Block Low-Rank multifrontal sparse direct solvers

P. Amestoy, ${ }^{* 1}$ A. Buttari, ${ }^{* 2}$ J.-Y. L'Excellent $t^{\dagger, 3} \quad$ T. Mary, ${ }^{*}$,
*Université de Toulouse †ENS Lyon
${ }_{1}$ INPT-IRIT ${ }^{2}$ CNRS-IRIT ${ }^{3}$ INRIA-LIP ${ }^{4}$ UPS-IRIT
Mathias 2017, 25-27 Oct. 2017, Paris

Introduction

Discretization of a physical problem (e.g. Code_Aster, finite elements)
\Downarrow

$$
A X=B
$$

A large and sparse, \mathbf{B} dense or sparse Sparse direct methods: $\mathbf{A}=\mathbf{L U}\left(\mathbf{L D L}^{\boldsymbol{\top}}\right)$

Often a significant part of simulation cost
Objective discussed in this presentation: how to reduce the cost of sparse direct solvers?

Focus on large-scale applications and architectures

Multifrontal Factorization with Nested Dissection

3D problem complexity
\rightarrow Flops: $O\left(n^{2}\right)$, mem: $O\left(n^{4 / 3}\right)$

Low-rank matrices

Take a dense matrix B of size $b \times b$ and compute its SVD $B=X S Y$:

Low-rank matrices

Take a dense matrix B of size $b \times b$ and compute its SVD $B=X S Y$:

$B=X_{1} S_{1} Y_{1}+X_{2} S_{2} Y_{2} \quad$ with $\quad S_{1}(k, k)=\sigma_{k}>\varepsilon, S_{2}(1,1)=\sigma_{k+1} \leq \varepsilon$ If $\tilde{B}=X_{1} S_{1} Y_{1}$ then $\|B-\tilde{B}\|_{2}=\left\|X_{2} S_{2} Y_{2}\right\|_{2}=\sigma_{k+1} \leq \varepsilon$

Low-rank matrices

Take a dense matrix B of size $b \times b$ and compute its SVD $B=X S Y$:

$B=X_{1} S_{1} Y_{1}+X_{2} S_{2} Y_{2}$ with $\quad S_{1}(k, k)=\sigma_{k}>\varepsilon, S_{2}(1,1)=\sigma_{k+1} \leq \varepsilon$ If $\tilde{B}=X_{1} S_{1} Y_{1}$ then $\|B-\tilde{B}\|_{2}=\left\|X_{2} S_{2} Y_{2}\right\|_{2}=\sigma_{k+1} \leq \varepsilon$

If the singular values of B decay very fast (e.g. exponentially) then $k \ll b$ even for very small ε (e.g. 10^{-14}) \Rightarrow memory and CPU consumption can be reduced considerably with a controlled loss of accuracy $(\leq \varepsilon)$ if \tilde{B} is used instead of B

Low-rank matrix formats

Frontal matrices are not low-rank but in some applications they exhibit low-rank blocks

A block B represents the interaction between two subdomains σ and τ.
If they have a small diameter and are far away their interaction is weak \Rightarrow rank is low.

Low-rank matrix formats

Frontal matrices are not low-rank but in some applications they exhibit low-rank blocks

A block B represents the interaction between two subdomains σ and τ. If they have a small diameter and are far away their interaction is weak \Rightarrow rank is low.

Low-rank matrix formats

Frontal matrices are not low-rank but in some applications they exhibit low-rank blocks

A block B represents the interaction between two subdomains σ and τ. If they have a small diameter and are far away their interaction is weak \Rightarrow rank is low.

Low-rank matrix formats

Frontal matrices are not low-rank but in some applications they exhibit low-rank blocks

A block B represents the interaction between two subdomains σ and τ. If they have a small diameter and are far away their interaction is weak \Rightarrow rank is low.

Low-rank matrix formats

Frontal matrices are not low-rank but in some applications they exhibit low-rank blocks

A block B represents the interaction between two subdomains σ and τ. If they have a small diameter and are far away their interaction is weak \Rightarrow rank is low.

Low-rank matrix formats

Frontal matrices are not low-rank but in some applications they exhibit low-rank blocks

τ

A block B represents the interaction between two subdomains σ and τ. If they have a small diameter and are far away their interaction is weak \Rightarrow rank is low.

Low-rank matrix formats

Frontal matrices are not low-rank but in some applications they exhibit low-rank blocks

A block B represents the interaction between two subdomains σ and τ. If they have a small diameter and are far away their interaction is weak \Rightarrow rank is low.

\mathcal{H} and BLR matrices

\mathcal{H}-matrix

BLR matrix

\mathcal{H} and BLR matrices

\mathcal{H}-matrix

BLR matrix

- Theoretical complexity can be as low as $O\left(n^{4 / 3}\right)$
- Simple structure structure

\mathcal{H} and BLR matrices

\mathcal{H}-matrix

BLR matrix

- Theoretical complexity can be as low as $O\left(n^{4 / 3}\right)$
- Simple structure
- Theoretical complexity can be as low as $O(n)$
- Complex, hierarchical structure

Find a good comprise between complexity and performance

\mathcal{H} and BLR matrices

\mathcal{H}-matrix

BLR matrix

- Theoretical complexity can be as low as $O\left(n^{4 / 3}\right)$
- Simple structure
- Theoretical complexity can be as low as $O(n)$
- Complex, hierarchical structure

Find a good comprise between complexity and performance
\Rightarrow Ongoing collaboration with STRUMPACK team (LBNL) to compare BLR and hierarchical formats

Standard BLR factorization: FSCU

- FSCU

Standard BLR factorization: FSCU

- FSCU (Factor,
- Easy to handle numerical pivoting, a critical feature often lacking in other low-rank solvers

Standard BLR factorization: FSCU

- FSCU (Factor, Solve,
- Easy to handle numerical pivoting, a critical feature often lacking in other low-rank solvers

Standard BLR factorization: FSCU

- FSCU (Factor, Solve, Compress,
- Easy to handle numerical pivoting, a critical feature often lacking in other low-rank solvers

Standard BLR factorization: FSCU

- FSCU (Factor, Solve, Compress, Update)
- Easy to handle numerical pivoting, a critical feature often lacking in other low-rank solvers

Standard BLR factorization: FSCU

- FSCU (Factor, Solve, Compress, Update)
- Easy to handle numerical pivoting, a critical feature often lacking in other low-rank solvers

Standard BLR factorization: FSCU

- FSCU (Factor, Solve, Compress, Update)
- Easy to handle numerical pivoting, a critical feature often lacking in other low-rank solvers

Standard BLR factorization: FSCU

- FSCU (Factor, Solve, Compress, Update)
- Easy to handle numerical pivoting, a critical feature often lacking in other low-rank solvers

Standard BLR factorization: FSCU

- FSCU (Factor, Solve, Compress, Update)
- Easy to handle numerical pivoting, a critical feature often lacking in other low-rank solvers

Standard BLR factorization: FSCU

- FSCU (Factor, Solve, Compress, Update)
- Easy to handle numerical pivoting, a critical feature often lacking in other low-rank solvers

Standard BLR factorization: FSCU

- FSCU (Factor, Solve, Compress, Update)
- Easy to handle numerical pivoting, a critical feature often lacking in other low-rank solvers

Standard BLR factorization: FSCU

- FSCU (Factor, Solve, Compress, Update)
- Easy to handle numerical pivoting, a critical feature often lacking in other low-rank solvers

Standard BLR factorization: FSCU

\square
\square

- FSCU (Factor, Solve, Compress, Update)
- Easy to handle numerical pivoting, a critical feature often lacking in other low-rank solvers

Standard BLR factorization: FSCU

- FSCU (Factor, Solve, Compress, Update)
- Easy to handle numerical pivoting, a critical feature often lacking in other low-rank solvers

Standard BLR factorization: FSCU

\square

- FSCU (Factor, Solve, Compress, Update)
- Easy to handle numerical pivoting, a critical feature often lacking in other low-rank solvers

Standard BLR factorization: FSCU

- FSCU (Factor, Solve, Compress, Update)
- Easy to handle numerical pivoting, a critical feature often lacking in other low-rank solvers

Standard BLR factorization: FSCU

- FSCU (Factor, Solve, Compress, Update)
- Easy to handle numerical pivoting, a critical feature often lacking in other low-rank solvers

Standard BLR factorization: FSCU

- FSCU (Factor, Solve, Compress, Update)
- Easy to handle numerical pivoting, a critical feature often lacking in other low-rank solvers
- Potential of this variant was studied in
- Amestoy, Ashcraft, Boiteau, Buttari, L'Excellent, and Weisbecker. Improving Multifrontal Methods by Means of Block Low-Rank Representations, SIAM J. Sci. Comput., 2015.

Standard BLR factorization: FSCU

- FSCU (Factor, Solve, Compress, Update)
- Easy to handle numerical pivoting, a critical feature often lacking in other low-rank solvers
- Potential of this variant was studied in
- Amestoy, Ashcraft, Boiteau, Buttari, L'Excellent, and Weisbecker. Improving Multifrontal Methods by Means of Block Low-Rank Representations, SIAM J. Sci. Comput., 2015.
...but it had much room for improvement

Novel variants to improve the BLR factorization

LUAR variant: accumulation and recompression

- FSCU (Factor, Solve, Compress, Update)
- FSCU+LUAR

LUAR variant: accumulation and recompression

- FSCU (Factor, Solve, Compress, Update)
- FSCU+LUAR
- Better granularity in Update operations

- FSCU (Factor, Solve, Compress, Update)
- FSCU+LUAR
- Better granularity in Update operations
- Potential recompression \Rightarrow complexity reduction: $O\left(n^{\frac{5}{3}}\right) \rightarrow O\left(n^{\frac{14}{9}}\right)$
\Rightarrow Collaboration with LSTC to design efficient recompression strategies

- FSCU (Factor, Solve, Compress, Update)
- FSCU+LUAR
- Better granularity in Update operations
- Potential recompression \Rightarrow complexity reduction: $O\left(n^{\frac{5}{3}}\right) \rightarrow O\left(n^{\frac{14}{9}}\right)$
\Rightarrow Collaboration with LSTC to design efficient recompression strategies

- FSCU (Factor, Solve, Compress, Update)
- FSCU+LUAR
- Better granularity in Update operations
- Potential recompression \Rightarrow complexity reduction: $O\left(n^{\frac{5}{3}}\right) \rightarrow O\left(n^{\frac{14}{9}}\right)$
\Rightarrow Collaboration with LSTC to design efficient recompression strategies

- FSCU (Factor, Solve, Compress, Update)
- FSCU+LUAR
- Better granularity in Update operations
- Potential recompression \Rightarrow complexity reduction: $O\left(n^{\frac{5}{3}}\right) \rightarrow O\left(n^{\frac{14}{9}}\right)$
\Rightarrow Collaboration with LSTC to design efficient recompression strategies
- $\operatorname{FCSU}(+L U A R)$

- FSCU (Factor, Solve, Compress, Update)
- FSCU+LUAR
- Better granularity in Update operations
- Potential recompression \Rightarrow complexity reduction: $O\left(n^{\frac{5}{3}}\right) \rightarrow O\left(n^{\frac{14}{9}}\right)$
\Rightarrow Collaboration with LSTC to design efficient recompression strategies
- $\operatorname{FCSU}(+L U A R)$
- Restricted pivoting, e.g. to diagonal blocks

- FSCU (Factor, Solve, Compress, Update)
- FSCU+LUAR
- Better granularity in Update operations
- Potential recompression \Rightarrow complexity reduction: $O\left(n^{\frac{5}{3}}\right) \rightarrow O\left(n^{\frac{14}{9}}\right)$
\Rightarrow Collaboration with LSTC to design efficient recompression strategies
- FCSU(+LUAR)
- Restricted pivoting, e.g. to diagonal blocks

- FSCU (Factor, Solve, Compress, Update)
- FSCU+LUAR
- Better granularity in Update operations
- Potential recompression \Rightarrow complexity reduction: $O\left(n^{\frac{5}{3}}\right) \rightarrow O\left(n^{\frac{14}{9}}\right)$
\Rightarrow Collaboration with LSTC to design efficient recompression strategies
- FCSU(+LUAR)
- Restricted pivoting, e.g. to diagonal blocks
- Low-rank Solve \Rightarrow complexity reduction: $O\left(n^{\frac{14}{9}}\right) \rightarrow O\left(n^{\frac{4}{3}}\right)$

- FSCU (Factor, Solve, Compress, Update)
- FSCU+LUAR
- Better granularity in Update operations
- Potential recompression \Rightarrow complexity reduction: $O\left(n^{\frac{5}{3}}\right) \rightarrow O\left(n^{\frac{14}{9}}\right)$
\Rightarrow Collaboration with LSTC to design efficient recompression strategies
- FCSU(+LUAR)
- Restricted pivoting, e.g. to diagonal blocks \Rightarrow not acceptable in many applications \Rightarrow encouraging results with new variant compatible with pivoting
- Low-rank Solve \Rightarrow complexity reduction: $O\left(n^{\frac{14}{9}}\right) \rightarrow O\left(n^{\frac{4}{3}}\right)$

Performance and scalability

 of the BLR factorization
Multicore performance results

Structural mechanics Matrix of order 8M Required accuracy: 10^{-9}

Seismic imaging
Matrix of order 17M
Required accuracy: 10^{-3}

Electromagnetism Matrix of order 21M Required accuracy: 10^{-7}

Results on 24 Haswell cores:

	factorization time (s)					
application	MUMPS	BLR	BLR +	ratio		
structural	2066.9	1129.0	377.9	5.5		
seismic	5649.5	1998.8	773.7	7.3		
electromag.	13842.7	3702.9	736.1	18.8		

- Amestoy, Buttari, L'Excellent, and Mary. Performance and Scalability of the Block Low-Rank Multifrontal Factorization on Multicore Architectures, submitted to ACM

Distributed-memory performance results

- Volume of communications is reduced less than flops \Rightarrow higher relative weight of communications
- Low-rank compression cannot be predicted \Rightarrow load unbalance increases

Distributed-memory performance results

- Volume of communications is reduced less than flops \Rightarrow higher relative weight of communications
- Low-rank compression cannot be predicted \Rightarrow load unbalance increases
\Rightarrow Ongoing work to design strategies to overcome these issues

Results on 900 Ivy Bridge cores:

	factorization time (s)			
application	MUMPS	BLR	BLR +	ratio
structural	263.0	156.9	104.9	2.5
seismic	600.9	231.2	123.4	4.9
electromag.	1242.6	454.3	233.8	5.3

Result on a very large problem

Result on matrix 15 Hz (order 58×10^{6}, nnz 1.5×10^{9}) on 900 cores:

	flops		factors		memory (GB)		
	(PF)	size (TB)	avg.	max.	ana.	fapsed time (s)	fac.
	sol.						
MUMPS	29.6	3.7	103	120	OOM	OOM	OOM
BLR	1.3	0.7	37	57	437	856	$0.2 / \mathrm{RHS}$
ratio	22.9	5.1	2.8	2.3			

\Rightarrow this result opens promising perspectives for frequency-domain inversion with low-rank direct solver even at high frequencies

Conclusion

References and acknowledgements

Publications

- Amestoy, Buttari, L'Excellent, and Mary. On the Complexity of the Block Low-Rank Multifrontal Factorization, SIAM J. Sci. Comput., 2017.
- Amestoy, Buttari, L'Excellent, and Mary. Performance and Scalability of the Block Low-Rank Multifrontal Factorization on Multicore Architectures, submitted to ACM Trans. Math. Soft., 2017.
- Amestoy, Brossier, Buttari, L'Excellent, Mary, Métivier, Miniussi, and Operto. Fast 3D frequency-domain full waveform inversion with a parallel Block Low-Rank multifrontal direct solver: application to OBC data from the North Sea, Geophysics, 2016.
- Shantsev, Jaysaval, de la Kethulle de Ryhove, Amestoy, Buttari, L'Excellent, and Mary. Large-scale 3D EM modeling with a Block Low-Rank multifrontal direct solver, Geophysical Journal International, 2017.

Software

- MUMPS 5.1.2

Acknowledgements

- LIP and CALMIP for providing access to the machines
- EMGS, SEISCOPE, and EDF for providing the matrices
- MUMPS consortium (EDF, Altair, Michelin, LSTC, Siemens, ESI, Total, FFT, Safran, LBNL)

Thanks! Questions?

Backup Slides

\mathcal{H} vs. BLR complexity

Until recently, BLR complexity was unknown.
Can we use \mathcal{H} theory on BLR matrices?

\mathcal{H} vs. BLR complexity

Until recently, BLR complexity was unknown.
Can we use \mathcal{H} theory on BLR matrices?

\mathcal{H} vs. BLR complexity

Until recently, BLR complexity was unknown.
Can we use \mathcal{H} theory on BLR matrices?

Complexity mainly depends on $r_{\text {max }}$, the maximal rank of the blocks With \mathcal{H} partitioning, $r_{\text {max }}$ is small

\mathcal{H} vs. BLR complexity

Until recently, BLR complexity was unknown.
Can we use \mathcal{H} theory on BLR matrices?

Complexity mainly depends on $r_{\text {max }}$, the maximal rank of the blocks With \mathcal{H} partitioning, $r_{\text {max }}$ is small

BLR: a particular case of \mathcal{H} ?

Problem: in \mathcal{H} formalism, the maxrank of the blocks of a BLR matrix is $r_{\text {max }}=b$ (due to the non-admissible blocks) Solution: bound the rank of the admissible blocks only, and make sure the non-admissible blocks are in small number

Complexity of dense BLR factorization

BLR-admissibility condition of a partition \mathcal{P}

\mathcal{P} is admissible $\Leftrightarrow N_{\text {na }}=\#\{\sigma \times \tau \in \mathcal{P}, \quad \sigma \times \tau$ is not admissible $\} \leq q$

Non-Admissible

Admissible

Complexity of dense BLR factorization

BLR-admissibility condition of a partition \mathcal{P}

\mathcal{P} is admissible $\Leftrightarrow N_{\text {na }}=\#\{\sigma \times \tau \in \mathcal{P}, \quad \sigma \times \tau$ is not admissible $\} \leq q$

Non-Admissible

Admissible

Main result

There exists an admissible \mathcal{P} for $q=O(1)$, s.t. the maxrank of the admissible blocks of A is $r=O\left(r_{\max }^{\mathcal{H}}\right)$.
The complexity of the factorization of a dense matrix of order m is thus:
$\mathcal{C}_{\text {facto }}=O\left(r^{2} m^{3} / b^{2}+m b^{2} q^{2}\right)=O\left(r^{2} m^{3} / b^{2}+m b^{2}\right)=O\left(r m^{2}\right)(f$ for $b=O(\sqrt{r m}))$

- Amestoy, Buttari, L'Excellent, and Mary. On the Complexity of the Block Low-Rank

1. Poisson: N^{3} grid with a 7 -point stencil with $u=1$ on the boundary $\partial \Omega$

$$
\Delta u=f
$$

2. Helmholtz: N^{3} grid with a 27-point stencil, ω is the angular frequency, $v(x)$ is the seismic velocity field, and $u(x, \omega)$ is the time-harmonic wavefield solution to the forcing term $s(x, \omega)$.

$$
\left(-\Delta-\frac{\omega^{2}}{v(x)^{2}}\right) u(x, \omega)=s(x, \omega)
$$

ω is fixed and equal to 4 Hz .

Experimental MF flop complexity: Poisson $\left(\varepsilon=10^{-10}\right)$

Nested Dissection
ordering (geometric)

- good agreement with theoretical complexity $\left(O\left(n^{2}\right), O\left(n^{1.67}\right), O\left(n^{1.55}\right)\right.$, and $\left.O\left(n^{1.33}\right)\right)$

Experimental MF flop complexity: Poisson $\left(\varepsilon=10^{-10}\right)$

Nested Dissection ordering (geometric)

METIS ordering (purely algebraic)

- good agreement with theoretical complexity $\left(O\left(n^{2}\right), O\left(n^{1.67}\right), O\left(n^{1.55}\right)\right.$, and $\left.O\left(n^{1.33}\right)\right)$
- remains close to ND complexity with METIS ordering

Experimental MF flop complexity: Helmholtz $\left(\varepsilon=10^{-4}\right)$

Nested Dissection ordering (geometric)

METIS ordering

(purely algebraic)

- good agreement with theoretical complexity $\left(O\left(n^{2}\right), O\left(n^{1.83}\right), O\left(n^{1.78}\right)\right.$, and $\left.O\left(n^{1.67}\right)\right)$
- remains close to ND complexity with METIS ordering

Experimental MF complexity: factor size

NNZ (Poisson)

NNZ (Helmholtz)

- good agreement with theoretical complexity (FR: $O\left(n^{1.33}\right)$; BLR: $O(n \log n)$ and $O\left(n^{1.17} \log n\right)$)

Experiments are done on the shared-memory machines of the LIP laboratory of Lyon:

1. brunch

- Four Intel(r) 24-cores Broadwell @ 2,2 GHz
- Peak per core is 35.2 GF/s
- Total memory is 1.5 TB

2. grunch

- Two Intel(r) 14-cores Haswell @ 2,3 GHz
- Peak per core is $36.8 \mathrm{GF} / \mathrm{s}$
- Total memory is 768 GB

Exploiting tree-based multithreading in MF solvers

Exploiting tree-based multithreading in MF solvers

- Work based on W. M. Sid-Lakhdar's PhD thesis
- LO layer computed with a variant of the Geist-Ng algorithm
- NUMA-aware implementation
- use of Idle Core Recycling technique (variant of work-stealing)
- L'Excellent and Sid-Lakhdar. A study of shared-memory parallelism in a multifrontal solver, Parallel Computing.

Exploiting tree-based multithreading in MF solvers

- Work based on W. M. Sid-Lakhdar's PhD thesis
- LO layer computed with a variant of the Geist-Ng algorithm
- NUMA-aware implementation
- use of Idle Core Recycling technique (variant of work-stealing)
- L'Excellent and Sid-Lakhdar. A study of shared-memory parallelism in a multifrontal solver, Parallel Computing.
\Rightarrow how big an impact can tree-based multithreading make?

Impact of tree-based multithreading on BLR

Higher AI

Lower Al

24 threads				24 threads + tree MT	
			\% time	\%/ai	
FR	509	21%			
BLR					

Impact of tree-based multithreading on BLR

Higher AI

Lower Al

	24 threads		24 threads + tree MT	
			time	\%/ai
FR	time	\%/ai	time	21%
BLR	307	35%		

Impact of tree-based multithreading on BLR

Higher AI

Lower AI

	24 threads		24 threads + tree MT	
			(ime	
	time	\%/ai	time	
FR	509	21%	424	13%
BLR	307	35%		

Impact of tree-based multithreading on BLR

Higher AI

Lower AI

	24 threads		24 threads + tree MT	
time	$\%_{\text {lai }}$	time	$\%_{\text {।ai }}$	
FR	509	21%	424	13%
BLR	307	35%	221	24%

$\Rightarrow 1.7$ gain becomes 1.9 thanks to tree-based MT

Right Looking Vs. Left-Looking analysis

		FR		BLR	
		RL	LL	RL	LL
1 thread	Update	6467		1064	
	Total	7390		2242	
24 threads	Update	338	336	110	67
	Total	424	421	221	175

Right Looking Vs. Left-Looking analysis

		FR		BLR	
		RL	LL	RL	LL
1 thread	Update	6467		1064	
	Total	7390		2242	
24 threads	Update	338	336	110	67
	Total	424	421	221	175

		FR		BLR	
		RL	LL	RL	LL
1 thread	Update	6467		1064	
	Total	7390		2242	
24 threads	Update	338	336	110	67
	Total	424	421	221	175

\Rightarrow Lower volume of memory transfers in LL (more critical in MT)

Right Looking Vs. Left-Looking analysis

		FR		BLR	
		RL	LL	RL	LL
1 thread	Update	6467		1064	
	Total	7390		2242	
24 threads	Update	338	336	110	67
	Total	424	421	221	175

\Rightarrow Lower volume of memory transfers in LL (more critical in MT)
Update is now less memory-bound: 1.9 gain becomes 2.4 in LL

Double complex (z) performance benchmark of Outer Produc \dagger

LL LUA LUAR*

average size of Outer Product	16.5	61.0	32.8	
flops $\left(\times 10^{12}\right)$	Outer Product	3.76	3.76	1.59
	Total	10.19	10.19	8.15
time (s)	Outer Product	21	14	6
	Total	175	167	160

* All metrics include the Recompression overhead

Double complex (z) performance benchmark of Outer Produc \dagger

		LL	LUA	LUAR
average size of Outer Product	16.5	61.0	32.8	
	Outer Product	3.76	3.76	1.59
	Total	10.19	10.19	8.15
time (s)	Outer Product	21	14	6
	Total	175	167	160

* All metrics include the Recompression overhead

Double complex (z) performance benchmark of Outer Produc \dagger

LL LUA LUAR*

average size of Outer Product	16.5	61.0	32.8	
flops $\left(\times 10^{12}\right)$	Outer Product	3.76	3.76	1.59
	Total	10.19	10.19	8.15
time (s)	Outer Product	21	14	6
	Total	175	167	160

* All metrics include the Recompression overhead

Compress before Solve + pivoting: CFSU variant

How to assess the quality of pivot k ?
We need to estimate $\left\|\widetilde{B}_{:, k}\right\|_{\text {max }}$:
$\left\|\widetilde{B}_{:, k}\right\|_{\max } \leq\left\|\widetilde{B}_{:, k}\right\|_{2}=\left\|X Y_{k,:}^{T}\right\|_{2}=\left\|Y_{k,:}^{T}\right\|_{2}$,
assuming X is orthonormal (e.g. RRQR, SVD).

matrix	residual			flops (\% FR)		
	FSCU	FCSU	CFSU	FSCU	FCSU	CFSU
af_shell10	$2 \mathrm{e}-06$	$5 \mathrm{e}-06$	4e-06	29.9	22.7	22.7
Lin	$4 \mathrm{e}-05$	4e-05	$4 \mathrm{e}-05$	24.0	18.5	18.5
māriō0̄-	$2 \mathrm{e}-06$	fail	$\overline{1} \overline{\mathrm{e}}-\overline{0} \overline{6}$	$\overline{8} \overline{2} . \overline{8}$	--	$\overline{72.2}$
perf009ar	$3 \mathrm{e}-13$	1e-01	$9 \mathrm{e}-11$	26.0	22.7	22.1

