On the comparison of sparse multifrontal hierarchical and Block ow-Rank solvers

P. Amestoy ${ }^{*, 1} \quad$ A. Buttari**, ${ }^{*} \quad$ P. Ghysels ${ }^{\ddagger}$ J.-Y. L'Excellent ${ }^{\dagger, 3}$ X. S. Li ${ }^{\ddagger} \quad$ T. Mary ${ }^{*, 4} \quad$ F.-H. Rouet**
Université de Toulouse ${ }^{\ddagger}$ LBNL ${ }^{\text {E ENS }}$ Lyon ${ }^{ * \text { LSTC }}$
${ }^{1}$ INPT-IRIT ${ }^{2}$ CNRS-IRIT ${ }^{3}$ INRIA-LIP ${ }^{4}$ UPS-IRIT
MUMPS User Days, Montbonnot Saint-Martin, Jun. 1-2, 2017

Introduction

Discretization of a physical problem (e.g. Code_Aster, finite elements)
\Downarrow
$\mathbf{A} \mathbf{X}=\mathbf{B}, \mathbf{A}$ large and sparse, \mathbf{B} dense or sparse Sparse direct methods: $\mathbf{A}=\mathbf{L U}\left(\mathbf{L D L}^{\boldsymbol{\top}}\right)$

Often a significant part of simulation cost
Objective discussed in this minisymposium: how to reduce the cost of sparse direct solvers?

Focus on large-scale applications and architectures

Multifrontal Factorization with Nested Dissection

Multifrontal Factorization with Nested Dissection

3D problem complexity
\rightarrow Flops: $O\left(n^{2}\right)$, mem: $O\left(n^{4 / 3}\right)$

Low-rank matrix formats

BLR matrix

HODLR/HSS-matrix

$\mathcal{H} / \mathcal{H}^{2}$-matrix

Low-rank matrix formats

BLR matrix

HODLR/HSS-matrix

$\mathcal{H} / \mathcal{H}^{2}$-matrix

A block B represents the interaction between two subdomains σ and τ. If they have a small diameter and are far away their interaction is weak \Rightarrow rank is low.

Low-rank matrix formats

BLR matrix

HODLR/HSS-matrix

$\mathcal{H} / \mathcal{H}^{2}$-matrix

A block B represents the interaction between two subdomains σ and τ. If they have a small diameter and are far away their interaction is weak \Rightarrow rank is low.

Block-admissibility condition:

- Weak: $\sigma \times \tau$ is admissible $\Leftrightarrow \sigma \neq \tau$
- Strong: $\sigma \times \tau$ is admissible $\Leftrightarrow \operatorname{dist}(\sigma, \tau)>\eta \max (\operatorname{diam}(\sigma), \operatorname{diam}(\tau))$

Low-rank matrix formats

BLR matrix

HODLR/HSS-matrix

$\mathcal{H} / \mathcal{H}^{2}$-matrix

$$
\tilde{B}=X Y^{\top} \text { such that } \operatorname{rank}(\tilde{B})=k_{\varepsilon} \text { and }\|B-\tilde{B}\| \leq \varepsilon
$$

If $k_{\varepsilon} \ll \operatorname{size}(B) \Rightarrow$ memory and flops can be reduced with a controlled loss of accuracy ($\leq \varepsilon$)

Low-rank matrix formats

BLR matrix

HODLR/HSS-matrix

$\mathcal{H} / \mathcal{H}^{2}$-matrix

	BLR	HODLR	HSS	\mathcal{H}	\mathcal{H}^{2}
blocking	flat	hierar.	hierar.	hierar.	hierar.
adm. cond.	both	weak	weak	strong	strong
nested basis	no	no	yes	no	yes

Low-rank matrix formats

BLR matrix

HODLR/HSS-matrix

$\mathcal{H} / \mathcal{H}^{2}$-matrix

Objective of this work: compare BLR and hierarchical formats, both from a theoretical and experimental standpoint
\Rightarrow collaboration between BLR-based MUMPS and HSS-based STRUMPACK teams.

Main differences between
MUMPS and STRUMPACK

Full-Rank Solvers

- Both are multifrontal

Full-Rank Solvers

- Both are multifrontal
- STRUMPACK supports $L U$ only \Rightarrow experiments are all performed on unsymmetric matrices

Full-Rank Solvers

- Both are multifrontal
- STRUMPACK supports $L U$ only \Rightarrow experiments are all performed on unsymmetric matrices
- STRUMPACK pivots inside diagonal blocks only; MUMPS has several options and was used with restricted pivoting too

Full-Rank Solvers

- Both are multifrontal
- STRUMPACK supports $L U$ only \Rightarrow experiments are all performed on unsymmetric matrices
- STRUMPACK pivots inside diagonal blocks only; MUMPS has several options and was used with restricted pivoting too
- Both support geometric and algebraic orderings: METIS 5.1.0 is used in the experiments

Full-Rank Solvers

- Both are multifrontal
- STRUMPACK supports $L U$ only \Rightarrow experiments are all performed on unsymmetric matrices
- STRUMPACK pivots inside diagonal blocks only; MUMPS has several options and was used with restricted pivoting too
- Both support geometric and algebraic orderings: METIS 5.1.0 is used in the experiments
- Both can exploit both shared- and distributed-memory architectures:
- Shared-memory MUMPS: mainly node // based on multithreaded BLAS and OpenMP + some experimental tree // in OpenMP
- Shared-memory STRUMPACK: tree and node // in handcoded OpenMP (sequential BLAS)
- Distributed-memory MUMPS: tree MPI // + node 1D MPI //
- Distributed-memory STRUMPACK: tree MPI // + node 2D MPI //

Low-Rank Solvers

- MUMPS uses BLR, STRUMPACK uses HSS

Low-Rank Solvers

- MUMPS uses BLR, STRUMPACK uses HSS
- Factorization algorithm:
- MUMPS interleaves compressions and factorizations of panels
- STRUMPACK first compresses the entire matrix, then performs a ULV factorization
\Rightarrow STRUMPACK is fully-structured while MUMPS is not

Low-Rank Solvers

- MUMPS uses BLR, STRUMPACK uses HSS
- Factorization algorithm:
- MUMPS interleaves compressions and factorizations of panels
- STRUMPACK first compresses the entire matrix, then performs a ULV factorization
\Rightarrow STRUMPACK is fully-structured while MUMPS is not
- Compression:
- Kernel: both use truncated QR with column pivoting, with in addition random sampling in STRUMPACK
- Threshold: absolute in MUMPS, relative in STRUMPACK

Low-Rank Solvers

- MUMPS uses BLR, STRUMPACK uses HSS
- Factorization algorithm:
- MUMPS interleaves compressions and factorizations of panels
- STRUMPACK first compresses the entire matrix, then performs a ULV factorization
\Rightarrow STRUMPACK is fully-structured while MUMPS is no \dagger
- Compression:
- Kernel: both use truncated QR with column pivoting, with in addition random sampling in STRUMPACK
- Threshold: absolute in MUMPS, relative in STRUMPACK
- Assembly (extend-add):
- contribution block not compressed in MUMPS \Rightarrow FR assembly
- contribution block compressed in STRUMPACK \Rightarrow LR assembly

Low-Rank Solvers

- MUMPS uses BLR, STRUMPACK uses HSS
- Factorization algorithm:
- MUMPS interleaves compressions and factorizations of panels
- STRUMPACK first compresses the entire matrix, then performs a ULV factorization
\Rightarrow STRUMPACK is fully-structured while MUMPS is no \dagger
- Compression:
- Kernel: both use truncated QR with column pivoting, with in addition random sampling in STRUMPACK
- Threshold: absolute in MUMPS, relative in STRUMPACK
- Assembly (extend-add):
- contribution block not compressed in MUMPS \Rightarrow FR assembly
- contribution block compressed in STRUMPACK \Rightarrow LR assembly
- Both only compress fronts of size ≥ 1000

Low-Rank Solvers

- MUMPS uses BLR, STRUMPACK uses HSS
- Factorization algorithm:
- MUMPS interleaves compressions and factorizations of panels
- STRUMPACK first compresses the entire matrix, then performs a ULV factorization
\Rightarrow STRUMPACK is fully-structured while MUMPS is no \dagger
- Compression:
- Kernel: both use truncated QR with column pivoting, with in addition random sampling in STRUMPACK
- Threshold: absolute in MUMPS, relative in STRUMPACK
- Assembly (extend-add):
- contribution block not compressed in MUMPS \Rightarrow FR assembly
- contribution block compressed in STRUMPACK \Rightarrow LR assembly
- Both only compress fronts of size ≥ 1000
- Solution phase:
- BLR solve not yet available in MUMPS \Rightarrow performed in FR
- HSS solve available in STRUMPACK

Complexity of the factorization

\mathcal{H}-admissibility and sparsity constant

- \mathcal{H}-admissibility condition: A partition $P \in \mathcal{P}(\mathcal{I} \times \mathcal{I})$ is admissible iff

$$
\forall \sigma \times \tau \in P, \quad \sigma \times \tau \text { is admissible or } \min (\# \sigma, \# \tau) \leq c_{\text {min }}
$$

\mathcal{H}-admissibility and sparsity constant

(here, $c_{s p}=6$)

- \mathcal{H}-admissibility condition: A partition $P \in \mathcal{P}(\mathcal{I} \times \mathcal{I})$ is admissible iff

$$
\forall \sigma \times \tau \in P, \quad \sigma \times \tau \text { is admissible or } \min (\# \sigma, \# \tau) \leq c_{\text {min }}
$$

- The sparsity constant $c_{s p}$ is defined as the maximal number of blocks of the same size on a given row or column. It measures the sparsity of the blocking imposed by the partition P.
- In BLR, fully refined blocking $\Rightarrow c_{s p}=$ number of blocks per row
- Can construct an admissible \mathcal{H}-partitioning such that $c_{\text {sp }}=O(1)$

\mathcal{H} vs. BLR complexity

Dense factorization complexity
Complexity: $\mathcal{C}_{\text {facto }}=O\left(m c_{\text {sp }}^{2} r_{\text {max }}^{2} \log ^{2} m\right)$ for \mathcal{H} and $O\left(m c_{\text {spr }}^{2} r_{\text {max }}^{2}\right)$ for HSS
m matrix size
$c_{s p} \quad$ sparsity constant
$r_{\max }$ bound on the maximal rank of all blocks

\mathcal{H} vs. BLR complexity

Dense factorization complexity

Complexity: $\mathcal{C}_{\text {facto }}=O\left(m c_{\text {sp }}^{2} r_{\text {max }}^{2} \log ^{2} m\right)$ for \mathcal{H} and $O\left(m c_{\text {spr }}^{2} r_{\text {max }}^{2}\right)$ for HSS
m matrix size
$c_{s p} \quad$ sparsity constant
$r_{\max }$ bound on the maximal rank of all blocks

	\mathcal{H}	HSS	BLR
$c_{\text {sp }}$			
$r_{\text {max }}$			
$\mathcal{C}_{\text {facto }}$			

\mathcal{H} vs. BLR complexity

Dense factorization complexity

Complexity: $\mathcal{C}_{\text {facto }}=O\left(m c_{\text {sp }}^{2} r_{\text {max }}^{2} \log ^{2} m\right)$ for \mathcal{H} and $O\left(m c_{\text {sp }}^{2} r_{\text {max }}^{2}\right)$ for HSS
m matrix size
$c_{s p} \quad$ sparsity constant
$r_{\max }$ bound on the maximal rank of all blocks

	\mathcal{H}	HSS	BLR
$c_{\text {sp }}$	$O(1)^{*}$	$O(1)^{*}$	
$r_{\text {max }}$			
$\mathcal{C}_{\text {facto }}$			
${ }^{*}$ raser			

* Grasedyck \& Hackbusch, 2003

\mathcal{H} vs. BLR complexity

Dense factorization complexity

Complexity: $\mathcal{C}_{\text {facto }}=O\left(m c_{s p}^{2} r_{\max }^{2} \log ^{2} m\right)$ for \mathcal{H} and $O\left(m c_{s p}^{2} r_{\text {max }}^{2}\right)$ for HSS
m matrix size
$c_{\text {sp }} \quad$ sparsity constant
$r_{\text {max }}$ bound on the maximal rank of all blocks

	\mathcal{H}	HSS	BLR
$c_{\text {sp }}$ $r_{\text {max }}$ $\mathcal{C}_{\text {facto }}$	$\begin{aligned} & O(1)^{*} \\ & \text { small }^{\dagger} \end{aligned}$	$\begin{aligned} & O(1)^{*} \\ & \text { small } \end{aligned}$	
*Grasedyck \& Hackbusch, 2003 ${ }^{\dagger}$ Bebendorf \& Hackbusch, 2003 ${ }^{\ddagger}$ Chandrasekaran et al, 2010; Engquist \& Ying, 2011			

\mathcal{H} vs. BLR complexity

Dense factorization complexity

Complexity: $\mathcal{C}_{\text {facto }}=O\left(m c_{s p}^{2} r_{\max }^{2} \log ^{2} m\right)$ for \mathcal{H} and $O\left(m c_{s p}^{2} r_{\text {max }}^{2}\right)$ for HSS
m matrix size
$c_{\text {sp }} \quad$ sparsity constant
$r_{\text {max }}$ bound on the maximal rank of all blocks

	\mathcal{H}	HSS	BLR
$C_{\text {sp }}$	$O(1)^{*}$	$O(1)^{*}$	
$r_{\text {max }}$	small ${ }^{\dagger}$	small ${ }^{\ddagger}$	
$\mathcal{C}_{\text {facto }}$	$O\left(r_{\text {max }}^{2} m \log ^{2} m\right)$	$O\left(r_{\max }^{2} m\right)$	
${ }^{*}$ Grasedyck \& Hackbusch, 2003			
${ }^{\dagger}$ Bebendorf \& Hackbusch, 2003			
${ }^{\ddagger}$ Chandrasekaran et al, 2010; Engquist \& Ying, 2011			

\mathcal{H} vs. BLR complexity

Dense factorization complexity

Complexity: $\mathcal{C}_{\text {facto }}=O\left(m c_{s p}^{2} r_{\max }^{2} \log ^{2} m\right)$ for \mathcal{H} and $O\left(m c_{s p}^{2} r_{\text {max }}^{2}\right)$ for HSS
m matrix size
$c_{\text {sp }} \quad$ sparsity constant
$r_{\text {max }}$ bound on the maximal rank of all blocks

	\mathcal{H}	HSS	BLR
$\mathrm{c}_{\text {sp }}$	$O(1)^{*}$	$O(1)^{*}$	m / b
$r_{\text {max }}$	small ${ }^{\dagger}$	small ${ }^{\ddagger}$	
$\mathcal{C}_{\text {facto }}$	$O\left(r_{\text {max }}^{2} m \log ^{2} m\right)$	$O\left(r_{\max }^{2} m\right)$	
${ }^{*}$ Grasedyck \& Hackbusch, 2003			
${ }^{\dagger}$ Bebendorf \& Hackbusch, 2003			
${ }^{\ddagger}$ Chandrasekaran et al, 2010; Engquist \& Ying, 2011			

\mathcal{H} vs. BLR complexity

Dense factorization complexity

Complexity: $\mathcal{C}_{\text {facto }}=O\left(m c_{s p}^{2} r_{\max }^{2} \log ^{2} m\right)$ for \mathcal{H} and $O\left(m c_{s p}^{2} r_{\text {max }}^{2}\right)$ for HSS
m matrix size
$c_{\text {sp }} \quad$ sparsity constant
$r_{\text {max }}$ bound on the maximal rank of all blocks

	\mathcal{H}	HSS	BLR
$C_{\text {sp }}$	$O(1)^{*}$	$O(1)^{*}$	m / b
$r_{\text {max }}$	small ${ }^{\dagger}$	small ${ }^{\ddagger}$	b
$\mathcal{C}_{\text {facto }}$	$O\left(r_{\text {max }}^{2} m \log ^{2} m\right)$	$O\left(r_{\max }^{2} m\right)$	
${ }^{*}$ Grasedyck \& Hackbusch, 2003			
${ }^{\dagger}$ Bebendorf \& Hackbusch, 2003			
${ }^{\ddagger}$ Chandrasekaran et al, 2010; Engquist \& Ying, 2011			

\mathcal{H} vs. BLR complexity

Dense factorization complexity

Complexity: $\mathcal{C}_{\text {facto }}=O\left(m c_{s p}^{2} r_{\max }^{2} \log ^{2} m\right)$ for \mathcal{H} and $O\left(m c_{s p}^{2} r_{\text {max }}^{2}\right)$ for HSS
m matrix size
$c_{\text {sp }} \quad$ sparsity constant
$r_{\text {max }}$ bound on the maximal rank of all blocks

	\mathcal{H}	HSS	BLR
$C_{\text {sp }}$	$O(1)^{*}$	$O(1)^{*}$	m / b
$r_{\text {max }}$	small ${ }^{\dagger}$	small ${ }^{\ddagger}$	b
$\mathcal{C}_{\text {facto }}$	$O\left(r_{\text {max }}^{2} m \log ^{2} m\right)$	$O\left(r_{\text {max }}^{2} m\right)$	$O\left(m^{3}\right)$
${ }^{*}$ Grasedyck \& Hackbusch, 2003			
${ }^{\dagger}$ Bebendorf \& Hackbusch, 2003			
${ }^{\ddagger}$ Chandrasekaran et al, 2010; Engquist \& Ying, 2011			

\mathcal{H} vs. BLR complexity

Dense factorization complexity

Complexity: $\mathcal{C}_{\text {facto }}=O\left(m c_{\text {spr }}^{2} r_{\text {max }}^{2} \log ^{2} m\right)$ for \mathcal{H} and $O\left(m c_{\text {sp }}^{2} r_{\text {max }}^{2}\right)$ for HSS
m matrix size
$c_{\text {sp }} \quad$ sparsity constant
$r_{\text {max }}$ bound on the maximal rank of all blocks

	\mathcal{H}	HSS	BLR
$c_{\text {sp }}$	$O(1)^{*}$	$O(1)^{*}$	$\mathrm{~m} / \mathrm{b}$
$r_{\text {max }}$	small †	small	
$\mathcal{C}_{\text {facto }}$	$O\left(r_{\text {max }}^{2} m \log ^{2} m\right)$	$O\left(r_{\text {max }}^{2} m\right)$	$\mathrm{O}\left(\mathrm{m}^{3}\right)$

* Grasedyck \& Hackbusch, 2003
${ }^{\dagger}$ Bebendorf \& Hackbusch, 2003
${ }^{\ddagger}$ Chandrasekaran et al, 2010; Engquist \& Ying, 2011

BLR: a particular case of \mathcal{H} ?

Problem: in \mathcal{H} formalism, the maxrank of the blocks of a BLR matrix is $r_{\max }=b$ (due to the non-admissible blocks)
Solution: bound the rank of the admissible blocks only, and make sure the non-admissible blocks are in small number

Complexity of dense BLR factorization

BLR-admissibility condition of a partition \mathcal{P}

\mathcal{P} is admissible $\Leftrightarrow N_{\text {na }}=\#\{\sigma \times \tau \in \mathcal{P}, \quad \sigma \times \tau$ is not admissible $\} \leq q$

Non-Admissible

Admissible

Complexity of dense BLR factorization

BLR-admissibility condition of a partition \mathcal{P}

\mathcal{P} is admissible $\Leftrightarrow N_{\text {na }}=\#\{\sigma \times \tau \in \mathcal{P}, \quad \sigma \times \tau$ is not admissible $\} \leq q$

Non-Admissible

Admissible

Main result from Amestoy et al, 2016

There exists an admissible \mathcal{P} for $q=O(1)$, s.t. the maxrank of the admissible blocks of A is $r=O\left(r_{\text {max }}^{\mathcal{H}}\right)$
The dense factorization complexity thus becomes

$$
\mathcal{C}_{\text {facto }}=O\left(r^{2} m^{3} / b^{2}+m b^{2} q^{2}\right)=O\left(r^{2} m^{3} / b^{2}+m b^{2}\right)=O\left(r m^{2}\right)(\text { for } b=O(\sqrt{r m}))
$$

Under a nested dissection assumption, the sparse (multifrontal) complexity is directly obtained from the dense complexity

	operations (OPC)		factor size (NNZ)	
	$r=O(1)$	$r=O(N)$	$r=O(1)$	$r=O(N)$
FR	$O\left(n^{2}\right)$	$O\left(n^{2}\right)$	$O\left(n^{\frac{4}{3}}\right)$	$O\left(n^{\frac{4}{3}}\right)$
BLR	$O\left(n^{\frac{4}{3}}\right)$	$O\left(n^{\frac{5}{3}}\right)$	$O(n \log n)$	$O\left(n^{\frac{7}{6}} \log n\right)$
HSS	$O(n)$	$O\left(n^{\frac{4}{3}}\right)$	$O(n)$	$O\left(n^{\frac{7}{6}}\right)$

in the 3D case (similar analysis possible for 2D)

Experimental complexity: test problems

1. Poisson: N^{3} grid with a 7 -point stencil with $u=1$ on the boundary $\partial \Omega$

$$
\Delta u=f
$$

Rank bound is $r_{\text {max }}=O(1)$ for BLR (and \mathcal{H}), and $r_{\text {max }}=O(N)$ for HSS.
2. Helmholtz: N^{3} grid with a 27-point stencil, ω is the angular frequency, $v(x)$ is the seismic velocity field, and $u(x, \omega)$ is the time-harmonic wavefield solution to the forcing term $s(x, \omega)$.

$$
\left(-\Delta-\frac{\omega^{2}}{v(x)^{2}}\right) u(x, \omega)=s(x, \omega)
$$

ω is fixed and equal to 4 Hz .
Rank bound is $r_{\max }=O(N)$ for both BLR and HSS.

Experimental flop complexity: Poisson

- good agreement with the theory $\left(O\left(n^{4 / 3}\right)\right.$ for both BLR and HSS)
- higher threshold leads to lower exponent:
- relaxed rank pattern in HSS

Experimental flop complexity: Helmholtz

- good agreement with the theory $\left(O\left(n^{5 / 3}\right)\right.$ for BLR, $O\left(n^{4 / 3}\right)$ for HSS)
- threshold has almost no influence on the exponent

Experimental factor size complexity

Poisson

Helmholtz

- good agreement with the theory
- Poisson: $O(n \log n)$ for BLR, $O\left(n^{7 / 6}\right)$ for HSS
- Helmholtz: $O\left(n^{7 / 6} \log n\right)$ for BLR, $O\left(n^{7 / 6}\right)$ for HSS

Preliminary performance results

Experimental Setting

- Experiments are done on the cori supercomputer of NERSC
- Two Intel(r) 16-cores Haswell @ 2.3 GHz per node
- Peak per core is $36.8 \mathrm{GF} / \mathrm{s}$
- Total memory per node is 128 GB
- Test problems come from several real-life applications: Seismic (5Hz), Electromagnetism (S3), Structural (perfOO8d, Geo_1438, Hook_1498, ML_Geer, Serena, Transport), CFD (atmosmodd, PFlow_742), MHD (A22, A3O), Optimization (nlpkk+80), and Graph (cage13)
- We test 7 tolerance values (from 9e-1 to 1e-6) and FR, and compare the time for factorization + solve with:
- 1 step of iterative refinement in FR
- GMRES iterative solver in LR with required accuracy of 10^{-6} and restart of 30

Full-Rank solvers comparison

Optimal tolerance choice

	BLR	HSS
A22	$1 e-5$	FR
A30	$1 e-4$	FR
atmosmodd	$1 e-4$	$9 e-1$
cage13	$1 e-1$	$9 e-1$
Geo_1438	$1 e-4$	FR
Hook_1498	$1 e-5$	FR
ML_Geer	$1 e-6$	FR
nlpkkt80	$1 e-5$	$5 e-1$
PFlow_742	$1 e-6$	FR
Serena	$1 e-4$	$1 e-1$
spe1O-aniso	$1 e-5$	FR
Transport	$1 e-5$	FR

When high accuracy is needed...

spe10-aniso matrix

- No convergence except for low tolerances \Rightarrow direct solver mode is needed
- BLR is better suited as HSS rank is too high

When preconditioning works well...

cage13 matrix

- Fast convergence even for high tolerance \Rightarrow preconditioner mode is better suited
- As the size grows, HSS will gain the upper hand

The middle ground

 atmosmodd matrix

- Find compromise between accuracy and compression
- In general, BLR favors direct solver while HSS favors preconditioner mode
\Rightarrow Performance comparison will depend on numerical difficulty and size of the problem

Preconditioner vs direct solver mode

Optimal tolerance choice

	BLR	HSS
A22	$1 e-5$	FR
A30	$1 e-4$	FR
atmosmodd	$1 e-4$	$9 e-1$
cage13	$1 e-1$	$9 e-1$
Geo_1438	$1 e-4$	FR
Hook_1498	$1 e-5$	FR
ML_Geer	$1 e-6$	FR
nlpkkt80	$1 e-5$	$5 e-1$
PFlow_742	$1 e-6$	FR
Serena	$1 e-4$	le-1
spe1O-aniso	$1 e-5$	FR
Transport	$1 e-5$	FR

These preliminary results seem to suggest the following trend: difficulty

Preconditioner vs direct solver mode

Optimal tolerance choice

	BLR	HSS
A22	$1 e-5$	FR
A30	$1 e-4$	FR
atmosmodd	$1 e-4$	$9 e-1$
cage13	$1 e-1$	$9 e-1$
Geo_1438	$1 e-4$	FR
Hook_1498	$1 e-5$	FR
ML_Geer	$1 e-6$	FR
nlpkkt80	$1 e-5$	$5 e-1$
PFlow_742	$1 e-6$	FR
Serena	$1 e-4$	le-1
spe1O-aniso	$1 e-5$	FR
Transport	$1 e-5$	FR

These preliminary results seem to suggest the following trend: difficulty

\Rightarrow much further work needed to confirm this trend and to fully
understand the differences between low-rank formats

References and acknowledgements

Software packages

- MUMPS 5.1.0 (including BLR factorization for the first time)
- STRUMPACK-dense-1.1.1 and STRUMPACK-sparse 1.1.0

References

- Amestoy, Ashcraft, Boiteau, Buttari, L'Excellent, and Weisbecker. Improving Multifrontal Methods by means of Block Low-Rank Representations, SIAM SISC, 2015.
- Amestoy, Buttari, L'Excellent, and Mary. On the Complexity of the Block Low-Rank Multifrontal Factorization, SIAM SISC, 2017.
- Amestoy, Buttari, L'Excellent, and Mary. Performance and Scalability of the Block Low-Rank Multifrontal Factorization on Multicore Architectures, submitted to TOMS.
- Ghysels, Li, Rouet, Williams, Napov. An efficient multi-core implementation of a novel HSS-structured multifrontal solver using randomized sampling, SIAM SISC, 2015.
- Rouet, Li, Ghysels, Napov. A distributed-memory package for dense hierarchically semi-separable matrix computations using randomization, ACM TOMS, 2016.

Acknowledgements

- NERSC for providing access to the machine
- EMGS, SEISCOPE, EDF, and LBNL for providing the matrices

Thanks! Questions?

