On the comparison of sparse multifrontal hierarchical and Block Low-Rank solvers

P. Amestoy*,1 A. Buttari*,2 P. Ghysels ‡ J.-Y. L'Excellent †,3 X. S. Li ‡ T. Mary*,4 F.-H. Rouet**

*Université de Toulouse ‡ LBNL † ENS Lyon **LSTC 1 INPT-IRIT 2 CNRS-IRIT 3 INRIA-LIP 4 UPS-IRIT

MUMPS User Days, Montbonnot Saint-Martin, Jun. 1-2, 2017

Introduction

Sparse direct solvers

Discretization of a physical problem (e.g. Code_Aster, finite elements)

 $\bf A$ $\bf X$ = $\bf B$, $\bf A$ large and sparse, $\bf B$ dense or sparse Sparse direct methods : $\bf A$ = $\bf LU$ ($\bf LDL^T$)

Often a significant part of simulation cost

Objective discussed in this minisymposium: how to reduce the cost of sparse direct solvers?

Focus on large-scale applications and architectures

Multifrontal Factorization with Nested Dissection

Multifrontal Factorization with Nested Dissection

3D problem complexity

ightarrow Flops: $O(n^2)$, mem: $O(n^{4/3})$

BLR matrix

HODEK/H22-matrix

A block B represents the interaction between two subdomains σ and τ . If they have a small diameter and are far away their interaction is weak \Rightarrow rank is low.

A block B represents the interaction between two subdomains σ and τ . If they have a small diameter and are far away their interaction is weak \Rightarrow rank is low.

Block-admissibility condition:

- Weak: $\sigma \times \tau$ is admissible $\Leftrightarrow \sigma \neq \tau$
- Strong: $\sigma \times \tau$ is admissible \Leftrightarrow dist $(\sigma, \tau) > \eta \max(\operatorname{diam}(\sigma), \operatorname{diam}(\tau))$

$$\tilde{B} = XY^T \text{ such that } \mathrm{rank}(\tilde{B}) = k_\varepsilon \text{ and } \|B - \tilde{B}\| \leq \varepsilon$$

If $k_{\varepsilon} \ll \text{size}(B) \Rightarrow$ memory and flops can be reduced with a controlled loss of accuracy ($\leq \varepsilon$)

	BLR	HODLR	HSS	\mathcal{H}	\mathcal{H}^2
blocking adm. cond. nested basis	both	hierar. weak no	weak	hierar. strong no	hierar. strong yes

Objective of this work: compare BLR and hierarchical formats, both from a theoretical and experimental standpoint

⇒ collaboration between BLR-based **MUMPS** and HSS-based **STRUMPACK** teams.

Main differences between MUMPS and STRUMPACK

• Both are multifrontal

- Both are multifrontal
- STRUMPACK supports LU only ⇒ experiments are all performed on unsymmetric matrices

- Both are multifrontal
- STRUMPACK supports LU only ⇒ experiments are all performed on unsymmetric matrices
- STRUMPACK pivots inside diagonal blocks only; MUMPS has several options and was used with restricted pivoting too

- Both are multifrontal
- STRUMPACK supports LU only ⇒ experiments are all performed on unsymmetric matrices
- STRUMPACK pivots inside diagonal blocks only; MUMPS has several options and was used with restricted pivoting too
- Both support geometric and algebraic orderings: METIS 5.1.0 is used in the experiments

- Both are multifrontal
- STRUMPACK supports LU only ⇒ experiments are all performed on unsymmetric matrices
- STRUMPACK pivots inside diagonal blocks only; MUMPS has several options and was used with restricted pivoting too
- Both support geometric and algebraic orderings: METIS 5.1.0 is used in the experiments
- Both can exploit both shared- and distributed-memory architectures:
 - Shared-memory MUMPS: mainly node // based on multithreaded BLAS and OpenMP + some experimental tree // in OpenMP
 - Shared-memory STRUMPACK: tree and node // in handcoded OpenMP (sequential BLAS)
 - Distributed-memory MUMPS: tree MPI // + node 1D MPI //
 - Distributed-memory STRUMPACK: tree MPI // + node 2D MPI //

• MUMPS uses BLR, STRUMPACK uses HSS

- MUMPS uses BLR, STRUMPACK uses HSS
- Factorization algorithm:
 - MUMPS interleaves compressions and factorizations of panels
 - STRUMPACK first compresses the entire matrix, then performs a ULV factorization
 - ⇒ STRUMPACK is fully-structured while MUMPS is not

- MUMPS uses BLR, STRUMPACK uses HSS
- Factorization algorithm:
 - MUMPS interleaves compressions and factorizations of panels
 - STRUMPACK first compresses the entire matrix, then performs a ULV factorization
 - ⇒ STRUMPACK is fully-structured while MUMPS is not
- Compression:
 - Kernel: both use truncated QR with column pivoting, with in addition random sampling in STRUMPACK
 - Threshold: absolute in MUMPS, relative in STRUMPACK

- MUMPS uses BLR, STRUMPACK uses HSS
- Factorization algorithm:
 - MUMPS interleaves compressions and factorizations of panels
 - STRUMPACK first compresses the entire matrix, then performs a ULV factorization
 - ⇒ STRUMPACK is fully-structured while MUMPS is not
- Compression:
 - Kernel: both use truncated QR with column pivoting, with in addition random sampling in STRUMPACK
 - Threshold: absolute in MUMPS, relative in STRUMPACK
- Assembly (extend-add):
 - \circ contribution block not compressed in MUMPS \Rightarrow FR assembly
 - \circ contribution block compressed in STRUMPACK \Rightarrow LR assembly

- MUMPS uses BLR, STRUMPACK uses HSS
- Factorization algorithm:
 - MUMPS interleaves compressions and factorizations of panels
 - STRUMPACK first compresses the entire matrix, then performs a ULV factorization
 - ⇒ STRUMPACK is fully-structured while MUMPS is not
- Compression:
 - Kernel: both use truncated QR with column pivoting, with in addition random sampling in STRUMPACK
 - Threshold: absolute in MUMPS, relative in STRUMPACK
- Assembly (extend-add):
 - \circ contribution block not compressed in MUMPS \Rightarrow FR assembly
 - \circ contribution block compressed in STRUMPACK \Rightarrow LR assembly
- Both only compress fronts of size ≥ 1000

- MUMPS uses BLR, STRUMPACK uses HSS
- Factorization algorithm:
 - MUMPS interleaves compressions and factorizations of panels
 - STRUMPACK first compresses the entire matrix, then performs a ULV factorization
 - ⇒ STRUMPACK is fully-structured while MUMPS is not
- Compression:
 - Kernel: both use truncated QR with column pivoting, with in addition random sampling in STRUMPACK
 - Threshold: absolute in MUMPS, relative in STRUMPACK
- Assembly (extend-add):
 - \circ contribution block not compressed in MUMPS \Rightarrow FR assembly
 - $\circ~$ contribution block compressed in STRUMPACK \Rightarrow LR assembly
- Both only compress fronts of size ≥ 1000
- Solution phase:
 - BLR solve not yet available in MUMPS ⇒ performed in FR
 - HSS solve available in STRUMPACK
 MUMPS User Days, Montbonnot Saint-Martin, Jun. 1-2, 2017

Complexity of the factorization

${\cal H}$ -admissibility and sparsity constant

• \mathcal{H} -admissibility condition: A partition $P \in \mathcal{P}(\mathcal{I} \times \mathcal{I})$ is admissible iff

 $\forall \sigma \times \tau \in P, \ \sigma \times \tau \text{ is admissible } \text{or } \min(\#\sigma, \#\tau) \leq c_{\min}$

${\cal H}$ -admissibility and sparsity constant

• \mathcal{H} -admissibility condition: A partition $P \in \mathcal{P}(\mathcal{I} \times \mathcal{I})$ is admissible iff

$$\forall \sigma \times \tau \in P, \ \sigma \times \tau \text{ is admissible} \ \text{or} \ \min(\#\sigma, \#\tau) \leq c_{min}$$

- The sparsity constant c_{sp} is defined as the maximal number of blocks of the same size on a given row or column. It measures the sparsity of the blocking imposed by the partition P.
 - \circ In BLR, fully refined blocking $\Rightarrow c_{sp}$ = number of blocks per row
 - \circ Can construct an admissible \mathcal{H} -partitioning such that $c_{\mathsf{sp}} = O(1)$

Dense factorization complexity

Complexity: $C_{facto} = O(mc_{sp}^2 r_{max}^2 \log^2 m)$ for \mathcal{H} and $O(mc_{sp}^2 r_{max}^2)$ for HSS

m matrix size

c_{sp} sparsity constant

\mathcal{H} vs. BLR complexity

Dense factorization complexity

Complexity: $\mathcal{C}_{\textit{facto}} = O(mc_{\textit{sp}}^2 r_{\textit{max}}^2 \log^2 m)$ for \mathcal{H} and $O(mc_{\textit{sp}}^2 r_{\textit{max}}^2)$ for HSS

m matrix size

 c_{sp} sparsity constant

 r_{max} bound on the maximal rank of all blocks

 ${\cal H}$ HSS BLR c_{sp} r_{max} ${\cal C}_{facto}$

\mathcal{H} vs. BLR complexity

Dense factorization complexity

Complexity: $C_{facto} = O(mc_{sp}^2r_{max}^2\log^2m)$ for \mathcal{H} and $O(mc_{sp}^2r_{max}^2)$ for HSS

m matrix size

 c_{sp} sparsity constant

	\mathcal{H}	HSS	BLR
c_{sp} r_{max} C_{facto}	O(1)*	O(1)*	
	advek & Hackbusch	2002	

[&]quot;Grasedyck & Hackbusch, 2003

Dense factorization complexity

Complexity: $C_{facto} = O(mc_{sp}^2 r_{max}^2 \log^2 m)$ for \mathcal{H} and $O(mc_{sp}^2 r_{max}^2)$ for HSS

m matrix size

 c_{sp} sparsity constant

	\mathcal{H}	HSS	BLR
c_{sp} r_{max} \mathcal{C}_{facto}	$O(1)^*$ small [†]	$O(1)^*$ small ^{\ddagger}	

^{*}Grasedyck & Hackbusch, 2003

[†]Bebendorf & Hackbusch, 2003

[‡]Chandrasekaran et al, 2010; Engquist & Ying, 2011

Dense factorization complexity

Complexity: $C_{facto} = O(mc_{sp}^2 r_{max}^2 \log^2 m)$ for \mathcal{H} and $O(mc_{sp}^2 r_{max}^2)$ for HSS

m matrix size

 c_{sp} sparsity constant

	\mathcal{H}	HSS	BLR
c_{sp} r_{max} \mathcal{C}_{facto}	$O(1)^*$ small [†] $O(r_{max}^2 m \log^2 m)$	$O(1)^*$ small ‡ $O(r_{max}^2 m)$	

^{*}Grasedyck & Hackbusch, 2003

[†]Bebendorf & Hackbusch, 2003

[‡]Chandrasekaran et al, 2010; Engquist & Ying, 2011

Dense factorization complexity

Complexity: $C_{facto} = O(mc_{sp}^2 r_{max}^2 \log^2 m)$ for \mathcal{H} and $O(mc_{sp}^2 r_{max}^2)$ for HSS

m matrix size

 c_{sp} sparsity constant

	\mathcal{H}	HSS	BLR
C _{sp}	$O(1)^*$ small [†]	$O(1)^*$ small [‡]	m/b
\mathcal{C}_{facto}	$O(r_{\max}^2 m \log^2 m)$	O(r _{max} m)	

^{*}Grasedyck & Hackbusch, 2003

[†]Bebendorf & Hackbusch, 2003

[‡]Chandrasekaran et al, 2010; Engquist & Ying, 2011

Dense factorization complexity

Complexity: $C_{facto} = O(mc_{sp}^2 r_{max}^2 \log^2 m)$ for \mathcal{H} and $O(mc_{sp}^2 r_{max}^2)$ for HSS

m matrix size

 c_{sp} sparsity constant

	\mathcal{H}	HSS	BLR
c_{sp} r_{max} \mathcal{C}_{facto}	$O(1)^*$ small [†] $O(r_{max}^2 m \log^2 m)$	$O(1)^*$ small ‡ $O(r_{max}^2 m)$	m/b b

^{*}Grasedyck & Hackbusch, 2003

[†]Bebendorf & Hackbusch, 2003

[‡]Chandrasekaran et al, 2010; Engquist & Ying, 2011

Dense factorization complexity

Complexity: $C_{facto} = O(mc_{sp}^2 r_{max}^2 \log^2 m)$ for \mathcal{H} and $O(mc_{sp}^2 r_{max}^2)$ for HSS

m matrix size

 c_{sp} sparsity constant

	\mathcal{H}	HSS	BLR
c_{sp} r_{max} \mathcal{C}_{facto}	$O(1)^*$ small [†] $O(r_{max}^2 m \log^2 m)$	$O(1)^*$ small [‡] $O(r_{max}^2 m)$	m/b b O(m³)

^{*}Grasedyck & Hackbusch, 2003

[†]Bebendorf & Hackbusch, 2003

[‡]Chandrasekaran et al, 2010; Engquist & Ying, 2011

Dense factorization complexity

Complexity: $C_{facto} = O(mc_{sp}^2 r_{max}^2 \log^2 m)$ for \mathcal{H} and $O(mc_{sp}^2 r_{max}^2)$ for HSS

m matrix size

c_{sp} sparsity constant

 r_{max} bound on the maximal rank of all blocks

	\mathcal{H}	HSS	BLR
c_{sp} r_{max} \mathcal{C}_{facto}	$O(1)^*$ small [†] $O(r_{max}^2 m \log^2 m)$	$O(1)^*$ small [‡] $O(r_{max}^2 m)$	m/b b O(m³)

^{*}Grasedyck & Hackbusch, 2003

BLR: a particular case of \mathcal{H} ?

Problem: in \mathcal{H} formalism, the maxrank of the blocks of a BLR matrix is $r_{max} = b$ (due to the non-admissible blocks)

Solution: bound the rank of the admissible blocks only, and make sure the non-admissible blocks are in small number

[†]Bebendorf & Hackbusch, 2003

 $^{^\}ddagger$ Chandrasekaran et al, 2010; Engquist & Ying, 2011

Complexity of dense BLR factorization

BLR-admissibility condition of a partition ${\cal P}$

 $\mathcal{P} \text{ is admissible } \Leftrightarrow \textit{N}_{\textit{na}} = \# \{ \sigma \times \tau \in \mathcal{P}, \ \sigma \times \tau \text{ is not admissible} \} \leq q$

Complexity of dense BLR factorization

BLR-admissibility condition of a partition ${\cal P}$

 \mathcal{P} is admissible $\Leftrightarrow N_{\mathsf{na}} = \#\{\sigma \times \tau \in \mathcal{P}, \ \sigma \times \tau \text{ is not admissible}\} \leq q$

Non-Admissible

Admissible

Main result from Amestoy et al, 2016

There exists an admissible \mathcal{P} for q=O(1), s.t. the maxrank of the admissible blocks of A is $r=O(r_{max}^{\mathcal{H}})$

The dense factorization complexity thus becomes

$$C_{facto} = O(r^2m^3/b^2 + mb^2q^2) = O(r^2m^3/b^2 + mb^2) = O(rm^2)$$
 (for $b = O(\sqrt{rm})$)

Complexity of multifrontal BLR factorization

Under a nested dissection assumption, the sparse (multifrontal) complexity is directly obtained from the dense complexity

	operations (OPC)		factor size (NNZ)	
	r = O(1)	r = O(N)	r = O(1)	r = O(N)
FR	$O(n^2)$	$O(n^2)$	$O(n^{\frac{4}{3}})$	$O(n^{\frac{4}{3}})$
BLR	$ \begin{array}{c c} O(n^2) \\ O(n^{\frac{4}{3}}) \\ O(n) \end{array} $	$O(n^{\frac{5}{3}})$	$O(n \log n)$	$O(n^{\frac{7}{6}}\log n)$
HSS	O(n)	$O(n^{\frac{4}{3}})$	O(n)	$O(n^{\frac{7}{6}})$

in the 3D case (similar analysis possible for 2D)

Experimental complexity: test problems

1. Poisson: N^3 grid with a 7-point stencil with u=1 on the boundary $\partial\Omega$

$$\Delta u = f$$

Rank bound is $r_{max} = O(1)$ for BLR (and \mathcal{H}), and $r_{max} = O(N)$ for HSS.

2. Helmholtz: N^3 grid with a 27-point stencil, ω is the angular frequency, v(x) is the seismic velocity field, and $u(x,\omega)$ is the time-harmonic wavefield solution to the forcing term $s(x,\omega)$.

$$\left(-\Delta - \frac{\omega^2}{v(x)^2}\right) \ u(x,\omega) = s(x,\omega)$$

 ω is fixed and equal to 4Hz.

Rank bound is $r_{max} = O(N)$ for both BLR and HSS.

Experimental flop complexity: Poisson

- good agreement with the theory $(O(n^{4/3})$ for both BLR and HSS)
- higher threshold leads to lower exponent:
 - o relaxed rank pattern in HSS
- 5/27 zero-rank blocks in BL/BMPS User Days, Montbonnot Saint-Martin, Jun. 1-2, 2017

Experimental flop complexity: Helmholtz

- good agreement with the theory $(O(n^{5/3})$ for BLR, $O(n^{4/3})$ for HSS)
- threshold has almost no influence on the exponent

Experimental factor size complexity

- good agreement with the theory
 - Poisson: $O(n \log n)$ for BLR, $O(n^{7/6})$ for HSS
 - Helmholtz: $O(n^{7/6} \log n)$ for BLR, $O(n^{7/6})$ for HSS

results

Preliminary performance

Experimental Setting

- Experiments are done on the cori supercomputer of NERSC
 - Two Intel(r) 16-cores Haswell @ 2.3 GHz per node
 - Peak per core is 36.8 GF/s
 - Total memory per node is 128 GB
- Test problems come from several real-life applications: Seismic (5Hz), Electromagnetism (S3), Structural (perf008d, Geo_1438, Hook_1498, ML_Geer, Serena, Transport), CFD (atmosmodd, PFlow_742), MHD (A22, A30), Optimization (nlpkkt80), and Graph (cage13)
- We test 7 tolerance values (from 9e-1 to 1e-6) and FR, and compare the time for factorization + solve with:
 - 1 step of iterative refinement in FR
 - \circ GMRES iterative solver in LR with required accuracy of 10^{-6} and restart of 30

Full-Rank solvers comparison

⇒ very similar FR performance

Preconditioner vs direct solver mode

Optimal tolerance choice

	BLR	HSS
A22	1e-5	FR
A30	1e-4	FR
atmosmodd	1e-4	9e-1
cage13	1e-1	9e-1
Geo_1438	1e-4	FR
Hook_1498	1e-5	FR
ML_Geer	1e-6	FR
nlpkkt80	1e-5	5e-1
PFlow_742	1e-6	FR
Serena	1e-4	1e-1
spe10-aniso	1e-5	FR
Transport	1e-5	FR

When high accuracy is needed...

spe10-aniso matrix

- No convergence except for low tolerances ⇒ direct solver mode is needed
- BLR is better suited as HSS rank is too high

When preconditioning works well...

cage13 matrix

- Fast convergence even for high tolerance ⇒ preconditioner mode is better suited
- As the size grows, HSS will gain the upper hand

The middle ground

atmosmodd matrix

- Find compromise between accuracy and compression
- In general, BLR favors direct solver while HSS favors preconditioner mode
- \Rightarrow Performance comparison will depend on numerical difficulty

Preconditioner vs direct solver mode

Optimal tolerance choice

	BLR	HSS
A22	1e-5	FR
A30	1e-4	FR
atmosmodd	1e-4	9e-1
cage13	1e-1	9e-1
Geo_1438	1e-4	FR
Hook_1498	1e-5	FR
ML_Geer	1e-6	FR
nlpkkt80	1e-5	5e-1
PFlow_742	1e-6	FR
Serena	1e-4	1e-1
spe10-aniso	1e-5	FR
Transport	1e-5	FR

These preliminary results seem to suggest the following trend:

Preconditioner vs direct solver mode

Optimal tolerance choice

	BLR	HSS
A22	1e-5	FR
A30	1e-4	FR
atmosmodd	1e-4	9e-1
cage13	1e-1	9e-1
Geo_1438	1e-4	FR
Hook_1498	1e-5	FR
ML_Geer	1e-6	FR
nlpkkt80	1e-5	5e-1
PFlow_742	1e-6	FR
Serena	1e-4	1e-1
spe10-aniso	1e-5	FR
Transport	1e-5	FR

These preliminary results seem to suggest the following trend:

understand the differences between low-rank formats 25/27 MUMPS User Days, Montbonnot Saint-Martin, Jun. 1-2, 2017

[⇒] much further work needed to confirm this trend and to fully

References and acknowledgements

Software packages

- MUMPS 5.1.0 (including BLR factorization for the first time)
- STRUMPACK-dense-1.1.1 and STRUMPACK-sparse 1.1.0

References

- Amestoy, Ashcraft, Boiteau, Buttari, L'Excellent, and Weisbecker. Improving Multifrontal Methods by means of Block Low-Rank Representations, SIAM SISC, 2015.
- Amestoy, Buttari, L'Excellent, and Mary. On the Complexity of the Block Low-Rank Multifrontal Factorization, SIAM SISC, 2017.
- Amestoy, Buttari, L'Excellent, and Mary. Performance and Scalability of the Block Low-Rank Multifrontal Factorization on Multicore Architectures, submitted to TOMS.
- Ghysels, Li, Rouet, Williams, Napov. An efficient multi-core implementation of a novel HSS-structured multifrontal solver using randomized sampling, SIAM SISC, 2015.
- Rouet, Li, Ghysels, Napov. A distributed-memory package for dense hierarchically semi-separable matrix computations using randomization, ACM TOMS, 2016.

Acknowledgements

- NERSC for providing access to the machine
- EMGS, SEISCOPE, EDF, and LBNL for providing the matrices

Thanks! Questions?