Since under property (4.1) we have κ(M−1

L A) ≪ κ(A) for κ(M) ≫ 1, we need more specifically
ρL

M ≪ κ(A) to improve the forward error bound. From the definition of ρL
M in (3.10), we have

ρL
M

κ(A)
≤ κ(M−1

L A)
max j ∥Av̂ j∥2

∥A∥F
.

Remarkably, due to the form of the Krylov basis vectors v̂ j, the product Av̂ j can exhibit high cancellation
such that ∥Av̂ j∥2/∥A∥F ≪ 1 leading potentially to a very small ratio ρL

M/κ(A)≪ 1. We will not attempt
to justify this property theoretically in this article. Instead we report in Figure 7 the evolution of ∥Av̂ j∥2
and ∥|A||v̂ j|∥2 ≲ ∥A∥F throughout the GMRES iterations for κ(A) = 1016 fixed and increasing κ(ML).
We can observe that, as κ(ML) increases, the ratio max j ∥Av̂ j∥2/∥A∥F decreases, to the point where,
when κ(ML) = 1016, we almost reach ρL

M/κ(A) ≈ 10−16. Hence, when κ(ML) gets closer to κ(A)≫
κ(M−1

L A) and κ2(M−1
L A) gets closer to 1, it becomes meaningful to set ua ≪ um. We note that the high

cancellation in the product Av̂ j making this strategy possible is preconditioner dependent and is not
always observable for certain classes of preconditioners.

On the other hand, the theory also supports the idea that having ug ≪ um is not meaningful for
left-preconditioning. Indeed, whether ua = ug ≪ um or ua ≪ ug = um, in both cases the dominant term
in (3.22) is um max(ρL

M,κ(M−1
L A))+uaκ(A) so that keeping ug ≪ um does not provide any theoretical

improvement. Thus, the previous strategy ua = ug ≪ um presented in section 4.2.3 is not theoretically
meaningful with left-preconditioning, and the strategy ua ≪ ug = um currently considered should be
preferred. Note that we will slightly mitigate this claim in section 5 when presenting experiments on
real-life problems and where we expose cases where ua = ug ≪ um can still offer advantageous tradeoffs
with left-preconditioning.



MIXED PRECISION STRATEGIES FOR PRECONDITIONED GMRES 21

100 104 108 1012 1016

1
0
0

1
0
4

1
0
8

1
0
1
2

1
0
1
6

κ(A)

κ
(M

)

l-bbb

100 104 108 1012 1016

κ(A)

r-bbb

100 104 108 1012 1016

κ(A)

f-bbb

1
0
0

1
0
4

1
0
8

1
0
1
2

1
0
1
6

κ
(M

)

l-sss r-sss f-sss

1
0
0

1
0
4

1
0
8

1
0
1
2

1
0
1
6

κ
(M

)

l-ddd r-ddd f-ddd

1e0 1e1 5e1 1e2 5e2 1e3 5e3 1e4
#it

FIG. 1. Average number of iterations for mixed precision preconditioned (restarted) GMRES according to κ2(A) and κ2(M)
for ua = ug = um and for left-, right- and flexible-preconditioning. The iterations are stopped when the algorithm converges to
∥x− x̂∥2/∥x∥2 ≤ 1×10−10. A white dot in the tile means that our theory guarantees the convergence.

The theory appears consistent with the numerical behavior of the variant L-DSS in Figure 4. While
the variant L-DSS is less robust than L-DSD in Figure 2, correct solutions can still be achieved for tiles
where κ(A) > 108 compared with L-SSS in Figure 1, making L-DSS a tradeoff between L-DSD and
L-SSS. If we now compare L-DSS to L-DDS in Figure 3, we can see that L-DSS achieves equivalent
robustness while using strictly lower precision than L-DDS. This observation supports the idea that
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FIG. 2. Same as Figure 1 but for ua = um ≪ ug.

ua = ug ≪ um is not meaningful with left-preconditioning. Similar comments can be made for the
variant L-SBB. Regarding the variant DBB, since it achieves the same numerical robustness as SBB but
involves strictly higher precision, it is therefore numerically not meaningful.

This strategy can also be successful for right- and flexible-preconditioning. Taking the variants R-
DSS and F-DSS, we can observe that they are remarkably almost as robust as R-DSD and F-DSD, and
more robust than the left-preconditioned variant L-DSS. Note, however, that the number of iterations is
increased compared with R-DSD and F-DSD. For the same reasons as for the variants R-DSD and F-DSD
discussed in section 4.2.2, the convergence of these methods for tiles verifying κ(A) > 1.7× 107 is
not covered by our theory. In particular, identically to those previous variants, we observed that many
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FIG. 3. Same as Figure 1 but for ua = ug ≪ um.

tiles on which R-DSS and F-DSS successfully converge to the prescribed accuracy of order 10−10 for
κ(A) > 1.7× 107 cannot achieve a prescribed accuracy of order 10−16. For those tiles, the computed
corrections d̂i at each restart do not always achieve a forward error lower than 1.

Hence, using DSS over DSD or DDS can leverage lower precision in potentially critical parts of
the computation while still exposing better numerical properties than SSS. The same can be said for
SBB compared with SBS and SSB. The presented strategy ua ≪ ug = um can be effective if both the
orthogonalization process and the application of the preconditioner are costly; or if only the application
of A can be performed with high precision given a hardware and software setup. We would cautiously
recommend preferring right- and flexible-preconditioning in this case, which seem to perform better
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FIG. 4. Same as Figure 1 but for ua ≪ ug = um.

on our set of synthetic problems. However, without strong theoretical guarantees, it might be the
case that the left-preconditioned variant might outperform right- and flexible- on certain problems and
preconditioners.

4.2.5. ua ≪ ug ≪ um
The previous strategy proposed to apply only the matrix A in a higher precision and have ug = um in a
lower precision. We now show that there are instances where it is possible to apply the preconditioner in
an even lower precision, leading to ua ≪ ug ≪ um. This proposed setup can be interesting if the storage
and application of the preconditioner is the main computational bottleneck, but the orthogonalization
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FIG. 5. Same as Figure 1 but for ua ≪ ug ≪ um.
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FIG. 6. Same as Figure 1 but for ua ≪ um ≪ ug.

and storage of the Krylov basis is still costly and should not be operated in high precision. Such
combinations of precisions have not yet been investigated in the literature.

We represent this strategy in Figure 5 with the variant DSB. As explained in section 4.2.4, setting
um ≫ ug with left-preconditioning is not meaningful and, so, the variant L-DSB has no significant
numerical benefits over L-DBB in Figure 4. On the other hand, F-DSB converges on more tiles than
F-DBB in Figure 4 and F-SSB in Figure 3 and, therefore, presents a meaningful tradeoff. More
specifically, F-DSB displays both: the resilience of setting um ≫ ug for flexible-preconditioning assessed
in section 4.2.3, and the increased experimental robustness of setting ua ≪ ug observed in sections 4.2.2
and 4.2.4. When comparing F-DSB with F-DSS, we also remark that reducing um from S to B
harms noticeably the experimental robustness, so that the effect of using high precision for ua is
counterbalanced by the use of low precison for um. Regarding right-preconditioning, R-DSB inherits
the decreased robustness over low precision um of variant R-SSB in Figure 3 when compared with F-
SSB. For this reason, it is expected theoretically and observed experimentally that R-DSB is less robust
than F-DSB. Comparing now R-DSB with R-SSB, we can observe that increasing the precision ua from
S to D presents a small but noticeable improvement on the experimental robustness: R-DSB achieves
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FIG. 7. Evolution of ∥Av̂ j∥2 and ∥|A||v̂ j|∥2 over the iterations of left-preconditioned GMRES in full double precision (i.e.,
ug = um = ua = D). The matrix A and the preconditioners ML are built with the random generator described in section 4.1.1. We
fix κ2(A) = 1016 and make κ2(ML) vary.

convergence on a few more tiles than R-SSB. As for the other right-preconditioned variants presented
in sections 4.2.2 and 4.2.4 and using ua ≪ ug, this is a behavior that we cannot explain by our forward
error bound alone.

Overall, this strategy can be advantageous with flexible-preconditioning in cases where the main
resource bottleneck is on the preconditioner but the orthogonalization and the storage of the Krylov
basis are still costly. The right-preconditioned variant has a more limited range of usefulness, but can
potentially be of interest on specific problems and configurations. Our rounding error analysis and
synthetic problem experiments tend to indicate that left-preconditioning is not meaningful and should
not be considered for this strategy.

4.2.6. ua ≪ um ≪ ug
Lastly, as for the previous strategy ua ≪ ug ≪ um presented in section 4.2.5, we consider a strategy
where all precisions ua, ug, and um are set differently. However, contrary to this previous strategy, we
now show that having ug as the lowest precision such that ua ≪ um ≪ ug can be numerically meaningful.
Such a strategy can be practical if the computational bottleneck is on the orthogonalization process and
the storage of the Krylov basis, but the application of the preconditioner is still costly and should not
be performed in high precision. As for the previous strategy, such combinations of precisions have not
been considered in the literature.

We display in Figure 6 the variant DBS which is an implementation of this strategy. Commenting on
left-preconditioning first, we can see that L-DBS presents a robustness tradeoff between L-SBS and L-
DBD in Figure 2. That is, it is less robust than L-DBD but uses strictly lower precision. On the other hand,
it is slightly more robust than L-SBS since it converges on a few additional tiles satisfying κ(A)> 108,
but uses higher precision. This behavior is explained by the bound (3.22), indicating that for this setup
of precisions the forward error is driven by ugκ(M−1

L A)+ um max(ρL
M,κ(M−1

L A)) when ua is chosen
such that uaκ(A) is sufficiently small; see the sixth row of Table 2. The first term ugκ(M−1

L A) imposes
κ(M−1

L A) ≤ 2.6× 102, which restricts the convergence to the subdiagonal band as for L-SBS (and L-
DBD). However, contrary to L-SBS for which the term uaκ(A) prevents convergence for tiles verifying
κ(A)> 108, L-DBS is limited by the term umρL

M instead. As explained in section 4.2.4, because ρL
M can

be significantly lower than κ(A), L-DBS can converge on tiles satisfying κ(A) > 108 up to a certain
limit. By increasing the precision um to D, L-DBD removes the limitation imposed by the term umρL

M
in L-DBS, and achieves a better robustness. Lastly, because L-DBS converges on strictly more tiles than
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TABLE 3 List of the mixed precision strategies satisfying ua ≫ min(ug,um) with their
associated dominant term in the bounds (3.22), (3.23), and (3.24) for left-, right-, and
flexible-preconditioned GMRES. White cells correspond to strategies where the study of the
forward error bounds alone can conclude that the strategy is meaningful.

Left Right Flexible

ug ≪ ua = um
ug ≪ ua ≪ um

Section 4.3.1

um max
(
ρL

M,κ
(
M−1

L A
))

+uaκ
(
A
) ugκ

(
AM−1

R

)
κ
(
MR
)

+umκ
(
MR
)

+uaκ
(
A
) ugκ

(
AM−1

R

)
κ
(
MR
)

+uaκ
(
A
)

um ≪ ua = ug
um ≪ ua ≪ ug

Section 4.3.2

ugκ
(
M−1

L A
)
+umρL

M
+uaκ

(
A
) ugκ

(
AM−1

R

)
κ
(
MR
)

ugκ
(
AM−1

R

)
κ
(
MR
)

ua ≫ max(ug,um)
Section 4.3.3

umρL
M +uaκ

(
A
)

ugκ
(
AM−1

R

)
κ
(
MR
)

+uaκ
(
A
) ugκ

(
AM−1

R

)
κ
(
MR
)

+uaκ
(
A
)

L-DBB in Figure 4, L-DBS is more robust than all the variants using strictly lower precision and is
therefore meaningful.

Similarly to the variants R-DBB and L-DBB in section 4.2.4, and most likely for the same reasons, R-
DBS presents a slightly improved experimental robustness than L-DBS. As for R-DBB, the convergence
of R-DBS is not explained by our theory alone for tiles satisfying κ(A)> 2.6×102. Taking now flexible-
preconditioning, we observe that F-DBS is less experimentally robust than R-DBS. We made a similar
comment when comparing F-DBD and R-DBD in section 4.2.2. Identically to this previous case, we are
not sure how to interpret the significance of this observation.

To conclude, the new variant DBS offers a robustness tradeoff between SBS and DBD. Because of
the narrow range of improvement over SBS, we imagine that the practical configurations in which this
variant is useful is limited. However, given the right problem, our theory and numerical experiments
suggest that it can be successful for left- and right-preconditioning.

4.3. Comments about the case ua ≫ min(ug,um)

The six previous strategies presented in sections 4.2.1 to 4.2.6 covers all the combinations satisfying
ua ≤ min(ug,um). For the sake of completness, we now comment on the combinations for which we
have ua ≫ min(ug,um), but do not validate them with numerical experiments. We emphasize that a
deeper experimental investigation is necessary to assess the meaningfulness of each of these strategies,
but this is something that, as we will explain, we cannot add concisely to this article. We summarize
these mixed precision strategies in Table 3 which we construct by assuming that max(κ(Ã),κ(M)) ≤
κ(A).

4.3.1. ug ≪ ua = um and ug ≪ ua ≪ um
From the study of the bounds (3.23) and (3.24), the theory supports the idea that there are setups
in which having ua ≫ ug can be meaningful for right- and flexible-preconditioning. For instance,
practical preconditioners may not satisfy the synthetic problem property (4.1), which can lead to
κ(A)≪ κ(AM−1

R )κ(MR). In this case, our theoretical bounds indicate that we can set ua ≫ ug without
altering the attainable forward error of right- and flexible-preconditioned GMRES.
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Because we enforce property (4.1) in our synthetic experiments, we cannot investigate their
meaningfulness experimentally.

4.3.2. um ≪ ua = ug and um ≪ ua ≪ ug
Equivalently to section 4.3.1, by studying the bound (3.22) for left-preconditioned GMRES we conclude
that if the upper bound umρL

M ≲ c(n,k)umκ(M−1
L A)κ(ML) is attained and κ(A)≪ κ(M−1

L A)κ(ML), we
may set ua ≫ um.

For the same reason as for section 4.3.1, we do not investigate these strategies experimentally.

4.3.3. ua ≫ max(ug,um)
Setting ua ≫ ug for left-preconditioning or ua ≫ um for right-preconditioning is, however, less likely
to be numerically meaningful because it would require κ(Ã)≫ κ(A) and κ(M)≫ κ(A), respectively.
Indeed, we often expect preconditioning to reduce the condition number of A so that κ(Ã)≪ κ(A). In
addition, because M−1 is constructed as an approximation of A−1, we often have κ(M)≤ κ(A).

Yet, accounting for the varieties of problems and preconditioning approaches to solve them,
cases where κ(Ã) ≫ κ(A) or κ(M) ≫ κ(A), for which setting ua ≫ ug (left-preconditioning) or
ua ≫ um (right-preconditioning) would be meaningful, cannot be excluded in principle. However, since
we enforce max(κ(Ã),κ(M)) ≤ κ(A) in our synthetic experiments, we also do not provide further
investigations on these strategies.

4.4. Other discussions

When considering which mixed precision strategy to choose, it is very important to consider that every
strategy is limited to specific range of condition numbers κ(A), κ(M), and κ(Ã). It means that a given
strategy is not adequate or optimal for every problem.

We also emphasize that the presented strategies are mainly based on a rounding error analysis
perspective but do not further consider hardware-specific constraints and properties. Hence, within
the selection of possible mixed precision strategies, a user should additionally consider hardware
and software features to further identify the best implementations of Algorithm 1 for their specific
computing environment. It should also be clear that the practical relevance of a given strategy depends
on the problem and preconditioner properties. Indeed, the best mixed precision implementation for a
problem with its workload bottleneck on the orthogonalization and the storage of the Krylov basis is
not the same as the best implementation for a problem where the bottleneck is on the computation and
application of a costly preconditioner.

Lastly, while the simplifications operated to derive the bounds (3.22) to (3.24) allow for a clearer
and intuitive interpretation of the interactions between the precisions, the conditioning of A, M, and Ã,
and the final attainable forward error, they may not fully describe certain practical preconditioners. Of
course, one can always fall back to the more general bounds (3.13), (3.17), and (3.21) in such a situation
to get more accurate theoretical insights. In the next section, we address real-life problems and practical
preconditioners to evaluate and compare the benefits of these strategies on practical setups.

5. Numerical experiments on real-life SuiteSparse matrices

We now use the fourteen mixed precision variants presented in section 4, and that illustrate the six
mixed precision strategies of Table 2, to solve real-life problems coming from the SuiteSparse matrix
collection [18] with various preconditioners. Our intention is to illustrate the numerical behaviors of
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TABLE 4 Set of matrices from the SuiteSparse collection used in our experiments with their
associated preconditioners. The matrices are all square with real entries. n is the dimension
of the matrix; Sym. is the symmetry of the matrix (1: symmetric, 0: general); Precond. is the
preconditioner used; κ2(A), κ2(M), κ2(M−1

L A), and κ2(AM−1
R ) are the condition numbers of the

matrices, their preconditioners, and the resulting preconditioned matrices.
Matrix n Sym. Precond. κ2(A) κ2(M) κ2(M−1

L A) κ2(AM−1
R )

hor 131 434 0 LU - B 4.3E+04 4.3E+04 1.5E+01 1.4E+01
orsirr 1 1030 0 LU - B 7.7E+04 5.2E+05 1.1E+03 1.1E+03
bcsstk19 817 1 LU - S 1.3E+11 1.1E+11 4.7E+03 8.7E+02
bwm200 200 0 ILU - B - t = 1e-4 2.4E+03 2.0E+03 5.5E+01 7.6E+01
1138 bus 1138 1 ILU - S - t = 1e-7 8.6E+06 2.5E+05 5.9E+02 5.9E+02
young3c 841 0 ILU - S - t = 2e-5 9.3E+03 9.3E+03 1.5E+03 1.1E+03
gre 115 115 0 Poly. - S - d = 20 5.0E+01 3.4E+01 1.1E+01 1.1E+01
pores 3 532 0 Poly. - D - d = 50 5.6E+05 1.2E+03 8.2E+02 8.2E+02
cage5 37 0 SPAI - B - ε = 0.5 1.5E+01 1.1E+01 2.2E+01 1.5E+01
saylr1 238 0 SPAI - S - ε = 0.4 7.8E+08 5.0E+08 2.1E+04 2.1E+04

the different strategies for a variety of practical setups. We emphasize that we do not attempt a runtime
comparison of the mixed precision strategies and preconditioners; this would require a dedicated study
based on a careful high performance implementation which is out of the scope of this article.

We list our test set of SuiteSparse matrices and their associated preconditioners in Table 4. We use
four different kinds of practical preconditioners:

• LU factors computed in low precision (i.e., bfloat16 or single precision) and implemented with the
Julia standard lu routine. The matrices are stored in dense format before calling the lu routine.

• Incomplete LU factorization with dropping threshold t. We use the IncompleteLU.jl Julia
package for the implementation.

• Arnoldi polynomial preconditioner of degree d described in [27, sect. 3.2]. We employ a homemade
Julia implementation which is part of the companion Github repository2.

• Sparse approximate inverse (SPAI) preconditioner [17, Alg. 2.1] with accuracy parameter ε . The
reference [17] features two other parameters β and α that we set to β = 8 and α = n/β . We use a
homemade Julia implementation that can be found in the companion Github repository2. With this
SPAI preconditioner, ML ̸= MR.

In Table 4, we indicate for each matrix the preconditioner used (i.e., LU, ILU, Polynomial, or SPAI), the
precision in which the preconditioner is computed (i.e., B, S, or D for bfloat16, single, or double), and the
values of the parameters t, d, or ε when applicable. Note that two matrices of our set are symmetric, but
are treated as unsymmetric in these experiments. In the context of our numerical analysis, these cases
illustrate interesting numerical behaviors that help us compare the different mixed precision strategies.
In practice, however, it is recommended to use a Krylov solver dedicated to symmetric systems over
GMRES for these matrices.

In Table 5, we display the cumulated number of GMRES iterations achieved by the fourteen mixed
precision variants presented in section 4 when run on the matrices listed in Table 4. For each variant
we compare left-, right-, and flexible-preconditioning. The exact solution and the right-hand side are
generated as described in section 4.1.2. Similarly to the random dense experiments, we use a restart
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TABLE 5 Number of cumulated GMRES iterations to reach a prescribed accuracy ∥x̂i−x∥2/∥x∥2 ≤
10−10 for fourteen combinations of the precisions ug, ua, and um and for left-, right-, and flexible-
preconditioned GMRES. For commodity, we denote in bold the results that are discussed in the text.

Strat. ua = ug = um ua = um ≪ ug ua = ug ≪ um ua ≪ ug = um ua ≪ ug ≪ um ua ≪ um ≪ ug

BBB SSS DDD SBS DBD DSD SSB DDB DDS SBB DBB DSS DSB DBS

ho
r

13
1 left 29 13 11 20 19 13 19 20 13 20 19 13 18 20

right 44 14 12 17 18 14 25 25 14 24 24 14 25 17
flexible 47 14 12 22 22 14 16 14 12 27 27 14 16 22

or
si

rr
1 left — 50 43 289 317 49 247 240 49 542 430 49 228 303

right — 55 38 242§ 213 49 — — 49 — — 49 — 291§

flexible — 55 38 624§ 523§ 49 1465 260 38 — — 49 275 883§

bc
ss

tk
19 left — 19 9 21 13 10 — — 16 — — 14 — 14

right — 25 10 24§ 15§ 10 — — 22 — — 23 — 21§

flexible — 26 10 — — 11 — 17103§ 16 — — 17 — —

bw
m

20
0 left 274 39 24 140 173 38 216 183 38 268 277 38 216 174

right 729 49 24 156 172 38 260 250 39 333 389 39 250 136
flexible 578§ 45 24 224§ 203 39 57 29 24 239 279 39 44 191

11
38

bu
s left — 34 17 825 1275 26 — — 25 — — 27 1412§ 931

right — 37 18 245§ 254§ 25 120 125 28 — — 31 120 328
flexible — 38 18 174§ 169§ 31 58 39 18 — — 31 50 141§

yo
un

g3
c left — 60 33 465 407 45 — — 60 — — 61 — 489

right — 64 34 390 294 45 — — 64 — — 62 — 288
flexible — 52 34 319 368 45 1045 465 34 — — 45 961 333

gr
e

11
5 left 461 17 13 41 35 18 138 93 17 148 148 18 138 41

right 152 18 14 36 34 18 69 55 18 60 60 18 55 36
flexible 43 18 14 35 38 18 19 14 14 40 40 18 20 37

po
re

s
3 left — — 97 — — 147 — — — — — — — —

right — — 97 — — 148 — — — — — — — —
flexible — 186 97 — — 177 2510 207 133 — — 180 1711 —

ca
ge

5 left 22 18 17 21 22 18 22 22 18 21 21 18 22 21
right 33 22 18 37 37 22 33 33 22 37 37 22 33 37
flexible 37 22 18 36 35 22 22 18 18 32 32 22 22 36

sa
yl

r1 left — 215 71 — — 174 — — 175 — — 181 — —
right — 276 126 — — 226 — — 176 — — 228 — —
flexible — 274 126 — — 227 311 140 126 — — 227 305 —

§ Prescribed accuracy of order ∥x̂− x∥2/∥x∥2 ≤ 10−10 is achieved but one of order 10−16 is impossible.

process to compute a solution with prescribed accuracy ∥x̂ − x∥2/∥x∥2 ≤ 10−10; we identically use
the ten same different tolerances τ to restart GMRES and keep the run leading to the least amount of
iterations. We use “—” to indicate that a given method fails to converge to the prescribed accuracy.

5.1. Discussion of the mixed precision strategies

We observe that the strategy ua = um ≪ ug (third column of Table 5) can offer substantial improvement
in robustness and number of iterations. For instance, the variant BBB fails to converge for orsirr 1,
bcsstk19, 1138 bus, and young3c, but the variants SBS and DBD succeed. Moreover, while BBB
converges for hor 131 and bwm200, the variants SBS and DBD achieve substantially less iterations.
On the other hand, we observe that SSS is (almost) always better than SBS on our test set, so that SBS
achieves a tradeoff between BBB and SSS. This behavior is expected and reflects the conclusions of
section 4. Comparing now DBD to SBS, we observe with bcsstk19 that DBD can exhibit a lower number
of iterations than SBS, showing that DBD can be meaningful in a practical context. Yet, we also observe
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cases where DBD converges more slowly than SBS; see for example bwm200 where L-DBD needs
173 iterations compare with L-SBS which needs 140 iterations. Unfortunately, we cannot interpret or
anticipate these behaviors with our rounding error results. In particular, while we can often expect the
convergence rate to improve when we reduce the level of rounding errors by employing variants using
strictly higher precisions, it is not guaranteed and, in some instances, as we observe it here, it can
even possibly increase the number of iterations. Lastly, for the matrices bcsstk19, 1138 bus, young3c,
pores 3, and saylr1, we observe improvement in robustness and number of iterations when using the
variant DSD instead of SSS.

As explained in section 4.2.3, flexible-preconditioned GMRES is expected to offer the best
numerical behavior for the strategy ua = ug ≪ um (fourth column of Table 5). This is something we also
conclude from our experiments with SuiteSparse matrices. Indeed, except for a few outliers, flexible-
preconditioning presents better robustness and number of iterations for the variants SSB, DDB, and
DDS than left- and right-preconditioning for the matrices of our set. Our results are slightly more
nuanced when comparing right- and left-preconditioning than what we concluded in section 4.2.3.
The matrices of our set that embody the best the conclusion of section 4.2.3 are 1138 bus and
gre 115. For these matrices, flexible-preconditioning has the best number of iterations for the variants
SSB and DDB, right-preconditioning is slower but converges to the prescribed accuracy, and left-
preconditioning fails to converge or converges the slowest. Hence, right-preconditioned GMRES is
more robust than left-preconditioned GMRES for these cases and offers a valuable alternative to
flexible-preconditioning which may demand higher memory consumption. However, we can observe
that this conclusion is not always true when looking at, for instance, orsirr 1 or bwm200 for which left-
outperforms right-preconditioning for SSB and DDB. We emphasize that these problems do not verify
κ(M)≪ κ(A), which is the setup in which right-preconditioned GMRES is expected to perform better
than left-preconditioned GMRES for these variants.

Consider now the strategy ua ≪ ug = um (fifth column of Table 5). Taking SBB first, section 4.2.4
concluded that SBB could achieve interesting tradeoffs between BBB, using strictly lower precision, and
SBS or SSB, using strictly higher precision. This is also what we generally observe in our SuiteSparse
experiments in Table 2. Indeed, SBB tends to be slower than SBS or SSB, but, on some problems,
it converges substantially faster than BBB. For certain matrices, SBB needs approximately the same
number of iterations than SBS and SSB but involves strictly lower precision. These problems are very
favorable to this strategy since it means SBB should be preferred over the two other variants. We have
such configuration with hor 131, where L-BBB requires 29 iterations to converge to the prescribed
accuracy but L-SBB only needs 20, which is comparable to L-SBS and L-SSB which require 20 and
19, respectively. In addition to presenting a lower number of iterations than BBB, SBB can sometimes
converge where BBB is unable to. This is the case for orsirr 1, where L-BBB fails to converge but L-SBB
succeeds. Most of the previous comments on SBB apply equivalently to the variant DSS. In particular, the
matrices bcsstk19 and 1138 bus are good examples of problems for which DSS can propose interesting
tradeoffs. For instance, L-SSS needs 19 iterations for bcsstk19, L-DSD needs 10 iterations, and L-DSS
falls in the middle with 14 iterations.

The remaining two strategies are the three-precision implementations. We start with ua ≪ ug ≪ um
on the penultimate column of Table 5 which features the variant DSB. For DSB to be meaningful and
propose a valid tradeoff, it should converge in less iterations than variants using strictly lower precisions,
such as SSB or DBB. We encounter such scenarios with matrices bwm200, 1138 bus, and pores 3.
Taking bwm200 for instance, F-SSB needs 57 iterations, F-DBB needs 279 iterations, but F-DSB needs
44. Lastly, we discuss the strategy ua ≪ um ≪ ug on the last column of Table 5, which is embodied
by the variant DBS. This variant should achieve a lower number of iterations than SBS and DBB to be
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considered meaningful. This is the case for bcsstk19, and to some extent 1138 bus and young3c. With
bcsstk19, L-SBS needs 21 iterations, L-DBB fails to converge, but L-DBS requires 14 iterations.

5.2. Other discussions

In section 4, we could not observe clearly the effect of the term ugκ(AM−1
R )κ(MR) in the right- and

flexible-preconditioning bounds (3.23) and (3.24) with our synthetic preconditioners. With a term
ugκ(M−1

L A) instead, the left-preconditioned GMRES should exhibit better numerical behaviors on
setting the precision ug low. Interestingly, this theoretical observation may be corroborated by the
problems cage5 and saylr1, both employing sparse approximate inverse preconditioners. Taking saylr1
for instance, we can see that the variants SSS, DSD, and DSS, all having ug = S, achieve significantly
better number of iterations with left-preconditioning. The same comments apply to cage5 for the
variants BBB, SBS, DBD, SBB, DBB, and DBS using ug = B. We can also make the observation that
left-preconditioning performs better on orsirr 1 for the variants SSB, DDB, SBB, DBB, and DSB. For this
matrix, however, it is unclear if it is due to the same reasons since the variants SBS and DBD also fix ug
in low precision, but right- outperforms left-preconditioning for these variants.

In section 4.2.3, where we studied the strategy ua = ug ≪ um, we concluded from the analysis of
the attainable error bounds and our experiments on synthetic problems that setting ug ≪ um for left-
preconditioned GMRES is not meaningful. However, in light of our experiments on real-life problems,
we should mitigate this claim. Indeed, taking orsirr 1, L-SBB achieves 542 iterations but L-SSB reduces
it to 247. We can also make a similar observation for bwm200. This behavior cannot be interpreted
with our theoretical results which prescribed that setting ug ≪ um would not improve the attainable
accuracy of left-preconditioned GMRES over setting ug = um for um fixed. We often observe that the
improvement or deterioration of the attainable accuracy is correlated with a reduction or an increase
of the number of iterations. While it is a good empirical rule of thumb, it is not always true, as this
observation seems to demonstrate.

6. Conclusion

In this study, we assessed in a comprehensive way the different mixed precision strategies that can be
employed for preconditioned GMRES. To achieve this, we considered a generic three precisions layout
represented by Algorithm 1, where the applications of the preconditioner to vectors are performed in
precision um, the matrix–vector products with A are performed in precision ua, and the rest of the
GMRES operations are performed in precision ug. We derived state-of-the-art bounds on the attainable
forward errors of Algorithm 1 and validated them experimentally with experiments on synthetic
problems. By analyzing these bounds and the results of our numerical experiments, we were able to
identify all the numerically meaningful combinations of precisions ug, um, and ua; there are listed in
Table 2 (and in Table 3). Several of these strategies are new and present combinations of precisions that
are numerically meaningful and have never appeared in the literature. Moreover, we made substantial
contributions to the other already existing strategies. First, each of the already existing strategies
was dedicated to one preconditioning technique: either left-, right-, or flexible-preconditioning. We
broadened their scope to the three preconditioning techniques considered in this article. Second, the
existing strategy ua = um ≪ ug had previously only been studied with specific preconditioners, such as
LU or sparse approximate inverse preconditioners. We broadened the theory and the use of this strategy
to any preconditioner. We finally validated the different mixed precision strategies on a set of real-life
problems from the SuiteSparse collection using different practical preconditioners.
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Importantly, we uncovered critical differences in robustness and accuracy between left-, right-, and
flexible-preconditioning for a same given set of precisions ug, um, and ua. We derived indications based
on the analysis of our error bounds that prescribe which preconditioning technique may be best for a
given problem and set of precisions. These indications appeared reliable when challenged against our
experiments on synthetic and real-life problems. It should be noted that we observed a few outliers.
Those tend to be cases that cannot be described by our simplified bounds (3.22) to (3.24), and for which
we need to fall back on the original bounds (3.13), (3.17), and (3.21) to look for theoretical insights.
It may also be cases offering a poor correlation between the level of rounding error, which we monitor
with our theory, and the convergence rate of GMRES.

In light of the results derived in this article, we finish by outlining some open issues that might be
the topic of future work:

• For conciseness, we focus this article on the study of the forward error. We expect most of our
important conclusions regarding the numerical behaviors of the different mixed precision strategies
to extend relatively straightforwardly in backward error. However, we recognize that a dedicated
analysis of the backward error is of interest and may uncover more specific results.

• We confined the scope of this study to a numerical assessment of mixed precision strategies for
preconditioned GMRES. This is a first necessary step towards implementing some of these mixed
precision approaches in industrial software, which will require a separate study focusing on the
performance analysis of these strategies to fully validate their effectiveness and practicality.
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A. Proof of Theorem 3.1

We start the proof by taking into account the specific features of the MGS orthogonalization and wish
to identify a dimension k ≤ n of the basis Z̃k for which we can prove that the computed solution has
achieved a small forward error satisfying (3.8). We recall the result of the reasoning [11, eq. (5.15)
to (5.17)], which was derived for GMRES with MGS orthogonalization, and that showed that for any
nonsingular basis Z̃k of increasing dimension, there exists a dimension k ≤ n at which we satisfy for all
φ > 0
(if k ≤ n−1) σmin

([
M−1

L bφ , M−1
L AZ̃k

])
< c(n,k)

(
ug + εc

)
∥
[
M−1

L bφ , M−1
L AZ̃k

]
∥F , (A.1)

and
σ
−1
min(V̂k)≤ 4/3 and σmax(V̂k)≤ 4/3,
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where V̂k+1 = [V̂k, v̂k+1] is obtained by the MGS orthogonalization of [b̂,Ĉk], and where b̂ = fl(M−1
L b)

and Ĉk = fl(M−1
L AZ̃k) are defined in (3.2) and (3.3). Actually, the reasoning [11, eq. (5.15) to (5.17)]

holds for Z̃k ≡ V̂k and ML ≡ I, but can be straightforwardly adapted to Z̃k ̸= V̂k and ML ̸= I which
we consider here. We take this dimension k to be the one of Theorem 3.1 and, therefore, (3.7) is
satisfied. The remainder of the proof will be about to show that Algorithm 2 computes a solution x̂k
satisfying (3.8) for this dimension k and basis Z̃k under (A.1) and the assumptions of Theorem 3.1.

The rest of the proof consists in rewriting the reasoning derived to prove [11, Thm. 3.1]. Specifically,
the relevant changes allowing for the betterment of the bound will mostly concern the third and fourth
parts of this former proof. The two first parts are only affected by the use of the MGS orthogonalization,
where [11] uses less stringent assumptions on how Algorithm 2 is implemented. In particular, [11] uses
an accuracy parameter noted εls to keep a certain level of abstraction on how the least squares problem
at line 3 of Algorithm 2 is solved. Because we use the classic MGS approach in this article, we know
that the accuracy of this operation satisfies εls ≡ c(n,k)ug; see [11, sect. 5.3]. For this reason, adapting
the reasoning of these two first parts is trivial and holds under conditions (3.2) to (3.6) and (A.1), and
we do not present the details. We adopt the same notation as in [11] when possible for the ease of
comparison. We recall from [11, eqs. (3.13) and (3.14)] that the least squares residual r̄k associated to
the computed least squares solution ŷk at line 3 of Algorithm 2 satisfies

r̄k = M−1
L b+∆b̃(1)− (M−1

L AZ̃k +∆Ck)ŷk,

∥∆Ck∥F ≲ c(n,k)(εc +ug)∥M−1
L AZ̃k∥F , ∥∆b̃(1)∥2 ≲ c(n,k)(εb +ug)∥M−1

L b∥2.
(A.2)

From [11, eq. (3.23)], the least squares residual can be bounded in norm as

∥r̄k∥2 ≲ c(n,k)(εc + εb +ug)∥M−1
L AZ̃k∥F∥ŷk∥2. (A.3)

In order to sharpen the forward error bounds of [11, Thm. 3.1] when a right-preconditioner is used,
we shall not bound the errors of the left-preconditioned linear system directly as done previously, but
rather the one of the split-preconditioned linear system M−1

L AM−1
R u = M−1

L b. To do so, we introduce the
following quantity

x̂R
k = MRZ̃kŷk, (A.4)

where MR ∈Rn×n is nonsingular. Note that we use a “hat” in the notation x̂R
k to signify that this quantity

is linked to the computed ŷk compared with xR which is the exact solution of the split-preconditioned
system. Nevertheless, we emphasize that x̂R

k is not technically a computed quantity but a mathematical
artifice that does not exist at the algorithm level. We define

∆Ã(1) = ∆Ckŷk∥x̂R
k∥−2

2 (x̂R
k)

T

which gives using (A.4)

(M−1
L AM−1

R +∆Ã(1))x̂R
k = M−1

L AM−1
R x̂R

k +∆Ã(1)x̂R
k = (M−1

L AZ̃k +∆Ck)ŷk.

The residual defined in (A.2) can then be expressed as

r̄k = M−1
L b+∆b̃(1)− (M−1

L AM−1
R +∆Ã(1))x̂R

k , (A.5)

where
∥∆Ã(1)∥F ≲ c(n,k)(εc +ug)∥M−1

L AZ̃k∥F∥ŷk∥2/∥x̂R
k∥2. (A.6)
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We now form the quantities

∆b̃(2) =−
∥M−1

L b∥2

∥M−1
L AM−1

R ∥F∥x̂R
k∥2 +∥M−1

L b∥2
r̄k

and

∆Ã(2) =
∥M−1

L AM−1
R ∥F∥x̂R

k∥2

∥M−1
L AM−1

R ∥F∥x̂R
k∥2 +∥M−1

L b∥2
r̄k
(x̂R

k)
T

∥x̂R
k∥2

2

satisfying r̄k = ∆Ã(2)x̂R
k −∆b̃(2) and which can be bounded using (A.3) such that

∥∆b̃(2)∥2 ≲ c(n,k)(εc + εb +ug)α
′∥M−1

L b∥2,

∥∆Ã(2)∥F ≲ c(n,k)(εc + εb +ug)α
′∥M−1

L AM−1
R ∥F ,

(A.7)

with

α
′ =

∥M−1
L AZ̃k∥F

∥M−1
L AM−1

R ∥F

∥ŷk∥2

∥x̂R
k∥2

.

Finally, by replacing r̄k by ∆Ã(2)x̂R
k −∆b̃(2) in (A.5), we can conclude that x̂R

k is the exact solution of the
perturbed linear system (M−1

L AM−1
R +∆Ã)x̂R

k = M−1
L b+∆b̃ where

∆Ã ≡ ∆Ã(1)+∆Ã(2) and ∆b̃ ≡ ∆b̃(1)+∆b̃(2).

In addition, from the error bounds (A.2), (A.6), and (A.7), the errors ∆Ã and ∆b̃ satisfy

∥∆Ã∥F ≲ c(n,k)(α ′
εc +α

′
εb +α

′ug)∥M−1
L AM−1

R ∥F ,

∥∆b̃∥F ≲ c(n,k)(α ′
εc +β

′
εb +β

′ug)∥M−1
L b∥2,

with
β
′ = max

(
1,α ′) .

The backward error of the split-preconditioned system therefore satisfies the bound

∥M−1
L b−M−1

L AM−1
R x̂R

k∥2

∥M−1
L AM−1

R ∥F∥x̂R
k∥2 +∥M−1

L b∥2
≲ c(n,k)ξ ′, (A.8)

with
ξ
′ = α

′
εc +β

′
εb +β

′ug.

To obtain an upper bound of ∥ŷk∥2 which is function of ∥x̂R
k∥2, we use the relation x̂R

k = MRZ̃kŷk
from which we can conclude that

∥x̂R
k∥2 = ∥MRZ̃kŷk∥2 ≥ min

y

∥MRZ̃ky∥2

∥y∥2
∥ŷk∥2 ≥ σmin(MRZ̃k)∥ŷk∥2,

and which allows us to rework (A.8) as

∥M−1
L b−M−1

L AM−1
R x̂R

k∥2

∥M−1
L AM−1

R ∥F∥x̂R
k∥2 +∥M−1

L b∥2
≲ c(n,k)ξ ′′, ξ

′′ = α
′′
εc +β

′′
εb +β

′′ug, (A.9)
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where

α
′′ = σ

−1
min(MRZ̃k)

∥M−1
L AZ̃k∥F

∥M−1
L AM−1

R ∥F
, β

′′ = max
(
1,α ′′) .

Note that MRZ̃k is full-rank and the expressions above are well-defined since MR is nonsingular and Z̃k
is full-rank by assumption.

The last part of the proof consists of deriving bounds on the forward and backward errors of the
original system. We can bound the forward error of the split-preconditioned system with the backward
error (A.9) and the condition number of M−1

L AM−1
R . We obtain

∥x̂R
k − xR∥2

∥xR∥2
≲ c(n,k)ξ ′′

κ
(
M−1

L AM−1
R
)
. (A.10)

Because the exact solution xR of the split preconditioned system is xR =MRx where x is the exact solution
of the original system Ax = b, we can derive the forward error of Ax = b from (A.10). Using (3.4), we
can connect x̂R

k and x̂k by

x̂k = Z̃kŷk +∆x = M−1
R x̂R

k +∆x,

which gives, using (A.10),

∥x̂k − x∥2 = ∥M−1
R x̂R

k +∆x −M−1
R xR∥ ≤ ∥M−1

R ∥F∥x̂R
k − xR∥2 +∥∆x∥2

≲ c(n,k)ξ ′′
κ
(
M−1

L AM−1
R
)
∥M−1

R ∥F∥xR∥2 + εx∥Z̃kŷk∥2.

Remarking from (3.4) that

∥Z̃kŷk∥2 ≤
(
∥x̂k∥2 +∥∆x∥2

)
≤
(
∥x̂k∥2 + εx∥Z̃kŷk∥2

)
,

giving

∥Z̃kŷk∥2 ≤
(
1− εx

)−1∥x̂k∥2 ≲
(
∥x̂k − x∥2 +∥x∥2

)
,

we finally obtain by dropping second order terms and using ∥xR∥2 ≤ ∥MR∥F∥x∥2

∥x̂k − x∥2

∥x∥2
≲ c(n,k)ξ ′′

κ
(
M−1

L AM−1
R
)
κ
(
MR
)
+ εx, (A.11)

and we recover (3.8).

B. Proof of Theorem 3.2

To prove Theorem 3.2, we use Theorem 3.1, which requires us to identify the accuracy parameters εc,
εb, and εx in the error models (3.2) to (3.4), and to ensure that the conditions (3.5) and (3.6) are met at
an iteration k ≤ n satisfying (3.7).
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We start by identifying εc in the error model (3.2). From (3.9) and [23, eq. (3.11)], the computed
matrix–vector products (M−1

L A)v̂ j satisfy for all j ≤ k

fl
(
M−1

L Av̂ j
)
=
(

M−1
L +∆M( j)

L

)(
A+∆A( j)

)
v̂ j,

|∆A( j)|≲ c(n,k)ua|A|.

Using the above and dropping the second-order term ∆M( j)
L ∆A( j)v̂ j, we could characterize the error ∆c

in the rounding error model (3.2) generated by the kernel with

fl
(
M−1

L Av̂ j
)
≈ M−1

L Av̂ j +∆
( j)
c , ∆

( j)
c = M−1

L ∆A( j)v̂ j +∆M( j)
L Av̂ j,

∆c = [∆
(1)
c , . . . ,∆

(k)
c ].

However, this will not lead to the sharpest forward error bound. Instead, we will use a trick that consists
in inserting the rounding errors inside the search basis Z̃k by writing

fl
(
M−1

L Av̂ j
)
= M−1

L A
(

I +A−1
∆A( j)+A−1ML∆M( j)

L A+A−1ML∆M( j)
L ∆A( j)

)
v̂ j

from which we define

z̃ j =
(

I +A−1
∆A( j)+A−1ML∆M( j)

L A+A−1ML∆M( j)
L ∆A( j)

)
v̂ j

Z̃k =
[
z̃1, . . . , z̃k

]
, fl

(
M−1

L Av̂ j
)
= M−1

L Az̃ j.
(B.1)

Defining the basis Z̃k in such a way yields ∆c ≡ 0 in the rounding error model (3.2) and, so, εc ≡ 0.
In some sense, we pick Z̃k such that the product fl(M−1

L AZ̃k) is computed exactly. However, using this
trick does not withdraw the errors generated by the application of A and M−1

L , but rather delays their
effect to the computation of the solution approximation at line 4 of Algorithm 2. For readability, we
will consider in the rest of the text that A−1ML∆M( j)

L ∆A( j) is a second order term in (B.1); this is true
under assumption (3.12).

The computation of the preconditioned right-hand side corresponds to one application of the
preconditioner ML to the vector b yielding an error we note ∆M(b)

L and which satisfies (3.9). Hence,
we characterize the error ∆b in the error model (3.3) with

fl
(
M−1

L b
)
= M−1

L b+∆b, ∆b ≡ ∆M(b)
L b, ∥∆b∥2 ≤ umρ

L
b∥M−1

L b∥2, (B.2)

where umρL
b is defined by (3.11). From (B.2), we identify εb ≡ umρL

b .
We finally identify εx in the model (3.4). Because x̂k is computed through a standard matrix–vector

product with V̂k in precision ug satisfying [23, eq. (3.11)], it yields

x̂k = fl(V̂kŷk) = (V̂k +∆Vk)ŷk, ∥∆Vk∥F ≲ c(n,k)ug. (B.3)

In the above, we used the fact that the vectors v̂ j are normalized in precision ug such that

∥v̂ j∥2 ≈ 1 and ∥V̂k∥F ≈ k1/2. (B.4)
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As the model (3.4) is expressed with the basis Z̃k ̸= V̂k, we need to relate Z̃k to V̂k. Using (B.1) and (B.4),
we have

z̃ j = v̂ j +∆z j, ∥∆z j∥2 ≲ c(n,k)uaκ
(
A
)
+umρ

L
M,

where umρL
M is defined by (3.10). We do not further simplify the term umρL

M using the sub-multiplicative
norm inequality since, in some instances, the form of the error ∆M( j)

L can lead to further simplification
and the bound would be too crude. Noting ∆Zk = [∆z1, . . . ,∆zk], we can finally write

Z̃k = V̂k +∆Zk, ∥∆Zk∥F ≲ c(n,k)
(
uaκ
(
A
)
+umρ

L
M
)
. (B.5)

Hence, going back to (B.3) and using (B.5), we have

x̂k = Z̃kŷk +∆x, ∆x = (∆Vk −∆Zk) ŷk

∥∆x∥2 ≲ c(n,k)(ug +uaκ
(
A
)
+umρ

L
M)∥ŷk∥2,

(B.6)

from which we identify

εx ≡ c(n,k)(ug +uaκ
(
A
)
+umρ

L
M)

∥ŷk∥2

∥Z̃kŷk∥2
.

The expression above can be slightly simplified by using (3.7) and (B.5) to observe that

σmin(Z̃k)≥ σmin(V̂k)−∥∆Zk∥F ≥ 3/4− c(n,k)(uaκ
(
A
)
+umρ

L
M), (B.7)

which, from assumption (3.12), gives

∥ŷk∥2

∥Z̃kŷk∥2
≤ ∥ŷk∥2

σmin(Z̃k)∥ŷk∥2
≲ 4/3,

so that εx ≲ c(n,k)(ug + uaκ
(
A
)
+ umρL

M). Under assumption (3.12), we also have εx ≪ 1 and we
guarantee condition (3.6).

We now wish to show that condition (3.5) is met for the previously identified εc and εb. Remarking
that σmin(M−1

L AZ̃k)≥ σmin(M−1
L A)σmin(Z̃k), using (B.7), assumption (3.12) to drop second order terms,

and the fact that ∥Z̃k∥F ≈ ∥V̂k∥F ≈ k1/2 from (B.4) and (B.5), we obtain

σmin(M−1
L AZ̃k)≥ σmin(M−1

L A)σmin(Z̃k)≳ 3σmin(M−1
L A)/4

and

(εc + εb +ug)∥M−1
L AZ̃k∥F ≲ c(n,k)

(
ug +umρ

L
b

)
∥M−1

L A∥F ,

and condition (3.5) is met under assumption (3.12).
Hence, Theorem 3.1 guarantees that there exists an iteration k ≤ n at which the forward error

bound (3.8) holds. To recover the bound (3.13), we can simplify the expression α , β , and λ in (3.8) by
replacing MR ≡ I, using ∥Z̃k∥F ≈ k1/2, and using (B.7). It then comes that

αεc = 0, βεb ≲ c(n,k)umρ
L
b , βug ≲ c(n,k)ug,

λεx ≲ c(n,k)
(
ug +uaκ

(
A
)
+umρ

L
M
)
/κ
(
M−1

L A
)
,

and we recover (3.13).
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C. Proof of Theorem 3.3

The proof follows the same structure as the one of Theorem 3.2. Hence, we wish to identify εc, εb, and
εx, and ensure that the conditions (3.5) and (3.6) are met at any iteration k ≤ n satisfying (3.7) to invoke
the forward error bound (3.8).

We first study the matrix–matrix product A(M−1
R V̂k) and identify εc in the model (3.2). Noting

ẑ j = fl(M−1
R v̂ j) and Ẑk = [ẑ1, . . . , ẑk], and using [23, eq. (3.11)], the right-preconditioned matrix–vector

product kernel satisfies

fl
(
AM−1

R v̂ j
)
=
(

A+∆A( j)
)

ẑ j, |∆A( j)|≲ c(n,k)ua|A|. (C.1)

Similarly to the left-preconditioned GMRES analysis (see Appendix B), we insert the rounding errors
generated by the matrix–vector product kernel inside the search space Z̃k. Doing so is fundamental to
obtaining the sharpest and most descriptive forward error bound. We have

z̃ j = ẑ j +A−1
∆A( j)ẑ j, Z̃k =

[
z̃1, . . . , z̃k

]
, fl(AM−1

R v̂ j) = Az̃ j. (C.2)

The difference between Ẑk and Z̃k is that the vectors of Ẑk are the vectors computed by Algorithm 1
(right) at line 6, and are formed and stored at some point in memory. On the other hand, the vectors of
Z̃k are an artifact of our mathematical reasoning and are not accessible algorithmically. With such a Z̃k,
we have ∆c ≡ 0 in the rounding error model (3.2) and εc ≡ 0.

Now, consider the computation of the solution approximation x̂k, which is computed through
a standard matrix–vector product with V̂k in precision ug followed by the application of the right-
preconditioner MR in precision um yielding an error ∆M(x)

R satisfying (3.14). Dropping second order
terms and using (3.14) and [23, eq. (3.11)] gives

x̂k = fl
(
M−1

R V̂kŷk
)
= (M−1

R +∆M(x)
R )(V̂k +∆Vk)ŷk

≈
(

M−1
R V̂k +∆M(x)

R V̂k +M−1
R ∆Vk

)
ŷk,

(C.3)

where ∥∆Vk∥F ≲ c(n,k)ug∥V̂k∥F . To relate the above to the model (3.4), we need to relate Ẑk and Z̃k.
Using (3.14) and (B.4), we get

Ẑk = fl(M−1
R V̂k) = M−1

R V̂k +∆Z(1)
k , ∥∆Z(1)

k ∥F ≲ c(n,k)umηR∥M−1
R ∥F . (C.4)

In addition, using (B.4) and assumption (3.16) which guarantees in particular umηR ≪ 1, we also obtain

∥Ẑk∥F ≤ ∥M−1
R ∥F∥V̂k∥F +∥∆Z(1)

k ∥F ≲ k
1
2 ∥M−1

R ∥F (1+ c(n,k)umηR)≈ k
1
2 ∥M−1

R ∥F .

Using (C.1) and (C.2), we can link Z̃k and Ẑk, we have

Z̃k = Ẑk +∆Z(2)
k , ∆Z(2)

k = [A−1
∆A(1)ẑ1, . . . ,A−1

∆A(k)ẑk],

|∆Z(2)
k |≲ c(n,k)ua|A−1||A||Ẑk|,

∥A∆Z(2)
k ∥F ≲ c(n,k)ua∥A∥F∥Ẑk∥F ≲ c(n,k)ua∥A∥F∥M−1

R ∥F ,

∥MR∆Z(2)
k ∥F ≲ c(n,k)ua∥MRA−1∥F∥A∥F∥M−1

R ∥F .

(C.5)
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Hence, it follows from (C.3) and (C.4) that

x̂k ≈ Z̃kŷk +∆x, ∆x =
(

∆M(x)
R V̂k +M−1

R ∆Vk −∆Z(1)
k −∆Z(2)

k

)
ŷk. (C.6)

To bound ∥∆x∥2 we need further developments. From (C.5), we write

∥∆Z(2)
k ŷk∥2 ≤ c(n,k)uaκ

(
A
)
ρ

R
A∥Ẑkŷk∥2, (C.7)

where ρR
A is defined in (3.15). Under assumption (3.16) guaranteeing uaκ(A)ρR

A ≪ 1, by using the
relation (C.5) and writing

∥Ẑkŷk∥2 −∥∆Z(2)
k ŷk∥2 ≤ ∥Z̃kŷk∥2 ≤ ∥Ẑkŷk∥2 +∥∆Z(2)

k ŷk∥2, (C.8)

we deduce ∥Ẑkŷk∥2 ≈ ∥Z̃kŷk∥2. Using (C.4) and assumption (3.16), which guarantees umηRκ(MR)≪ 1
leading to σmin(M−1

R )≫ umηR∥M−1
R ∥F , gives

σmin(Ẑk)≥ σmin(M−1
R )σmin(V̂k)−∥∆Z(1)

k ∥F ≳ 3σmin(M−1
R )/4. (C.9)

Hence, from (C.9) and using ∥Ẑkŷk∥2 ≈ ∥Z̃kŷk∥2, we observe that

∥M−1
R ∥F∥ŷk∥2

∥Z̃kŷk∥2
≈

∥M−1
R ∥F∥ŷk∥2

∥Ẑkŷk∥2
≤

∥M−1
R ∥F∥ŷk∥2

σmin(Ẑk)∥ŷk∥2
≲ c(n,k)κ

(
MR
)
, (C.10)

from which, using (3.14), (B.4), (C.3), and (C.4), we deduce

∥
(

∆M(x)
R V̂k +M−1

R ∆Vk −∆Z(1)
k

)
ŷk∥2 ≲ c(n,k)

(
umηR +ug

)
κ
(
MR
)
∥Z̃kŷk∥2.

Finally, using the bound (C.7) together with ∥Ẑkŷk∥2 ≈ ∥Z̃kŷk∥2 in (C.6), we obtain

∥∆x∥2 ≲ c(n,k)
(

umηRκ
(
MR
)
+ugκ

(
MR
)
+uaκ

(
A
)
ρ

R
A

)
∥Z̃kŷk∥2, (C.11)

and we identify

εx ≡ c(n,k)
(

umηRκ
(
MR
)
+ugκ

(
MR
)
+uaκ

(
A
)
ρ

R
A

)
in the model (3.4). Moreover, under assumption (3.16), we have εx ≪ 1 and we meet condition (3.6).

As there is no left-preconditioner, there is no error in forming the left-preconditioned right-hand
side at line 2 of Algorithm 2; we have εb ≡ 0.
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Because εc = εb = 0, showing that condition (3.5) is met reduces to show that ugκ(AZ̃k) ≪ 1.
Combining (C.4) and (C.5), we have

Z̃k = M−1
R V̂k +∆Z(1)

k +∆Z(2)
k (C.12)

leading to

σmin(AZ̃k)≥ σmin(AM−1
R )σmin(V̂k +MR∆Z(1)

k +MR∆Z(2)
k )

≥ σmin(AM−1
R )

(
σmin(V̂k)−∥MR∆Z(1)

k ∥F −∥MR∆Z(2)
k ∥F

)
.

Using (3.7), remarking that

∥A∥F∥M−1
R ∥F

∥AM−1
R ∥F

≤ min
(

κF
(
A
)
,κF
(
MR
))

,

using (C.4) and (C.5) to bound respectively ∥MR∆Z(1)
k ∥F and ∥MR∆Z(2)

k ∥F , and using assumption (3.16)
to drop second order terms, we obtain

σmin(AZ̃k)≳ σmin(AM−1
R )

(
3/4− c(n,k)

[
umηRκ

(
MR
)
+uaκ

(
AM−1

R
)
κ
(
MR
)])

≈ 3σmin(AM−1
R )/4.

(C.13)

On the other hand, using (B.4) , (C.4), (C.5), and (C.12), we bound

∥AZ̃k∥F ≤ ∥AM−1
R ∥∥V̂k∥F +∥A∆Z(1)

k ∥F +∥A∆Z(2)
k ∥

≲ c(n,k)
(

1+umηRκ
(
MR
)
+uaκ

(
A
))

∥AM−1
R ∥F .

(C.14)

Dropping second order terms with assumption (3.16) , we get ∥AZ̃k∥F ≲ c(n,k)∥AM−1
R ∥F which,

combined together with (C.13), assures that condition (3.5) is met under assumption (3.16).
We showed that the conditions of Theorem 3.1 are met for any iteration k satisfying (3.7) and under

the assumptions of Theorem 3.3. Hence, there exists an iteration k ≤ n for which the error bound (3.8)
holds. To further simplify the expression (3.8), we need to bound σmin(MRZ̃k); we have using (3.7),
(C.4), (C.5), and (C.12),

σmin(MRZ̃k)≥ σmin(V̂k)−∥MR∆Z(1)
k ∥F −∥MR∆Z(2)

k ∥F

≳ 3/4− c(n,k)
(

umηRκ
(
MR
)
+uaκ

(
AM−1

R
)
κ
(
MR
))

.
(C.15)

Under assumption (3.16) ensuring umηRκ(MR) ≪ 1 and uaκ(AM−1
R )κ(MR) ≪ 1, we guarantee

σmin(MRZ̃k) ≳ 3/4. Dropping second order terms in the bounds (C.14) and (C.15), the expressions
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of βug and λεx in (3.8) become

βug = ug
κ
(
MR
)

σmin
(
MRZ̃k

) ∥AZ̃k∥F

∥AM−1
R ∥F

≲ c(n,k)ugκ
(
MR
)
,

λεx = c(n,k)
(

umηRκ
(
MR
)
+ugκ

(
MR
)
+uaκ

(
A
)
ρ

R
A

)
κ
(
AM−1

R
)−1

,

which leads to (3.17).

D. Proof of Theorem 3.4

Most of the proof stays identical to the proof of Theorem 3.3. In particular, the relations (C.2), (C.5),
(C.7), (C.8), and (C.10) obtained for right-preconditioned GMRES are still valid and condition (3.5) is
met for the same reasons.

The differences concern the parts linked to the computation of the solution approximation carried
by the model (3.4). In the case of flexible-preconditioning, the basis Ẑk is stored explicitly, and so the
solution approximation is obtained directly from a standard matrix–vector product with Ẑk in precision
ug. We have

x̂k = fl(Ẑkŷk) = (Ẑk +∆Z(3)
k )ŷk, |∆Z(3)

k |≲ c(n,k)ug|Ẑk|, (D.1)

which, accounting for (C.5), leads to

x̂k = Z̃kŷk +∆x, ∆x =
(

∆Z(3)
k −∆Z(2)

k

)
ŷk.

Using (C.7) and (C.8) to bound ∥∆Z(2)
k ŷk∥2, and using ∥Ẑk∥F ≲ k1/2∥M−1

R ∥F combined with (C.10) to

bound ∥∆Z(3)
k ŷk∥2, we have

∥∆x∥2 ≲ c(n,k)
(

ugκ
(
MR
)
+uaκ

(
A
)
ρ

R
A

)
∥Z̃kŷk∥2. (D.2)

Thus, comparing the previous bound on ∥∆x∥2 with (C.11), we can observe that without the requirement
to reapply the preconditioner M−1

R , flexible-preconditioning can spare the term umηRκ(MR) and
remove the dependence on the precision um. From (D.2), we identify the accuracy parameter εx ≡
c(n,k)(ugκ(MR)+uaκ(A)ρR

A ) in the model (3.4) which, under assumption (3.20), satisfies εx ≪ 1 such
that condition (3.6) is met.

We can now rework the forward error bound with the new value εx. Identically to the proof of
Theorem 3.3, we write

λεx = c(n,k)
(

ugκ
(
MR
)
+uaκ

(
A
)
ρ

R
A

)
κ
(
AM−1

R
)−1

in (3.8) and we recover the forward error bound (3.21).
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block-Jacobi preconditioning for iterative sparse linear system solvers, Concurrency Computat.: Pract. Exper.,
31 (2019), p. e4460, https://doi.org/10.1002/cpe.4460.

6. H. ANZT, V. HEUVELINE, AND B. ROCKER, Mixed Precision Iterative Refinement Methods for Linear
Systems: Convergence Analysis Based on Krylov Subspace Methods, in Applied Parallel and Scientific
Computing, Springer Berlin Heidelberg, 2012, pp. 237–247, https://doi.org/10.1007/978-3-642-28145-7 24.

7. M. ARIOLI AND I. S. DUFF, Using FGMRES to obtain backward stability in mixed precision, Electron. Trans.
Numer. Anal., 33 (2008), pp. 31–44.

8. M. ARIOLI, I. S. DUFF, S. GRATTON, AND S. PRALET, A Note on GMRES Preconditioned by a Perturbed
LDLT Decomposition with Static Pivoting, SIAM J. Sci. Comput., 29 (2007), pp. 2024–2044, https://doi.org/
10.1137/060661545.

9. C. BOUTSIKAS, P. DRINEAS, AND I. C. F. IPSEN, Small Singular Values Can Increase in Lower Precision,
SIAM J. Matrix Anal. Appl., 45 (2024), p. 1518–1540, https://doi.org/10.1137/23m1557209.

10. A. BUTTARI, J. DONGARRA, J. KURZAK, P. LUSZCZEK, AND S. TOMOV, Using Mixed Precision for
Sparse Matrix Computations to Enhance the Performance while Achieving 64-bit Accuracy, ACM Trans.
Math. Software, 34 (2008), pp. 1–22, https://doi.org/10.1145/1377596.1377597.

11. A. BUTTARI, N. J. HIGHAM, T. MARY, AND B. VIEUBLÉ, A modular framework for the backward error
analysis of GMRES. working paper or preprint, Mar. 2024.
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