Block Low-Rank multifrontal sparse direct solvers

P. Amestoy^{*,1} A. Buttari^{*,2} J.-Y. L'Excellent^{†,3} <u>T. Mary</u>^{*,4} *Université de Toulouse [†]ENS Lyon ¹INPT-IRIT ²CNRS-IRIT ³INRIA-LIP ⁴UPS-IRIT Mathias 2017, 25-27 Oct. 2017, Paris

Introduction

Sparse direct solvers

Discretization of a physical problem (e.g. Code_Aster, finite elements)

A X = B

1L

A large and sparse, **B** dense or sparse Sparse direct methods : $\mathbf{A} = \mathbf{LU} (\mathbf{LDL}^{\mathsf{T}})$

Often a significant part of simulation cost

Objective discussed in this presentation: how to reduce the cost of sparse direct solvers?

Focus on large-scale applications and architectures

Multifrontal Factorization with Nested Dissection

Low-rank matrices

Take a dense matrix *B* of size $b \times b$ and compute its SVD B = XSY:

Low-rank matrices

Take a dense matrix *B* of size $b \times b$ and compute its SVD B = XSY:

 $B = X_1 S_1 Y_1 + X_2 S_2 Y_2 \quad \text{with} \quad S_1(k,k) = \sigma_k > \varepsilon, \ S_2(1,1) = \sigma_{k+1} \le \varepsilon$ If $\tilde{B} = X_1 S_1 Y_1$ then $\|B - \tilde{B}\|_2 = \|X_2 S_2 Y_2\|_2 = \sigma_{k+1} \le \varepsilon$

Low-rank matrices

Take a dense matrix *B* of size $b \times b$ and compute its SVD B = XSY:

 $B = X_1 S_1 Y_1 + X_2 S_2 Y_2 \quad \text{with} \quad S_1(k,k) = \sigma_k > \varepsilon, \ S_2(1,1) = \sigma_{k+1} \le \varepsilon$

If
$$\tilde{B} = X_1 S_1 Y_1$$
 then $\|B - \tilde{B}\|_2 = \|X_2 S_2 Y_2\|_2 = \sigma_{k+1} \le \varepsilon$

If the singular values of *B* decay very fast (e.g. exponentially) then $k \ll b$ even for very small ε (e.g. 10^{-14}) \Rightarrow memory and CPU consumption can be reduced considerably with a controlled loss of accuracy ($\leq \varepsilon$) if \tilde{B} is used instead of *B* Mathias 2017, 25-27 Oct. 2017, Paris

Frontal matrices are not low-rank but in some applications they exhibit low-rank blocks

A block *B* represents the interaction between two subdomains σ and τ . If they have a small diameter and are far away their interaction is weak \Rightarrow rank is low.

Frontal matrices are not low-rank but in some applications they exhibit low-rank blocks

A block *B* represents the interaction between two subdomains σ and τ . If they have a small diameter and are far away their interaction is weak \Rightarrow rank is low.

Frontal matrices are not low-rank but in some applications they exhibit low-rank blocks

A block *B* represents the interaction between two subdomains σ and τ . If they have a small diameter and are far away their interaction is weak \Rightarrow rank is low.

Frontal matrices are not low-rank but in some applications they exhibit low-rank blocks

A block *B* represents the interaction between two subdomains σ and τ . If they have a small diameter and are far away their interaction is weak \Rightarrow rank is low.

Frontal matrices are not low-rank but in some applications they exhibit low-rank blocks

A block *B* represents the interaction between two subdomains σ and τ . If they have a small diameter and are far away their interaction is weak \Rightarrow rank is low.

Frontal matrices are not low-rank but in some applications they exhibit low-rank blocks

A block *B* represents the interaction between two subdomains σ and τ . If they have a small diameter and are far away their interaction is weak \Rightarrow rank is low.

Frontal matrices are not low-rank but in some applications they exhibit low-rank blocks

A block *B* represents the interaction between two subdomains σ and τ . If they have a small diameter and are far away their interaction is weak \Rightarrow rank is low.

${\cal H}$ and BLR matrices

 $\mathcal H ext{-matrix}$

BLR matrix

${}^{\prime}\mathcal{H}$ and BLR matrices

 $\mathcal H ext{-matrix}$

- Theoretical complexity can be as low as O(n)
- Complex, hierarchical structure

BLR matrix

- Theoretical complexity can be as low as $O(n^{4/3})$
- Simple structure

${\cal H}$ and BLR matrices

 $\mathcal H ext{-matrix}$

- Theoretical complexity can be as low as O(n)
- Complex, hierarchical structure

BLR matrix

- Theoretical complexity can be as low as $O(n^{4/3})$
- Simple structure

Find a good comprise between complexity and performance

${\cal H}$ and BLR matrices

 $\mathcal H\text{-matrix}$

- Theoretical complexity can be as low as O(n)
- Complex, hierarchical structure

BLR matrix

- Theoretical complexity can be as low as $O(n^{4/3})$
- Simple structure

Find a good comprise between complexity and performance

⇒ Ongoing collaboration with STRUMPACK team (LBNL) to compare BLR and hierarchical formats

• FSCU

- FSCU (Factor,
- Easy to handle numerical pivoting, a critical feature often lacking in other low-rank solvers

- FSCU (Factor, Solve,
- Easy to handle numerical pivoting, a critical feature often lacking in other low-rank solvers

- FSCU (Factor, Solve, Compress,
- Easy to handle numerical pivoting, a critical feature often lacking in other low-rank solvers

- FSCU (Factor, Solve, Compress, Update)
- Easy to handle numerical pivoting, a critical feature often lacking in other low-rank solvers

- FSCU (Factor, Solve, Compress, Update)
- Easy to handle numerical pivoting, a critical feature often lacking in other low-rank solvers

- FSCU (Factor, Solve, Compress, Update)
- Easy to handle numerical pivoting, a critical feature often lacking in other low-rank solvers

- FSCU (Factor, Solve, Compress, Update)
- Easy to handle numerical pivoting, a critical feature often lacking in other low-rank solvers

- FSCU (Factor, Solve, Compress, Update)
- Easy to handle numerical pivoting, a critical feature often lacking in other low-rank solvers

- FSCU (Factor, Solve, Compress, Update)
- Easy to handle numerical pivoting, a critical feature often lacking in other low-rank solvers

- FSCU (Factor, Solve, Compress, Update)
- Easy to handle numerical pivoting, a critical feature often lacking in other low-rank solvers

- FSCU (Factor, Solve, Compress, Update)
- Easy to handle numerical pivoting, a critical feature often lacking in other low-rank solvers

- FSCU (Factor, Solve, Compress, Update)
- Easy to handle numerical pivoting, a critical feature often lacking in other low-rank solvers

- FSCU (Factor, Solve, Compress, Update)
- Easy to handle numerical pivoting, a critical feature often lacking in other low-rank solvers

- FSCU (Factor, Solve, Compress, Update)
- Easy to handle numerical pivoting, a critical feature often lacking in other low-rank solvers

- FSCU (Factor, Solve, Compress, Update)
- Easy to handle numerical pivoting, a critical feature often lacking in other low-rank solvers

- FSCU (Factor, Solve, Compress, Update)
- Easy to handle numerical pivoting, a critical feature often lacking in other low-rank solvers

- FSCU (Factor, Solve, Compress, Update)
- Easy to handle numerical pivoting, a critical feature often lacking in other low-rank solvers
- Potential of this variant was studied in
 - Amestoy, Ashcraft, Boiteau, Buttari, L'Excellent, and Weisbecker. Improving Multifrontal Methods by Means of Block Low-Rank Representations, SIAM J. Sci. Comput., 2015.
Standard BLR factorization: FSCU

- FSCU (Factor, Solve, Compress, Update)
- Easy to handle numerical pivoting, a critical feature often lacking in other low-rank solvers
- Potential of this variant was studied in
 - Amestoy, Ashcraft, Boiteau, Buttari, L'Excellent, and Weisbecker. Improving Multifrontal Methods by Means of Block Low-Rank Representations, SIAM J. Sci. Comput., 2015.

...but it had much room for improvement

Novel variants to improve the BLR factorization

- FSCU (Factor, Solve, Compress, Update)
- FSCU+LUAR

- FSCU (Factor, Solve, Compress, Update)
- FSCU+LUAR
 - Better granularity in Update operations

- FSCU (Factor, Solve, Compress, Update)
- FSCU+LUAR
 - Better granularity in Update operations
 - Potential recompression \Rightarrow complexity reduction: $O(n^{\frac{5}{3}}) \rightarrow O(n^{\frac{14}{9}})$ \Rightarrow Collaboration with LSTC to design efficient recompression strategies

- FSCU (Factor, Solve, Compress, Update)
- FSCU+LUAR
 - Better granularity in Update operations
 - Potential recompression \Rightarrow complexity reduction: $O(n^{\frac{5}{3}}) \rightarrow O(n^{\frac{14}{9}})$ \Rightarrow Collaboration with LSTC to design efficient recompression strategies

- FSCU (Factor, Solve, Compress, Update)
- FSCU+LUAR
 - Better granularity in Update operations
 - Potential recompression \Rightarrow complexity reduction: $O(n^{\frac{5}{3}}) \rightarrow O(n^{\frac{14}{9}})$ \Rightarrow Collaboration with LSTC to design efficient recompression strategies

- FSCU (Factor, Solve, Compress, Update)
- FSCU+LUAR
 - Better granularity in Update operations
 - Potential recompression \Rightarrow complexity reduction: $O(n^{\frac{5}{3}}) \rightarrow O(n^{\frac{14}{9}})$ \Rightarrow Collaboration with LSTC to design efficient recompression strategies
- FCSU(+LUAR)

- FSCU (Factor, Solve, Compress, Update)
- FSCU+LUAR
 - Better granularity in Update operations
 - Potential recompression \Rightarrow complexity reduction: $O(n^{\frac{5}{3}}) \rightarrow O(n^{\frac{14}{9}})$ \Rightarrow Collaboration with LSTC to design efficient recompression strategies
- FCSU(+LUAR)
 - Restricted pivoting, e.g. to diagonal blocks

- FSCU (Factor, Solve, Compress, Update)
- FSCU+LUAR
 - Better granularity in Update operations
 - Potential recompression \Rightarrow complexity reduction: $O(n^{\frac{5}{3}}) \rightarrow O(n^{\frac{14}{9}})$ \Rightarrow Collaboration with LSTC to design efficient recompression strategies
- FCSU(+LUAR)
 - Restricted pivoting, e.g. to diagonal blocks

- FSCU (Factor, Solve, Compress, Update)
- FSCU+LUAR
 - Better granularity in Update operations
 - Potential recompression \Rightarrow complexity reduction: $O(n^{\frac{5}{3}}) \rightarrow O(n^{\frac{14}{9}})$ \Rightarrow Collaboration with LSTC to design efficient recompression strategies
- FCSU(+LUAR)
 - Restricted pivoting, e.g. to diagonal blocks

• Low-rank Solve \Rightarrow complexity reduction: $O(n^{\frac{14}{9}}) \rightarrow O(n^{\frac{4}{3}})$

Mathias 2017, 25-27 Oct. 2017, Paris

- FSCU (Factor, Solve, Compress, Update)
- FSCU+LUAR
 - Better granularity in Update operations
 - Potential recompression \Rightarrow complexity reduction: $O(n^{\frac{5}{3}}) \rightarrow O(n^{\frac{14}{9}})$ \Rightarrow Collaboration with LSTC to design efficient recompression strategies
- FCSU(+LUAR)
 - Restricted pivoting, e.g. to diagonal blocks ⇒ not acceptable in many applications ⇒ encouraging results with new variant compatible with pivoting
 - Low-rank Solve \Rightarrow complexity reduction: $O(n^{\frac{14}{9}}) \rightarrow O(n^{\frac{4}{3}})$

Mathias 2017, 25-27 Oct. 2017, Paris

Performance and scalability of the BLR factorization

Multicore performance results

Structural mechanics Matrix of order 8M Required accuracy: 10^{-9}

Seismic imaging Matrix of order 17M Required accuracy: 10^{-3}

Electromagnetism Matrix of order 21M Required accuracy: 10^{-7}

Results on 24 Haswell cores:

factorization time (s)							
application	MUMPS	BLR	BLR+	ratio			
structural	2066.9	1129.0	377.9	5.5			
seismic	5649.5	1998.8	773.7	7.3			
electromag.	13842.7	3702.9	736.1	18.8			

 Amestoy, Buttari, L'Excellent, and Mary. Performance and Scalability of the Block Low-Rank Multifrontal Factorization on Multicore Architectures, submitted to ACM
Trans. Math. Srans. Math. Soft., 2017. Mathias 2017, 25-27 Oct. 2017, Paris

Distributed-memory performance results

- Volume of communications is reduced less than flops ⇒ higher relative weight of communications
- Low-rank compression cannot be predicted ⇒ load unbalance increases

Distributed-memory performance results

- Volume of communications is reduced less than flops ⇒ higher relative weight of communications
- Low-rank compression cannot be predicted ⇒ load unbalance increases
- \Rightarrow Ongoing work to design strategies to overcome these issues

	factorization time (s)						
application	MUMPS	BLR	BLR+	ratio			
structural	263.0	156.9	104.9	2.5			
seismic	600.9	231.2	123.4	4.9			
electromag.	1242.6	454.3	233.8	5.3			

Result on matrix 15Hz (order 58×10^6 , nnz 1.5×10^9) on 900 cores:

	flops	factors	memory (GB)		elapsed time (s)		
	(PF)	size (TB)	avg.	max.	ana.	fac.	sol.
MUMPS	29.6	3.7	103	120	OOM	OOM	OOM
BLR	1.3	0.7	37	57	437	856	0.2/RHS
ratio	22.9	5.1	2.8	2.3			

⇒ this result opens promising perspectives for frequency-domain inversion with low-rank direct solver even at high frequencies

Conclusion

References and acknowledgements

Publications

- Amestoy, Buttari, L'Excellent, and Mary. On the Complexity of the Block Low-Rank Multifrontal Factorization, SIAM J. Sci. Comput., 2017.
- Amestoy, Buttari, L'Excellent, and Mary. Performance and Scalability of the Block Low-Rank Multifrontal Factorization on Multicore Architectures, submitted to ACM Trans. Math. Soft., 2017.
- Amestoy, Brossier, Buttari, L'Excellent, Mary, Métivier, Miniussi, and Operto. Fast 3D frequency-domain full waveform inversion with a parallel Block Low-Rank multifrontal direct solver: application to OBC data from the North Sea, Geophysics, 2016.
- Shantsev, Jaysaval, de la Kethulle de Ryhove, Amestoy, Buttari, L'Excellent, and Mary. Large-scale 3D EM modeling with a Block Low-Rank multifrontal direct solver, Geophysical Journal International, 2017.

Software

• MUMPS 5.1.2

Acknowledgements

- LIP and CALMIP for providing access to the machines
- EMGS, SEISCOPE, and EDF for providing the matrices
- MUMPS consortium (EDF, Altair, Michelin, LSTC, Siemens, ESI, Total, FFT, Safran, LBNL)

Thanks! Questions?

Backup Slides

Until recently, BLR complexity was unknown. Can we use ${\cal H}$ theory on BLR matrices?

Until recently, BLR complexity was unknown. Can we use ${\cal H}$ theory on BLR matrices?

Until recently, BLR complexity was unknown. Can we use ${\cal H}$ theory on BLR matrices?

Complexity mainly depends on r_{max} , the maximal rank of the blocks With \mathcal{H} partitioning, r_{max} is small

Until recently, BLR complexity was unknown. Can we use ${\cal H}$ theory on BLR matrices?

Complexity mainly depends on r_{max} , the maximal rank of the blocks With \mathcal{H} partitioning, r_{max} is small

BLR: a particular case of \mathcal{H} ?

Problem: in \mathcal{H} formalism, the maxrank of the blocks of a BLR matrix is $r_{max} = b$ (due to the non-admissible blocks) Solution: bound the rank of the admissible blocks only, and make sure the non-admissible blocks are in small number

BLR-admissibility condition of a partition ${\cal P}$

 \mathcal{P} is admissible $\Leftrightarrow N_{na} = \#\{\sigma \times \tau \in \mathcal{P}, \sigma \times \tau \text{ is not admissible}\} \le q$

Non-Admissible

Admissible

BLR-admissibility condition of a partition ${\cal P}$

 \mathcal{P} is admissible $\Leftrightarrow N_{na} = \#\{\sigma \times \tau \in \mathcal{P}, \sigma \times \tau \text{ is not admissible}\} \le q$

Non-Admissible

Admissible

Main result

There exists an admissible \mathcal{P} for q = O(1), s.t. the maxrank of the admissible blocks of A is $r = O(r_{max}^{\mathcal{H}})$. The complexity of the factorization of a dense matrix of order m is thus: $C_{facto} = O(r^2m^3/b^2 + mb^2q^2) = O(r^2m^3/b^2 + mb^2) = O(rm^2)$ (for $b = O(\sqrt{rm})$)

Amestoy, Buttari, L'Excellent, and Mary. On the Complexity of the Block Low-Rank
Multifrontal Factorization, SIAM J. Sci. Comput., 2017. Mathias 2017, 25-27 Oct. 2017, Paris

Complexity experiments: problems

1. Poisson: N^3 grid with a 7-point stencil with u=1 on the boundary $\partial \Omega$

$$\Delta u = f$$

2. Helmholtz: N^3 grid with a 27-point stencil, ω is the angular frequency, v(x) is the seismic velocity field, and $u(x, \omega)$ is the time-harmonic wavefield solution to the forcing term $s(x, \omega)$.

$$\left(-\Delta - \frac{\omega^2}{v(x)^2}\right) u(x,\omega) = s(x,\omega)$$

 ω is fixed and equal to 4Hz.

Experimental MF flop complexity: Poisson ($arepsilon=10^{-10}$)

Nested Dissection ordering (geometric)

• good agreement with theoretical complexity $(O(n^2), O(n^{1.67}), O(n^{1.55}), \text{ and } O(n^{1.33}))$

Experimental MF flop complexity: Poisson ($arepsilon=10^{-10}$)

- good agreement with theoretical complexity $(O(n^2), O(n^{1.67}), O(n^{1.55}), \text{ and } O(n^{1.33}))$
- remains close to ND complexity with METIS ordering Mathias 2017, 25-27 Oct. 2017, Paris

Experimental MF flop complexity: Helmholtz ($arepsilon=10^{-4}$)

- good agreement with theoretical complexity $(O(n^2), O(n^{1.83}), O(n^{1.78}), \text{ and } O(n^{1.67}))$
- remains close to ND complexity with METIS ordering

Experimental MF complexity: factor size

 good agreement with theoretical complexity (FR: O(n^{1.33}); BLR: O(n log n) and O(n^{1.17} log n)) Experiments are done on the shared-memory machines of the LIP laboratory of Lyon:

1. brunch

- Four Intel(r) 24-cores Broadwell @ 2,2 GHz
- Peak per core is 35.2 GF/s
- Total memory is 1.5 TB

2. grunch

- Two Intel(r) 14-cores Haswell @ 2,3 GHz
- Peak per core is 36.8 GF/s
- Total memory is 768 GB

Exploiting tree-based multithreading in MF solvers

Exploiting tree-based multithreading in MF solvers

- Work based on W. M. Sid-Lakhdar's PhD thesis
 - LO layer computed with a variant of the Geist-Ng algorithm
 - NUMA-aware implementation
 - use of Idle Core Recycling technique (variant of work-stealing)
 - L'Excellent and Sid-Lakhdar. A study of shared-memory parallelism in a multifrontal solver, Parallel Computing.

Exploiting tree-based multithreading in MF solvers

- Work based on W. M. Sid-Lakhdar's PhD thesis
 - LO layer computed with a variant of the Geist-Ng algorithm
 - NUMA-aware implementation
 - use of Idle Core Recycling technique (variant of work-stealing)
 - L'Excellent and Sid-Lakhdar. A study of shared-memory parallelism in a multifrontal solver, Parallel Computing.

 \Rightarrow how big an impact can tree-based multithreading make?

	24 th	ireads	24 th + tree	reads e MT
	time	% _{lai}	time	% _{lai}
FR BLR	509	21%		

	24 th	ireads	24 th + tree	reads e MT
	time	% _{lai}	time	% _{lai}
FR BLR	509 307	21% 35%		

	24 th	ireads	24 th + tre	reads e MT
	time	% _{lai}	time	% _{lai}
FR BLR	509 307	21% 35%	424	13%

	24 th	nreads	24 th + tre	reads e MT
	time % _{lai}		time	% _{lai}
FR BLR	509 307	21% 35%	424 221	13% 24%

 \Rightarrow 1.7 gain becomes 1.9 thanks to tree-based MT

		FR		BLR	
		RL	LL	RL	LL
1 thread	Update Total	6467 7390		1064 2242	
24 threads	Update Total	338 424	336 421	110 221	67 175

		FR		BL	R
		RL	LL	RL	LL
1 thread	Update Total	6467 7390		1064 2242	
24 threads	Update Total	338 424	336 421	110 221	67 175

read at each step written once

LL factorization

 \Rightarrow Lower volume of memory transfers in LL (more critical in MT)

 \Rightarrow Lower volume of memory transfers in LL (more critical in MT) Update is now less memory-bound: 1.9 gain becomes 2.4 in LL

Performance of Outer Product with LUA(R) (24 threads)

		benchi	mark of Ou	iter Product
1		50 40 998090 20 0 0	20 40 6 Size of Outer Pro	
		LL	LUA	LUAR*
average size of	Outer Product	16.5	61.0	32.8
flops ($ imes 10^{12}$)	Outer Product Total	3.76 10.19	3.76 10.19	1.59 8.15
time (s)	Outer Product Total	21 175	14 167	6 160

* All metrics include the Recompression overhead

Double complex (z) performance

Performance of Outer Product with LUA(R) (24 threads)

		benchi	mark of Ou	iter Product
\checkmark		50 40 995090 20 10 0	20 40 é Size of Outer Pro	
		LL	LUA	LUAR*
average size of	Outer Product	16.5	61.0	32.8
flops ($ imes 10^{12}$)	Outer Product Total	3.76 10.19	3.76 10.19	1.59 8.15
time (s)	Outer Product Total	21 175	14 167	6 160

* All metrics include the Recompression overhead

Double complex (z) performance

Performance of Outer Product with LUA(R) (24 threads)

		benchi	mark of Ou	ater Product
1		50 40 30 50 20 10	j juli (1919)	-b-256
		0	20 40 6 Size of Outer Pro	60 80 100
		LL	LUA	LUAR*
average size of	Outer Product	16.5	61.0	32.8
flops ($ imes 10^{12}$)	Outer Product Total	3.76 10.19	3.76 10.19	1.59 8.15
time (s)	Outer Product Total	21 175	14 167	6 160

* All metrics include the Recompression overhead

Double complex (z) performance

Compress before Solve + pivoting: CFSU variant

How to assess the quality of pivot k? We need to estimate $\|\widetilde{B}_{:,k}\|_{max}$: $\|\widetilde{B}_{:,k}\|_{max} \leq \|\widetilde{B}_{:,k}\|_2 = \|XY_{k;}^T\|_2 = \|Y_{k;}^T\|_2$, assuming X is orthonormal (e.g. RRQR, SVD).

matrix	residual			, flo	ops (% Fl	R)
	FSCU	FCSU	CFSU	FSCU	FCSU	CFSU
af_shell10	2e-06	5e-06	4e-06	29.9	22.7	22.7
Lin	4e-05	4e-05	4e-05	24.0	18.5	18.5
mario002	2e-06	fail	1e-06	82.8		72.2
perf009ar	3e-13	1e-01	9e-11	26.0	22.7	22.1