
IMA Journal of Numerical Analysis (2025) , 1–21
https://doi.org/

Mixed precision accumulation for neural network inference
guided by componentwise forward error analysis

EL-MEHDI EL ARAR*
Inria, IRISA, Université de Rennes, 263 Av. Général Leclerc, F-35000, Rennes, France

SILVIU-IOAN FILIP
Inria, IRISA, Université de Rennes, 263 Av. Général Leclerc, F-35000, Rennes, France

THEO MARY
Sorbonne Université, CNRS, LIP6, 4 Place Jussieu, F-75005, Paris, France

AND

ELISA RICCIETTI
ENS de Lyon, CNRS, Inria, Université Claude Bernard Lyon 1 LIP, UMR 5668,, 69342, Lyon cedex

07, France
*Corresponding author: el-mehdi.el-arar@inria.fr

[Received on 17 March 2025]

This work proposes a mathematically founded mixed precision accumulation strategy for the inference
of neural networks. Our strategy is based on a new componentwise forward error analysis that explains
the propagation of errors in the forward pass of neural networks. Specifically, our analysis shows that
the error in each component of the output of a layer is proportional to the condition number of the inner
product between the weights and the input, multiplied by the condition number of the activation function.
These condition numbers can vary widely from one component to the other, thus creating a significant
opportunity to introduce mixed precision: each component should be accumulated in a precision inversely
proportional to the product of these condition numbers. We propose a practical algorithm that exploits this
observation: it first computes all components in low precision, uses this output to estimate the condition
numbers, and recomputes in higher precision only the components associated with large condition
numbers. We test our algorithm on various networks and datasets and confirm experimentally that it
can significantly improve the cost–accuracy tradeoff compared with uniform precision accumulation
baselines.

Keywords: Neural network, inference, error analysis, mixed precision, multiply–accumulate

1. Introduction

Modern applications in artificial intelligence require increasingly complex models and thus increasing
memory, time, and energy costs for storing and deploying large-scale deep learning models with
parameter counts ranging in the millions and billions. This is a limiting factor both in the context
of training and of inference. While the growing training costs can be tackled by the power of modern
computing resources, notably GPU accelerators, the deployment of large-scale models leads to serious
limitations in inference contexts with limited resources, such as embedded systems or applications that
require real-time processing.

In recent years, the use of low precision arithmetic has emerged as a successful strategy to decrease
these costs, motivated by the development of specialized hardware for machine learning, such as

© The Author(s) 2025.

https://doi.org/
mailto:el-mehdi.el-arar@inria.fr

2 EL-MEHDI EL ARAR, SILVIU-IOAN FILIP, THEO MARY, AND ELISA RICCIETTI

Google’s TPUs [19], NVIDIA tensor cores [1], and others [27], which provide fast mixed precision
matrix multiply–accumulate (MMA) operations. Low precision is usually introduced in trained neural
networks by the quantization of weights and activations, that is, by storing the network parameters in
low precision [13]. Indeed, the compute workload of inference is dominated by MMA operations, which
can be accelerated by using lower precisions. Quantization therefore significantly reduces the inference
cost, usually in exchange for minor reductions in model accuracy. It has indeed been empirically shown
that neural network inference can be done effectively even when weights and activations are stored
using 8 bits [13, 24].

While weights and activations are commonly stored in low precision, the accumulation is usually
done in high precision. This is partly because most specialized MMA hardware mentioned above
provide the capability of accumulating in high precision with little or no performance penalty [3],
and partly because accumulating in low precision can create significant numerical issues, ranging
from overflow to excessive rounding error accumulation [16]. Nevertheless, reducing the accumulation
precision can be an effective strategy to increase performance for general-purpose processors [9, 25, 32].
This motivates further research on how to reduce the accumulation precision as much as possible while
avoiding numerical issues and preserving the model accuracy. This is the main goal of this work.

There exist several approaches to reduce the accumulation of errors in finite precision, and many of
them have been considered for improving the accuracy of the training and/or the inference. For example,
stochastic rounding [7, 8] prevents errors from accumulating all in the same direction and thus improves
the average accuracy; it has been used to accelerate training [12, 15]. Blocked summation methods [16,
Chap. 4], [4] reduce the worst-case error bounds by constraining the summation order, and has also
been used for training acceleration [31]. Scaling techniques can help to avoid overflow and minimize
underflow [21], and have especially received focus in the context of fixed-point arithmetic [5, 6, 25, 26,
32].

All previously mentioned works only consider uniform precision accumulation, that is, the
accumulation precision is the same across all inner products (multiply–accumulate operations). In this
work, we will instead focus on mixed precision accumulation, that is, we will allow different inner
products to be performed in different precisions. The main advantage of mixed precision approaches
is that they can leverage the possible differences in sensitivity of different parts of the computation:
whereas a uniform precision scheme would be limited by the most sensitive parts that require the
highest precision, a mixed precision scheme can adaptively keep only these parts in high precision,
while switching the less sensitive parts to lower precision—ideally without (significantly) impacting
the model accuracy.

While mixed precision approaches have been extensively investigated for quantization [10, 11,
14, 20, 29, 30, 33, 34], to the best of our knowledge, they have not been previously considered for
accumulation. This work is therefore completely complementary to existing studies. On the one hand,
our approach is agnostic with respect to the quantization method (that is, it applies to any network,
regardless of how it has been quantized). On the other hand, it considers two different accumulation
precisions with unit roundoffs ulow and uhigh, but does not otherwise make any specific assumptions on
how this accumulation is performed: that is, our approach may be combined with stochastic rounding,
blocked summation, etc.; the specific choice of accumulation method will simply determine just how
low ulow can be, and how high uhigh needs to be.

The key question that our work addresses is: how should we decide which inner products to perform
in which precision? Our approach aims at answering this question in a mathematically founded way by
basing the precision choice criterion on a rigorous error analysis. We develop such an analysis that
considers an inexact inference with a very generic error model. Our analysis is in spirit quite similar to

MIXED PRECISION ACCUMULATION GUIDED BY COMPONENTWISE FORWARD ERROR ANALYSIS 3

the recent work of Beuzeville et al. [2], which also analyzes the inference of neural networks in presence
of errors. However, there are some key differences between the two analyses. Indeed, Beuzeville et al.
perform a backward error analysis, whereas we will focus on the forward error. There are advantages
to both types of analyses: backward error analysis yields bounds that are mostly independent of the
neural network parameters (they depend on the number and size of the layers, but not on the actual
values of the weights), and allows for establishing the numerical stability of inference—the main goal
and result of [2]. In contrast, the goal of our forward error analysis is completely different: we seek
bounds that directly relate the errors incurred in each inner product to the accuracy of the final output
of the network, in order to identify possible mixed precision opportunities; thus, our bounds strongly
depend on the network parameter values, and this is precisely what we exploit to develop a mixed
precision strategy. Most importantly, the analysis of Beuzeville et al. bounds the normwise error, that
is, the error is only bounded in (some) norm; this does not allow to distinguish the impact of errors
incurred in different components of each layer of the network: the errors across different components are
“smudged” together in norm. In contrast, our analysis bounds the componentwise error; this allows us to
precisely identify the size of the errors in each component. In particular, we make the key observation
that the error incurred in each component is proportional to both the condition number of the inner
product and the condition number of the activation function evaluated at that component. In order to
balance the errors across all components, we should therefore set the precision of each inner product to
be inversely proportional to the associated condition number. Because the magnitude of these condition
numbers can vary widely from one component to the other, this creates a significant opportunity for
mixed precision.

To summarize, the first main contribution of this work is to perform a componentwise forward
error analysis that guides us towards a mixed precision inference evaluation strategy. The second main
contribution of this work is to develop a practical mixed precision algorithm that is guided by this
analysis. In order to make the algorithm practical, we must introduce some approximations: computing
the exact condition numbers would indeed be too expensive. Motivated by some empirical observations,
we however show that the condition numbers can be cheaply estimated as a by-product of the output
of each layer computed in low precision. Therefore, we propose the following approach, summarized
in Figure 1.1: at each layer ℓ, we first compute the output hℓ = φℓ(Wℓhℓ−1) entirely (uniformly) in a
low precision ulow. Then, we estimate the condition number κℓ and check each of its components (κℓ)i:
components for which the condition number is small enough ((κℓ)i ≤ τ , for some tolerance τ) are kept
in precision ulow, whereas those for which the condition number is too large ((κℓ)i > τ) are recomputed
using a higher precision uhigh.

We test the proposed algorithm on multilayer perceptrons networks of various depth, trained on the
MNIST and Fashion MNIST datasets. Our experiments show that the algorithm can achieve a flexible
cost–accuracy tradeoff, tunable via the tolerance parameter τ . Crucially, the achieved tradeoff is in
many cases significantly better than with uniform precision accumulation: that is, our mixed precision
accumulation approach can significantly improve the model accuracy compared with a uniform low
precision approach, for a significantly lower cost than the uniform high precision approach.

The rest of the paper is organized as follows: in section 2 we carry out our error analysis and discuss
its significance. In section 3, we develop an inference algorithm with mixed precision accumulation.
We test the algorithm experimentally in section 4. Finally, we conclude in section 5.

4 EL-MEHDI EL ARAR, SILVIU-IOAN FILIP, THEO MARY, AND ELISA RICCIETTI

FIG. 1.1. Illustration of our inference approach with mixed precision accumulation (Algorithm 3.1). At each layer ℓ we first
compute the MMA vℓ = Wℓhℓ−1 (where hℓ−1 is the output of the previous layer) and the activation hℓ = φℓ(vℓ) (where φℓ is the
activation function) in uniform low precision ulow. We estimate the condition number κℓ and use it to decide which components
can be kept in low precision (those for which (κℓ)i ≤ τ , for some tolerance τ) and which must be recomputed in higher precision
uhigh; the latter are then requantized to low precision and recombined with the components kept in low precision to produce the
final output of the layer, which is passed to the next layer.

2. Componentwise error analysis

2.1. Setting, notations, and error model

We consider feedforward networks with L layers, where each layer is indexed by ℓ = 1, . . . ,L and
composed of nℓ neurons. We denote by Wℓ ∈ Rnℓ×nℓ−1 the matrices of weights and by φℓ : R 7→ R the
activation functions applied componentwise. For an input x ∈ Rn0 , we denote h0 = x and for each layer
ℓ, the output of the layer hℓ ∈ Rnℓ is computed as

hℓ = φℓ(Wℓhℓ−1).

While we do use bias terms in the experiments in section 4, we do not include them explicitly in the
presented analysis for simplicity. The bias terms bℓ could be easily included by redefining the weight
matrices as W ′

ℓ =
[
Wℓ bℓ

]
and the output of the (ℓ−1)th layer as h′ℓ−1 =

[
hℓ−1 1

]T . We then have

Wℓhℓ−1 +bℓ =
[
Wℓ bℓ

][hℓ−1
1

]
=W ′

ℓh′ℓ−1.

We will use the following notations. Quantities affected by an error are marked by a hat. We
denote by ◦ the Hadamard (componentwise) product and by ⊘ the Hadamard division; the Hadamard
product of a matrix with a vector multiplies the rows of the matrix by the components of the vector. We
denote by | · | the absolute value, which is applied componentwise for vectors and matrices. Inequalities
between vectors x ≤ y or matrices A ≤ B of identical dimensions also apply componentwise; moreover,
an inequality A ≤ x between a matrix A ∈ Rm×n and a vector x ∈ Rm applies to each row of A
componentwise, that is, ai j ≤ xi for all i, j. We denote by 1 the matrix or vector of all ones.

We seek to analyze the effect of errors in the computation of hℓ. To do so, we will use the following
generic error model.

MIXED PRECISION ACCUMULATION GUIDED BY COMPONENTWISE FORWARD ERROR ANALYSIS 5

Model 2.1 We assume that ĥ0 = h0 = x and that each computed ĥℓ satisfies

ĥℓ = φℓ

(
(Wℓ ◦ (1+∆Wℓ))ĥℓ−1

)
◦ (1+∆φℓ), |∆Wℓ| ≤ ε

W
ℓ , |∆φℓ| ≤ ε

φ

ℓ , (2.1)

where ∆Wℓ ∈ Rnℓ×nℓ−1 , ∆φℓ ∈ Rnℓ , εW
ℓ ∈ Rnℓ is a nonnegative vector whose components bound the

backward errors incurred in the evaluation of the matrix–vector product with Wℓ, so that (εW
ℓ)i =

max1≤ j≤nℓ−1 |(∆Wℓ)i j| for i = 1, . . . ,nℓ, and ε
φ

ℓ ∈ Rnℓ is a nonnegative vector whose components bound
the forward errors incurred in the evaluation of φℓ.

2.2. Preliminaries

We will need the following two inequalities on perturbed matrix–vector products.

Lemma 2.2 Let A ∈ Rm×n, x ∈ Rn, and ∆x ∈ Rn. We have

|A||x◦∆x| ≤ ∥∆x∥∞|A||x|. (2.2)

Proof Since the inequality is componentwise, it suffices to prove it for an arbitrary index i, 1 ≤ i ≤ m.
The ith component of |A||x◦∆x| satisfies

(|A||x◦∆x|)i =
n

∑
j=1

|ai jx j∆x j| ≤ ∥∆x∥∞

n

∑
j=1

|ai j||x j|= ∥∆x∥∞(|A||x|)i. □

Lemma 2.3 Let A ∈ Rm×n, x ∈ Rn, and ∆A ∈ Rm×n such that |∆A| ≤ εA ∈ Rm with (εA)i =
max1≤ j≤n |∆ai j|. We have

|A◦∆A||x| ≤ (|A||x|)◦ ε
A. (2.3)

Proof Once again, since the inequality is componentwise, it suffices to prove it for an arbitrary index i,
1 ≤ i ≤ m. The ith component of |A◦∆A||x| satisfies

(|A◦∆A||x|)i =
n

∑
j=1

|ai j∆ai jx j| ≤
n

∑
j=1

|ai j||x j|(εA)i = ((|A||x|)◦ ε
A)i. □

Lemma 2.2 states that multiplying a nonnegative matrix |A| with a nonnegative vector |x| perturbed
componentwise by |∆x| yields a result |A||x| whose ith component is perturbed by the largest of the
components of |∆x|. Lemma 2.3 shows that a similar result holds when multiplying a nonnegative matrix
|A| perturbed componentwise by |∆A| with a nonnegative vector |x|: this yields a result |A||x| whose ith
component is perturbed by the largest of the components of the ith row of |∆A|, (εA)i =max1≤ j≤n |∆ai j|.
In other words, perturbed matrix–vectors (with a componentwise perturbation on either the matrix or
the vector) contaminate the result by spreading the perturbation across its components.

We next define two key quantities that will appear in the analysis: the condition numbers of a
matrix–vector product and of a function.

6 EL-MEHDI EL ARAR, SILVIU-IOAN FILIP, THEO MARY, AND ELISA RICCIETTI

Condition number of a matrix–vector product. For A ∈ Rm×n and x ∈ Rn, we have

|A||x|= κA,x ◦ |Ax|, (2.4)

where κA,x ∈ Rm is the vector whose ith component

(κA,x)i =
(|A||x|)i

|Ax|i
(2.5)

is the condition number of the dot product between the ith row of A and x, which reflects the possibility
of cancellation [16, sect. 1.7] in the computation of Ax when |A||x|> |Ax|.

Condition number of a function. During the evaluation of φℓ(v) for some vector v ∈ Rnℓ , we will also
need to express a relative perturbation ∆v on the input v as a relative perturbation ∆φℓ(v) on the output
φℓ(v). To do so, we introduce a function κφℓ

: Rnℓ 7→ Rnℓ
+ that satisfies

φℓ

(
v◦ (1+∆v)

)
= φℓ(v)◦

(
1+κφℓ

(v)◦∆v′), ∆v′ =±∆v. (2.6)

Equality (2.6) is stating that a relative perturbation ∆v on the input v leads to a relative perturbation on
the output φℓ(v) of magnitude κφℓ

(v)|∆v| (note that we introduce a perturbation ∆v′ to account for a
possible change of sign).

To obtain a more explicit expression of κφ , consider the case where v ∈ R. Then (2.6) becomes
φℓ(v(1+∆v)) = φℓ(v)(1+κφℓ

(v)∆v). Assuming first that φℓ(v)∆v ̸= 0, this yields the expression

κφℓ
(v) =

|φℓ(v(1+∆v))−φℓ(v)|
|φℓ(v)∆v|

. (2.7)

Taking the limit as ∆v goes to zero gives the condition number of φℓ at v, |vφ ′
ℓ(v)/φℓ(v)| [16, sect. 1.8],

which shows that κφℓ
can be interpreted as the condition number of φℓ for small perturbations. The case

where φℓ(v)∆v= 0 requires special care. If ∆v= 0, or if φℓ(v) = φℓ(v(1+∆v)) = 0, then (2.6) is satisfied
for any κφℓ

, so we may in particular define κφℓ
= 0. If φℓ(v) = 0 but φℓ(v(1+∆v)) ̸= 0, then there does

not exist any finite κφℓ
such that (2.6) is satisfied, and so we define κφℓ

= ∞. To summarize, we have the
explicit expression of κφℓ

κφℓ
(v) =

|φℓ(v(1+∆v))−φℓ(v)|

|φℓ(v)∆v| if φℓ(v)∆v ̸= 0
0 if φℓ(v) = φℓ(v(1+∆v))
∞ if φℓ(v) = 0 and φℓ(v(1+∆v)) ̸= 0.

(2.8)

Note that the fact that κφℓ
can take ∞ as a value is largely an artifact of considering relative perturbations.

For example, for ReLU activation, κφℓ
(v) = ∞ occurs only when we simultaneously have v < 0 and

v(1+∆v) > 0. These conditions are met when ∆v < −1, which corresponds to a relative error |∆v|
greater than 1.

Going back to the general case where φℓ takes v ∈ Rnℓ as input, since (2.6) is a componentwise
definition, we obtain the expression of the ith component of κφℓ

(v) by applying (2.8) to κφℓ
(vi).

MIXED PRECISION ACCUMULATION GUIDED BY COMPONENTWISE FORWARD ERROR ANALYSIS 7

2.3. The analysis

We are now ready to analyze the computation of hℓ. We proceed by induction: assuming that the
computed ĥℓ−1 satisfies

ĥℓ−1 = hℓ−1 ◦ (1+∆hℓ−1), |∆hℓ−1| ≤ ε
h
ℓ−1 ∈ Rnℓ−1 (2.9)

for some error term ∆hℓ−1 bounded componentwise by εh
ℓ−1, we seek to determine ∆hℓ and its

corresponding bound εh
ℓ . Defining vℓ =Wℓhℓ−1 and injecting (2.9) into (2.1), we obtain

ĥℓ = φℓ

((
Wℓ ◦ (1+∆Wℓ)

)(
hℓ−1 ◦ (1+∆hℓ−1)

))
◦ (1+∆φℓ)

= φℓ

(
vℓ+

(
Wℓ ◦∆Wℓ

)
hℓ−1 +Wℓ

(
hℓ−1 ◦∆hℓ−1

)
+
(
Wℓ ◦∆Wℓ

)(
hℓ−1 ◦∆hℓ−1

))
◦ (1+∆φℓ)

= φℓ

(
vℓ ◦ (1+∆vℓ)

)
◦ (1+∆φℓ), (2.10)

with

|∆vℓ| ≤
(
|(Wℓ ◦∆Wℓ)hℓ−1|+ |Wℓ(hℓ−1 ◦∆hℓ−1)|+ |(Wℓ ◦∆Wℓ)(hℓ−1 ◦∆hℓ−1)|

)
⊘|vℓ|. (2.11)

Using Lemmas 2.2 and 2.3 together with (2.1) and (2.9), we have

|∆vℓ| ≤ (|Wℓ||hℓ−1|)◦ε
W
ℓ ⊘|vℓ|+∥ε

h
ℓ−1∥∞(|Wℓ||hℓ−1|)⊘|vℓ|+∥ε

h
ℓ−1∥∞(|Wℓ||hℓ−1|)◦ε

W
ℓ ⊘|vℓ|. (2.12)

By (2.4) we have
(|Wℓ||hℓ−1|)⊘|vℓ|= κWℓ,hℓ−1 =: κvℓ , (2.13)

where, for the sake of readability, we abbreviate κWℓ,hℓ−1 as κvℓ . We thus obtain

|∆vℓ| ≤ κvℓ ◦
(
ε

W
ℓ +∥ε

h
ℓ−1∥∞1+∥ε

h
ℓ−1∥∞ε

W
ℓ

)
= κvℓ ◦

(
ε

W
ℓ +∥ε

h
ℓ−1∥∞(1+ ε

W
ℓ)

)
. (2.14)

Using (2.6) in (2.10), we have

ĥℓ = φℓ(vℓ)◦ (1+κφℓ
(vℓ)◦±∆vℓ)◦ (1+∆φℓ)

= hℓ ◦ (1+κφℓ
(vℓ)◦±∆vℓ)◦ (1+∆φℓ)

= hℓ ◦ (1+κφℓ
(vℓ)◦±∆vℓ+∆φℓ+κφℓ

(vℓ)◦±∆vℓ ◦∆φℓ)

= hℓ ◦ (1+∆hℓ)

with

|∆hℓ| ≤ κφℓ
(vℓ)◦ |∆vℓ|+ |∆φℓ|+κφℓ

(vℓ)◦ |∆vℓ| ◦ |∆φℓ|
= κφℓ

(vℓ)◦ |∆vℓ| ◦ (1+ |∆φℓ|)+ |∆φℓ| (2.15)

Combining (2.1) and (2.14) into (2.15), we finally obtain

|∆hℓ| ≤ κφℓ
(vℓ)◦κvℓ ◦

(
ε

W
ℓ +∥ε

h
ℓ−1∥∞(1+ ε

W
ℓ)

)
◦ (1+ ε

φ

ℓ)+ ε
φ

ℓ =: ε
h
ℓ . (2.16)

We summarize our analysis in the following theorem.

8 EL-MEHDI EL ARAR, SILVIU-IOAN FILIP, THEO MARY, AND ELISA RICCIETTI

Theorem 2.4 Let hℓ = φℓ(Wℓhℓ−1) be computed inexactly such that the computed ĥℓ satisfies
Model 2.1. Then, we have

ĥℓ = hℓ ◦ (1+∆hℓ), |∆hℓ| ≤ ε
h
ℓ ,

where εh
ℓ satisfies the recurrence relation

ε
h
ℓ = κφℓ

(vℓ)◦κvℓ ◦
(
ε

W
ℓ +∥ε

h
ℓ−1∥∞(1+ ε

W
ℓ)

)
◦ (1+ ε

φ

ℓ)+ ε
φ

ℓ ,

where κφℓ
satisties (2.6), κvℓ is defined in (2.13), and εh

ℓ−1 bounds the relative error incurred in the
computation of hℓ−1 as defined in (2.9).

2.4. Interpretation of the analysis and consequences

We now explain why this analysis reveals important features of the behavior of the forward propagation
under error perturbations, and motivates the use of mixed precision. Theorem 2.4 shows that, to first
order, we have the recurrence

ε
h
ℓ = κφℓ

(vℓ)◦κvℓ ◦ (ε
W
ℓ +∥ε

h
ℓ−1∥∞1)+ ε

φ

ℓ . (2.17)

This means that at layer ℓ, the previously accumulated error εh
ℓ−1 undergoes a series of transformations

due to the propagation process. First, we add the local backward error εW
ℓ accounting for the inexact

matrix–vector product. Then, the combined error is scaled componentwise by the condition numbers
κφℓ

(vℓ) and κvℓ , which quantify the sensitivity of the layer’s operations to input perturbations. This
scaling reflects how the local structure of the layer amplifies the existing errors. Finally, we add the
error ε

φ

ℓ accounting for the inexact evaluation of the activation function.
We can derive from recurrence (2.17) a simpler scalar recurrence on ∥εh

ℓ ∥∞:

∥ε
h
ℓ ∥∞ = ∥κφℓ

(vℓ)◦κvℓ ◦ ε
W
ℓ ∥∞ +∥κφℓ

(vℓ)◦κvℓ∥∞∥ε
h
ℓ−1∥∞ +∥ε

φ

ℓ ∥∞. (2.18)

This yields the following corollary.

Corollary 2.5 For all ℓ= 1, . . . ,L, let

ĥℓ = hℓ ◦ (1+∆hℓ), |∆hℓ| ≤ ε
h
ℓ ,

and assume εh
ℓ satisfies the recurrence relation (2.18). Then the computed final output of the network,

ĥL, satisfies

ĥL = hL ◦ (1+∆hL), |∆hL| ≤ ε
h
L ,

with

∥ε
h
L∥∞ =

L

∑
ℓ=1

[(L

∏
k=ℓ+1

∥κφk(vk)◦κvk∥∞

)(
∥κφℓ

(vℓ)◦κvℓ ◦ ε
W
ℓ ∥∞ +∥ε

φ

ℓ ∥∞

)]
. (2.19)

MIXED PRECISION ACCUMULATION GUIDED BY COMPONENTWISE FORWARD ERROR ANALYSIS 9

Proof The proof is by induction on L. For L = 1, using (2.18) gives

∥ε
h
1∥∞ = ∥κφ1(v1)◦κv1 ◦ ε

W
1 ∥∞ +∥κφ1(v1)◦κv1∥∞∥ε

h
0∥∞ +∥ε

φ

1 ∥∞.

Since ĥ0 = h0, εh
0 is zero and (2.19) holds for L = 1. For the inductive step, assume that (2.19) is true

for L−1. By (2.18) we have

∥ε
h
L∥∞ = ∥κφL(vL)◦κvL ◦ ε

W
L ∥∞ +∥κφL(vL)◦κvL∥∞∥ε

h
L−1∥∞ +∥ε

φ

L ∥∞

and by the inductive assumption we thus obtain

∥ε
h
L∥∞ = ∥κφL(vL)◦κvL ◦ ε

W
L ∥∞ +∥ε

φ

L ∥∞

+∥κφL(vL)◦κvL∥∞

L−1

∑
ℓ=1

[(L−1

∏
k=ℓ+1

∥κφk(vk)◦κvk∥∞

)(
∥κφℓ

(vℓ)◦κvℓ ◦ ε
W
ℓ ∥∞ +∥ε

φ

ℓ ∥∞

)]
= ∥κφL(vL)◦κvL ◦ ε

W
L ∥∞ +∥ε

φ

L ∥∞

+
L−1

∑
ℓ=1

[(L

∏
k=ℓ+1

∥κφk(vk)◦κvk∥∞

)(
∥κφℓ

(vℓ)◦κvℓ ◦ ε
W
ℓ ∥∞ +∥ε

φ

ℓ ∥∞

)]

=
L

∑
ℓ=1

[(L

∏
k=ℓ+1

∥κφk(vk)◦κvk∥∞

)(
∥κφℓ

(vℓ)◦κvℓ ◦ ε
W
ℓ ∥∞ +∥ε

φ

ℓ ∥∞

)]
. □

Minimizing the error bound ∥εh
L∥∞ on the final output of the network thus amounts to minimizing

each of the error terms in sum (2.19). Assuming that the input x and the weights of the network Wℓ are
fixed, the only quantities under our control in this expression are εW

ℓ and ε
φ

ℓ , that is, the precision at
which we evaluate the matrix–vector products and the activation functions. We are interested in using
the lowest possible precisions while still achieving an error under a given accuracy target: ∥εh

L∥∞ ≤ ε .
To do so, it seems sensible to equilibrate as much as possible the errors on each of the terms in (2.19),
that is, (L

∏
k=ℓ+1

∥κφk(vk)◦κvk∥∞

)(
∥κφℓ

(vℓ)◦κvℓ ◦ ε
W
ℓ ∥∞ +∥ε

φ

ℓ ∥∞

)
≤ ε/L. (2.20)

Equation (2.20) shows that the errors incurred at layer ℓ are multiplied by the condition numbers
of all the sucessive layers, ∏

L
k=ℓ+1 ∥κφk(vk) ◦κvk∥∞. In principle, this quantity may vary across layers

(in fact, it decreases monotonically as ℓ increases). However, because the errors are taken in infinity
norm, only the maximum error components of subsequent layers play a role: the potential variations
across components are smudged together. Since this term is moreover not easy to compute or estimate
in practice, it seems reasonable to ignore it and rather consider the following criterion:

∥κφℓ
(vℓ)◦κvℓ ◦ ε

W
ℓ ∥∞ +∥ε

φ

ℓ ∥∞ ≤ ε/L. (2.21)

From this, we can immediately notice that the errors ε
φ

ℓ from the activation functions appear
in the infinity norm. This suggests that it is meaningless to vary the precision of the activations
between different components, because only the maximum error component from the previous layer
is propagated; thus we may as well compute all the components in the same precision.

10 EL-MEHDI EL ARAR, SILVIU-IOAN FILIP, THEO MARY, AND ELISA RICCIETTI

2.0 1.5 1.0 0.5 0.0 0.5 1.0 1.5 2.0
x

0.0

0.2

0.4

0.6

0.8

1.0

(x)

(x) = ReLU(x)

15 10 5 0 5 10 15
x

10 10

10 8

10 6

10 4

10 2

100

(x)

(x) = tanh(x)

FIG. 2.1. Condition number κφ (x) =
|φ ′(x)x|
|φ(x)| for φ(x) = ReLU(x) (left) and φ(x) = tanh(x) (right).

On the other hand, εW
ℓ is multiplied componentwise by the condition number

κℓ := κφℓ
(vℓ)◦κvℓ , (2.22)

so we should try to balance each component of κℓ ◦ εW
ℓ to minimize their maximum. Therefore, we

should choose the precision of the inner product with the ith row of Wℓ to be inversely proportional to
the ith component of κℓ. This represents a good opportunity to introduce mixed precision in the forward
pass: we expect the components of κℓ to have a large dynamic range. Indeed, for typical activation
functions such as ReLU or tanh, Figure 2.1 shows that κφℓ

≤ 1, and some of its components may be
much smaller than 1, meaning that some inner products can be computed in very low precision, while
still maintaining a high accuracy on the overall computation.

In the next section we develop a mixed precision algorithm based on this reasoning.

3. A mixed precision algorithm for NN inference

In this section, we show how to exploit the analysis presented in the previous section to introduce mixed
precision in the feedforward pass of neural networks. We assume to have a trained network with given
floating-point weights Wℓ, ℓ= 1, . . . ,L stored in precision ulow, and we seek to exploit mixed precision
in the computation of the output of the network for a given input x.

3.1. Main principle

As discussed in the previous section, the errors at layer ℓ are proportional to the product κℓ ◦ εW
ℓ (see

(2.21)) and our objective is to balance each component so as to minimize the maximum ∥κℓ ◦ εW
ℓ ∥∞.

Ideally, if the condition numbers κℓ were readily available, the precisions of each inner product would
simply be chosen such that (εW

ℓ)i ≤ ε/(κℓ)i, for a given target accuracy ε > 0; this choice would
indeed yield ∥κℓ ◦ εW

ℓ ∥∞ ≤ ε . This shows that the precision used to compute each component of the ℓth
layer should be chosen to be inversely proportional to the corresponding component of the condition
number κℓ. Let us consider the use of two precisions, with unit roundoffs uhigh < ulow. Then for large
components of κℓ we should be careful in using the high precision uhigh, whereas for small components,
the errors incurred will be damped and so we can safely use the lower precision ulow without impacting
the accuracy of the output. Concretely, we can introduce a tolerance τ > 0 which controls the precision

MIXED PRECISION ACCUMULATION GUIDED BY COMPONENTWISE FORWARD ERROR ANALYSIS 11

0 200 400 600 800
Component

10 9

10 7

10 5

10 3

10 1

101

103
ReLU activation

fp8
fp32

0 200 400 600 800
Component

10 9

10 7

10 5

10 3

10 1

101

103

tanh activation
fp8
fp32

FIG. 3.1. Comparison of the condition numbers κℓ = κφ ◦κvℓ depending on whether they are computed in FP32 or in FP8, for a
3-layer network trained on the MNIST dataset with ReLU (left) and tanh (right) activations. The values are sorted with respect to
the FP32 condition numbers.

switch criterion: if (κℓ)i ≤ τ we use precision ulow, otherwise we use precision uhigh. In particular, if
the inner product between the ith row of Wℓ and hℓ−1 is implemented in floating-point arithmetic with a
unit roundoff ui (equal to either ulow or uhigh), rounding error analysis [18] shows that (εW

ℓ)i = nℓ−1ui.
Thus, in order for ∥κℓ ◦ εW

ℓ ∥∞ ≤ ε to hold, we should set the tolerance as τ = ε/(nℓ−1ulow).

3.2. From a theoretical to a practical criterion: estimating κℓ

While the principle behind this strategy would be mathematically ideal, unfortunately, since we do not
know the values of κℓ, it cannot be implemented as it is in practice. Indeed, it is worth recalling that
κℓ = κφℓ

(vℓ)◦κvℓ depends on vℓ =Wℓhℓ−1; therefore, computing κℓ and thus vℓ in high precision would
defeat the purpose of using mixed precision, since vℓ is precisely the result of the matrix–vector product
that we aim to accelerate. Moreover, for any layer ℓ, vℓ depends in particular on h0 = x, the input of the
network, so the precision choices depend on the input and cannot be reused across different inputs.

In order to obtain a practical algorithm, we introduce some approximations. The key observation is
that we do not need a very accurate computation of κℓ: estimating its order of magnitude is sufficient
to decide which precision to use. Therefore, this suggests the following idea: for each layer, compute
first vℓ in precision ulow, that is, perform the entire matrix–vector product in low precision. Then,
use this approximate vℓ to compute an estimated κℓ and check the criterion for each component (κℓ)i: if
(κℓ)i ≤ τ , the component (vℓ)i computed in low precision can be kept, whereas if (κℓ)i > τ , (vℓ)i should
be recomputed in high precision uhigh. This approach will therefore work best in situations where most
components can be computed in low precision, and high precision is only needed to recompute a few
of the most sensitive components. Indeed, if the criterion leads to too many components needing to be
recomputed, this mixed precision approach may end up being more expensive than simply computing
everything in high precision from the start.

To assess whether computing κℓ in low precision is a reasonable approximation in practice,
we compare in Figure 3.1 the values of the condition numbers computed in FP32 (red) with the
corresponding values computed in FP8 (blue). We use a three-layer perceptron network trained on
the MNIST dataset for the ReLU (left plot) and tanh (right plot) activation functions. The figure shows
that the values computed in FP8 follow the same trend as those computed in FP32, thus providing a

12 EL-MEHDI EL ARAR, SILVIU-IOAN FILIP, THEO MARY, AND ELISA RICCIETTI

10 1 100 101 102 103

Values

0

50

100

150

200

250

300

Fr
eq

ue
nc

y
Numerator (ReLU)

10 1 100 101 102 103

Values

0

50

100

150

200

250

300

Fr
eq

ue
nc

y

Denominator (ReLU)

10 1 100 101 102 103

Values

0

100

200

300

400

500

600

Fr
eq

ue
nc

y

Numerator (tanh)

10 1 100 101 102 103

Values

0

100

200

300

400

500

600

Fr
eq

ue
nc

y

Denominator (tanh)

FIG. 3.2. Distribution of the components of the numerator |Wℓ||hℓ−1| (left) and of the denominator |Wℓhℓ−1| (right) of κvℓ
computed in FP8, for a three-layer network trained on the MNIST dataset with ReLU (top) and tanh (bottom) activations.

reasonable estimate of its order of magnitude. In particular, for the ReLU function, the vast majority of
the zero values (corresponding to negative components of vℓ) in FP32 are correctly identified as zeros
in FP8 also. There are a few outliers, in both directions: some FP32 zeros become nonzeros in FP8
(top left blue outliers), and may be needlessly recomputed; conversely, some FP32 nonzeros become
zeros in FP8 (bottom right blue outliers), and will be kept in low precision even though they should be
recomputed. These outliers represent a very small percentage of the components and we may expect
them not to have a significant impact on the inference accuracy. Therefore, in the sequel, we use the
low precision ulow to compute the condition numbers κℓ.

Having computed a low precision vℓ, estimating κφ (vℓ) is straightforward: it suffices to compute
κφ (vℓ) = |vℓ ◦φ ′

ℓ(vℓ)⊘φℓ(vℓ)| in precision ulow. Note that this formula involves computing hℓ = φℓ(vℓ)
in precision ulow; the output hℓ of the ℓth layer in low precision is thus computed for free as part of
this estimation; only the components of hℓ needing a higher precision will need to be recomputed.
Unfortunately, estimating κvℓ = (|Wℓ||hℓ−1|)⊘|Wℓhℓ−1| is still too expensive, because of the expensive
computation required by the numerator. Indeed, computing this numerator for all ℓ would cost the same
as a full forward pass, since we need to compute the matrix–vector products |Wℓ||hℓ−1| for all layers.

MIXED PRECISION ACCUMULATION GUIDED BY COMPONENTWISE FORWARD ERROR ANALYSIS 13

0 200 400 600 800
Component

10−9

10−7

10−5

10−3

10−1

101

103

ReLU activation

κ`

κ′`

0 200 400 600 800
Component

10−5

10−3

10−1

101

103

tanh activation

κ`

κ′`

FIG. 3.3. Comparison of the condition number κℓ = κφ (vℓ)◦κvℓ and its proposed approximation κ ′
ℓ = κφ ◦ c

|Wℓhℓ−1 |
(with c = 3),

both computed in FP8, for a three-layer network trained on the MNIST dataset with ReLU (left) and tanh (right) activations.

We can however avoid this computation, thanks to the key observation that the variations in magnitude
of κvℓ are mostly due to variations of the denominator. We illustrate this in Figure 3.2, which reports the
distribution of the numerator and the denominator in κvℓ for a three-layer network trained on MNIST.
For both the ReLU (top) and the tanh (bottom) functions, the denominator (right) has a much larger
dynamic range than the numerator (left). As a consequence, it seems reasonable to approximate the
numerator by a fixed constant c.

Figure 3.3 confirms that the approximation κvℓ ≈ κ ′
vℓ := 1⊘|vℓ| is reasonable. Note that there is no

need to tune this constant c, because it can be directly integrated in the criterion based on τ: checking
whether cκφℓ

(vℓ)⊘ |Wℓhℓ−1| ≤ τ is equivalent to checking whether κφℓ
(vℓ)⊘ |Wℓhℓ−1| ≤ τ ′ with τ ′ =

τ/c. Thus the tolerance τ is the only hyperparameter that needs tuning.

3.3. The algorithm

The successive approximations introduced above lead to a practical criterion for a mixed precision
inference evaluation strategy. We summarize the proposed approach in Algorithm 3.1.

As mentioned previously, in order for the algorithm to be efficient, the percentage of components
that need to be recomputed in high precision must be small. We now quantify this statement more
precisely by using the following cost model. We only consider the cost of the matrix–vector products
Wℓhℓ−1. These require O(nℓnℓ−1) floating-point operations, whereas the remaining steps of the
algorithm (which essentially consist of the evaluation of the activation functions and the estimation
of the condition numbers) only require O(nℓ) operations/function evaluations. Therefore for large-scale
networks we may reasonably assume that the cost of the matrix–vector products will dominate—note
that this specifically assumes multilayer perceptron networks; see section 5 for a discussion on the
extension to convolutional networks.

Let us thus focus on the matrix–vector products. Let clow be the cost of performing all the matrix–
vector products (across all layers) in uniform precision ulow, and let chigh be the corresponding cost
when using uniform precision uhigh instead. Let ρ ∈ [0,1] be the fraction of components—and thus of
inner products—that need to be recomputed in precision uhigh. Then the cost of the mixed precision

14 EL-MEHDI EL ARAR, SILVIU-IOAN FILIP, THEO MARY, AND ELISA RICCIETTI

Algorithm 3.1 Neural network inference with mixed precision accumulation

Input: W1, . . . ,WL, the weight matrices; h0 = x, the input vector; τ , a tolerance controlling the precision
choice; ulow,uhigh, the precisions.

Output: hL, the output of the network.
1: for ℓ= 1, . . . ,L do
2: Compute vℓ =Wℓhℓ−1 in precision ulow.
3: Compute hℓ = φℓ(vℓ) in precision ulow.
4: Compute κφℓ

(vℓ) = |vℓ ◦φ ′
ℓ(vℓ)|⊘ |φℓ(vℓ)| in precision ulow.

5: Compute κℓ = κφℓ
⊘|vℓ| in precision ulow.

6: for every component (κℓ)i do
7: if (κℓ)i > τ then
8: Recompute (vℓ)i = (Wℓhℓ−1)i in precision uhigh.
9: Recompute (hℓ)i = φℓ((vℓ)i) in precision uhigh.

10: Requantize (hℓ)i back to precision ulow.
11: end if
12: end for
13: end for

Algorithm 3.1 is

cmixed = clow +ρchigh =

(
clow

chigh
+ρ

)
chigh, (3.1)

It is thus important to note that while we naturally have clow ≤ cmixed, we cannot guarantee in general
that cmixed ≤ chigh: for this to hold, we must have the condition clow/chigh +ρ < 1. In other words, the
mixed precision cost will be less than the high precision one if the costs ratio between the low and
high precision is sufficiently small, and the fraction of components that need to be recomputed in high
precision is also sufficiently small.

Remark 3.1 Algorithm 3.1 can easily be extended to use more than two precisions. Indeed, given a
list of precisions with unit roundoffs u1 > .. . > up, we can first compute hℓ in precision u1 and check the
components of κℓ against a list of tolerances τ1 < .. . < τp−1 < τp := ∞. Components (κℓ)i ∈ (τ j,τ j+1]
are then recomputed in precision u j, for j = 1: p−1. The cost model (3.1) then becomes

cmixed = c1 +
p

∑
j=2

ρ jc j,

where c j is the cost of computing an MMA in precision u j and ρ j is the fraction of components that are
recomputed in precision u j.

4. Numerical experiments

In this section we experimentally assess the potential of the mixed precision strategy introduced in
Algorithm 3.1.

Experimental setting and description of the figures. We consider multilayer perceptron networks [23]
with 3, 5, or 8 layers (including both the hidden and input/output layers), with either ReLU or tanh

MIXED PRECISION ACCUMULATION GUIDED BY COMPONENTWISE FORWARD ERROR ANALYSIS 15

activation functions. The weight matrices for an L-layer network have dimensions 784× 784 for the
first L−2 layers, 128×784 for layer L−1 and 10×128 for layer L.

Our experiments use floating-point arithmetic, with two different formats: the FP8-E4M3
format [22], an 8-bit format with 4 bits dedicated to the exponent and 3 bits to the mantissa, and
the IEEE-754 FP16 format [17], a 16-bit format with 5 bits dedicated to the exponent and 10 bits to the
mantissa. Hereinafter, we denote these two formats simply as FP8 and FP16, respectively. We leverage
the mptorch [28] Python library to faithfully simulate reduced precision computations in FP8.

For all experiments, the neural networks considered are pre-trained on the MNIST and Fashion
MNIST datasets using IEEE-754 FP32 (single precision) arithmetic and a quantization-aware training
approach [24, sect. 4] where the weights are quantized to the target FP8 format.

We consider and compare three accumulation strategies in performing feed-forward computation
on the chosen networks: two uniform precision variants, which use the same accumulation precision
(either FP8 or FP16) across all components, and our mixed precision variant (Algorithm 3.1), which
uses FP8 as the low precision ulow and FP16 as the high precision uhigh.

On most hardware, we can expect FP8 arithmetic to be twice as fast as FP16 arithmetic. Thus, in
our cost model, we assume clow/chigh = 0.5. Then (3.1) yields

cmixed = (0.5+ρ)chigh (4.1)

where ρ ∈ [0,1] is the fraction of inner products that must be recomputed in FP16. Based on (4.1) we
can expect that if ρ < 0.5, the cost of the mixed precision FP8/FP16 method will be lower than that
of the uniform FP16 one. For each network type and each precision configuration variant, we perform
inference on 10,000 different test inputs and report the resulting test accuracy (that is, the percentage of
inputs correctly classified).

The results are presented in Figure 4.1 for ReLU activation functions and in Figure 4.2 for
tanh. In each figure, the top, middle, and bottom plots correspond to networks with 3, 5, and 8
layers, respectively. The left and right plots correspond to the MNIST and Fashion MNIST datasets,
respectively. Each individual plot shows the test accuracy on the x-axis and the fraction ρ of inner
products (re)computed in FP16 on the y-axis, for each of the three precision configurations: uniform
FP8 (a single triangle marker, always found at y = 0), uniform FP16 (a single star marker, always found
at y = 1), and the mixed precision Algorithm 3.1 with various values for the tolerance τ (blue line).

The figures show that different precision configurations achieve different cost–accuracy tradeoffs.
Without surprise, the uniform FP16 variant is always more accurate than the FP8 one. As for the mixed
precision variant, we see that decreasing the tolerance τ increases the accuracy but also increases the
fraction of inner products that need to be recomputed in FP16. Based on the cost model (4.1), we also
plot a dashed line at ρ = 0.5, the maximum value for which the cost of the mixed precision algorithm
remains less than the uniform FP16 one. Hence blue points below that dashed line are potentially of
interest.

Discussion of the results when using ReLU activation functions. The results of these experiments are
reported in Figure 4.1. For the ReLU function for any choice of the tolerance τ , only a tiny fraction of
the inner products need to be recomputed in FP16. This is due to the fact that κφ (x)= 0 if x< 0, meaning
that any inner product whose result is negative will systematically be kept in low precision regardless
of τ . As it turns out, the percentage of negative inner products, and thus of zero condition numbers,
is extremely large. Table 4.1 summarizes these percentages (averaged over all inputs) for the different
types of networks; they are very large regardless of the dataset or of the number of layers, exceeding
75% in all cases. This explains why, in the left plots, the blue points corresponding to the mixed

16 EL-MEHDI EL ARAR, SILVIU-IOAN FILIP, THEO MARY, AND ELISA RICCIETTI

TABLE 4.1 Average percentage of zero values in the condition
number of ReLU activations for multilayer perceptron networks with
3, 5, or 8 layers trained on the MNIST and Fashion MNIST datasets,
using FP8 arithmetic.

Multilayer Perceptron Configuration MNIST Fashion MNIST

3 layers 84% 90%
5 layers 80% 85%
8 layers 77% 80%

precision configuration never exceed a fraction of ρ = 0.25 inner products recomputed in FP16. Thus,
we are far below the ρ = 0.5 limit and we can expect the mixed precision variant to be significantly
faster than the uniform FP16 one.

Despite the large number of operations performed in FP8, the mixed precision variant always
achieves a better accuracy than the uniform FP8 variant. More importantly, for a sufficiently small
tolerance τ , its accuracy matches that of the uniform FP16 variant. Thus, the mixed precision variant is
faster yet equally as accurate as the uniform FP16 variant. It is interesting to note that as we increase
τ , the fraction ρ of inner products needing to be recomputed in FP16 does slightly decrease, from
roughly 0.2 to 0.1. Since for ReLU κφℓ

is either 0 or 1, this behavior is explained by the variations in
the components of κvℓ . Specifically, for very small values of τ , components with κφℓ

= 1 will always be
recomputed in FP16. As we increase τ , some of these components may be kept in FP8 if κvℓ is small
enough, further reducing the fraction of FP16 computations. However, the figure shows that the test
accuracy quickly degrades when doing so, for a cost reduction that is not that significant. Therefore,
these experiments suggest that for ReLU activations, a good rule of thumb is to recompute in FP16 all
positive inner products (for which κφℓ

= 1).
All these observations hold consistently for all the tested networks, even as we increase the number

of layers, both for the MNIST and Fashion MNIST datasets.

Discussion of the results when using tanh activation functions. For the tanh function, the situation is
quite different, as shown in Figure 4.2. The fraction ρ of inner products needing to be recomputed in
FP16 quickly increases as τ decreases, so that not all mixed precision configurations are interesting.
Indeed, in view of (4.1), all choices of τ that demand to recompute more than ρ = 0.5 of the inner
products (blue points above the dashed line) should be discarded, since they are more expensive than
the uniform FP16 variant, and yet achieve a lower test accuracy as shown in the figure. However, some
choices of τ still provide an interesting compromise between accuracy and cost. The largest values of τ

(for example, τ = 5) often still allow for a slight improvement of the accuracy with respect to uniform
FP8, which comes almost for free since ρ ≈ 0.9 in these cases. Alternatively, more intermediate values
of τ (for example, τ = 1) can achieve much more significant accuracy improvements (without, however,
reaching the same accuracy as FP16), for a cost that is in between that of the uniform FP8 and FP16
variants (for example, ρ ≈ 0.3, which corresponds to a 20% cost reduction with respect to uniform
FP16 in view of (4.1)).

Overall, these experimental results support the conclusions of our analysis, confirming that it is
indeed meaningful to compute different components of the layers in different precisions, and highlight
the potential of the proposed Algorithm 3.1 to improve the cost–accuracy tradeoff, particularly in the
case of ReLU activations.

MIXED PRECISION ACCUMULATION GUIDED BY COMPONENTWISE FORWARD ERROR ANALYSIS 17

0.966 0.968 0.970 0.972 0.974 0.976 0.978 0.980 0.982
Test accuracy

0.0

0.2

0.4

0.6

0.8

1.0

(=1)
(=0.5)

(=0.3)
(=0.1)

fp8

fp16

MNIST
Mixed fp8/fp16
Uniform fp8
Uniform fp16

0.81 0.82 0.83 0.84 0.85 0.86 0.87 0.88
Test accuracy

0.0

0.2

0.4

0.6

0.8

1.0

(=1) (=0.5) (=0.3) (=0.1)

fp8

fp16

FMNIST
Mixed fp8/fp16
Uniform fp8
Uniform fp16

(a) 3 layers

0.966 0.968 0.970 0.972 0.974 0.976 0.978 0.980 0.982
Test accuracy

0.0

0.2

0.4

0.6

0.8

1.0

(=1)
(=0.5)

(=0.3) (=0.1)

fp8

fp16Mixed fp8/fp16
Uniform fp8
Uniform fp16

0.81 0.82 0.83 0.84 0.85 0.86 0.87 0.88
Test accuracy

0.0

0.2

0.4

0.6

0.8

1.0

(=2)
(=0.5) (=0.3) (=0.1)

fp8

fp16Mixed fp8/fp16
Uniform fp8
Uniform fp16

(b) 5 layers

0.966 0.968 0.970 0.972 0.974 0.976 0.978 0.980 0.982
Test accuracy

0.0

0.2

0.4

0.6

0.8

1.0

(=1)

(=0.5) (=0.3) (=0.1)

fp8

fp16Mixed fp8/fp16
Uniform fp8
Uniform fp16

0.81 0.82 0.83 0.84 0.85 0.86 0.87 0.88
Test accuracy

0.0

0.2

0.4

0.6

0.8

1.0

(=5)
(=1)

(=0.3) (=0.1)

fp8

fp16Mixed fp8/fp16
Uniform fp8
Uniform fp16

(c) 8 layers

FIG. 4.1. Cost–accuracy tradeoff achieved by different precision configurations on the MNIST (left) and Fashion MNIST (right)
datasets, for multilayer perceptron networks with 3 (top), 5 (middle), or 8 (bottom) layers, using ReLU activation. The x-axis
plots the test accuracy of the inference on the 10,000 samples of the dataset; the y-axis plots the fraction ρ of inner products
(re)computed in FP16. For the mixed precision configuration (Algorithm 3.1), each point corresponds to a different value of the
tolerance τ as indicated.

18 EL-MEHDI EL ARAR, SILVIU-IOAN FILIP, THEO MARY, AND ELISA RICCIETTI

0.93 0.94 0.95 0.96 0.97 0.98
Test accuracy

0.0

0.2

0.4

0.6

0.8

1.0

(=5)

(=1)

(=0.1)

(=0.01)

fp8

fp16

MNIST
Mixed fp8/fp16
Uniform fp8
Uniform fp16

0.68 0.70 0.72 0.74 0.76 0.78 0.80 0.82 0.84
Test accuracy

0.0

0.2

0.4

0.6

0.8

1.0

(=1)
(=0.3) (=0.13) (=0.1)

fp8

fp16

FMNIST
Mixed fp8/fp16
Uniform fp8
Uniform fp16

(a) 3 layers

0.93 0.94 0.95 0.96 0.97 0.98
Test accuracy

0.0

0.2

0.4

0.6

0.8

1.0

(=5)

(=1)

(=0.5)

(=0.1)

fp8

fp16Mixed fp8/fp16
Uniform fp8
Uniform fp16

0.68 0.70 0.72 0.74 0.76 0.78 0.80 0.82 0.84
Test accuracy

0.0

0.2

0.4

0.6

0.8

1.0

(=5)

(=1)

(=0.5)

(=0.1)

fp8

fp16Mixed fp8/fp16
Uniform fp8
Uniform fp16

(b) 5 layers

0.93 0.94 0.95 0.96 0.97 0.98
Test accuracy

0.0

0.2

0.4

0.6

0.8

1.0

(=5)

(=1)

(=0.5)

(=0.1)

fp8

fp16Mixed fp8/fp16
Uniform fp8
Uniform fp16

0.68 0.70 0.72 0.74 0.76 0.78 0.80 0.82 0.84
Test accuracy

0.0

0.2

0.4

0.6

0.8

1.0

(=5)

(=1)

(=0.5)

(=0.1)

fp8

fp16Mixed fp8/fp16
Uniform fp8
Uniform fp16

(c) 8 layers

FIG. 4.2. Same as Figure 4.1 but with tanh activations.

MIXED PRECISION ACCUMULATION GUIDED BY COMPONENTWISE FORWARD ERROR ANALYSIS 19

5. Conclusion

We have considered the problem of using mixed precision accumulation in the matrix–multiply
accumulate operations for neural network inference. In order to do so, we investigated the propagation
of errors in the inference, based on a generic error model that applies in particular to floating-point
arithmetic. Specifically, we have carried out a componentwise forward error analysis, whose main
conclusion is reported in Theorem 2.4. This key result shows that the errors incurred in each inner
product of each layer are proportional to the condition number of the inner product and to the condition
number of the activation functions. Therefore our analysis suggests (see Corollary 2.5) to choose the
precision of each inner product to be inversely proportional to this product of condition numbers.

We have leveraged this insight by developing an inference algorithm with mixed precision
accumulation. We introduced some approximations in order to cheaply estimate the condition numbers,
leading to the practical approach outlined in Algorithm 3.1 and illustrated in Figure 1.1. We have
validated the soundness and potential of this approach experimentally on multilayer perceptrons
networks with ReLU and tanh activations. Our experimental results indeed show that the proposed
mixed precision approach can significantly improve the cost–accuracy tradeoff: in most cases, it is more
accurate than the low precision baseline (FP8 in our tests) and less expensive than the high precision
baseline (FP16 in our tests).

The analysis is general enough to cover various network architectures. We have focused our
experiments on the multilayer perceptron one, but the approach could be adapted to convolutional
networks. However, an analysis taking into account the specific structure of such networks should lead
to sharper bounds and is left for future work.

Acknowledgments

This work was partially supported by the InterFLOP (ANR-20-CE46-0009), MixHPC (ANR-23-
CE46-0005-01), NumPEx ExaMA (ANR-22-EXNU-0002), MEPHISTO (ANR-24-CE23-7039-01),
and HOLIGRAIL (ANR-23-PEIA-0010) projects of the French National Agency for Research (ANR).

REFERENCES

1. CUDA PTX ISA. NVIDIA, May 2024. Release 8.5.
2. T. Beuzeville, A. Buttari, S. Gratton, and T. Mary. Deterministic and probabilistic backward error analysis of

neural networks in floating-point arithmetic. HAL EPrint hal-04663142.
3. P. Blanchard, N. J. Higham, F. Lopez, T. Mary, and S. Pranesh. Mixed Precision Block Fused Multiply-Add:

Error Analysis and Application to GPU Tensor Cores. SIAM J. Sci. Comput., 42(3):C124–C141, 2020.
4. P. Blanchard, N. J. Higham, and T. Mary. A Class of Fast and Accurate Summation Algorithms. SIAM J. Sci.

Comput., 42(3):A1541–1557, 2020.
5. I. Colbert, F. Grob, G. Franco, J. Zhang, and R. Saab. Accumulator-aware post-training quantization. arXiv

preprint arXiv:2409.17092, 2024.
6. I. Colbert, A. Pappalardo, and J. Petri-Koenig. Quantized neural networks for low-precision accumulation

with guaranteed overflow avoidance. arXiv preprint arXiv:2301.13376, 2023.
7. M. P. Connolly, N. J. Higham, and T. Mary. Stochastic Rounding and its Probabilistic Backward Error

Analysis. SIAM J. Sci. Comput., 43(1):A566–A585, 2021.
8. M. Croci, M. Fasi, N. J. Higham, T. Mary, and M. Mikaitis. Stochastic rounding: Implementation, error

analysis and applications. Roy. Soc. Open Sci., 9(3):1–25, 2022.
9. B. De Bruin, Z. Zivkovic, and H. Corporaal. Quantization of deep neural networks for accumulator-

constrained processors. Microprocessors and microsystems, 72:102872, 2020.

https://docs.nvidia.com/cuda/pdf/ptx_isa_8.5.pdf
https://hal.science/hal-04663142/
https://hal.science/hal-04663142/
https://doi.org/10.1137/19M1289546
https://doi.org/10.1137/19M1289546
https://doi.org/10.1137/19M1257780
https://arxiv.org/abs/2409.17092
https://arxiv.org/abs/2301.13376
https://arxiv.org/abs/2301.13376
https://doi.org/10.1137/20M1334796
https://doi.org/10.1137/20M1334796
https://doi.org/10.1098/rsos.211631
https://doi.org/10.1098/rsos.211631
https://doi.org/https://doi.org/10.1016/j.micpro.2019.102872
https://doi.org/https://doi.org/10.1016/j.micpro.2019.102872

20 EL-MEHDI EL ARAR, SILVIU-IOAN FILIP, THEO MARY, AND ELISA RICCIETTI

10. Z. Dong, Z. Yao, D. Arfeen, A. Gholami, M. W. Mahoney, and K. Keutzer. HAWQ-v2: Hessian aware
trace-weighted quantization of neural networks. Advances in neural information processing systems, 33:
18518–18529, 2020.

11. Z. Dong, Z. Yao, A. Gholami, M. W. Mahoney, and K. Keutzer. HAWQ: Hessian aware quantization of neural
networks with mixed-precision. In Proceedings of the IEEE/CVF International Conference on Computer
Vision, 2019, pages 293–302.

12. E.-M. El Arar, M. Fasi, S.-I. Filip, and M. Mikaitis. Probabilistic error analysis of limited-precision stochastic
rounding, 2025.

13. A. Gholami, S. Kim, Z. Dong, Z. Yao, M. W. Mahoney, and K. Keutzer. A survey of quantization methods
for efficient neural network inference. In Low-power computer vision, Chapman and Hall/CRC, 2022, pages
291–326.

14. C. Gong, Z. Jiang, D. Wang, Y. Lin, Q. Liu, and D. Z. Pan. Mixed precision neural architecture search
for energy efficient deep learning. In 2019 IEEE/ACM International Conference on Computer-Aided Design
(ICCAD), IEEE, 2019, pages 1–7.

15. S. Gupta, A. Agrawal, K. Gopalakrishnan, and P. Narayanan. Deep learning with limited numerical precision.
In International conference on machine learning, PMLR, 2015, pages 1737–1746.

16. N. J. Higham. Accuracy and Stability of Numerical Algorithms. Second edition, Society for Industrial and
Applied Mathematics, Philadelphia, PA, USA, 2002. xxx+680 pp. ISBN 0-89871-521-0.

17. IEEE Standard for Floating-Point Arithmetic, IEEE Std 754-2019 (revision of IEEE Std 754-2008). Institute
of Electrical and Electronics Engineers, Piscataway, NJ, USA, July 2019. 82 pp. ISBN 978-0-7381-5752-8.

18. C.-P. Jeannerod and S. M. Rump. Improved error bounds for inner products in floating-point arithmetic. SIAM
J. Matrix Anal. Appl., 34(2):338–344, 2013.

19. N. P. Jouppi and et all. In-datacenter performance analysis of a tensor processing unit. In Proceedings of the
44th annual international symposium on computer architecture, 2017, pages 1–12.

20. D. Lin, S. Talathi, and S. Annapureddy. Fixed point quantization of deep convolutional networks. In
International conference on machine learning, PMLR, 2016, pages 2849–2858.

21. T. Mary and M. Mikaitis. Error analysis of matrix multiplication with narrow range floating-point arithmetic.
HAL EPrint hal-04671474.

22. P. Micikevicius, S. Oberman, P. Dubey, M. Cornea, A. Rodriguez, I. Bratt, R. Grisenthwaite, N. Jouppi, C.
Chou, A. Huffman, M. Schulte, R. Wittig, D. Jani, and S. Deng. OCP 8-bit floating point specification (OFP8),
June 2023. Version 1.0. 16 pp.

23. F. Murtagh. Multilayer perceptrons for classification and regression. Neurocomputing, 2(5):183–197, 1991.
24. M. Nagel, M. Fournarakis, R. A. Amjad, Y. Bondarenko, M. Van Baalen, and T. Blankevoort. A white paper

on neural network quantization. arXiv preprint arXiv:2106.08295, 2021.
25. R. Ni, H. Chu, C. F. O., P. Chiang, C. Studer, and T. Goldstein. Wrapnet: Neural net inference with ultra-

low-precision arithmetic. In International Conference on Learning Representations ICLR 2021, OpenReview,
2021.

26. C. Sakr, N. Wang, C. Chen, J. Choi, A. Agrawal, N. Shanbhag, and K. Gopalakrishnan. Accumulation
bit-width scaling for ultra-low precision training of deep networks. arXiv preprint arXiv:1901.06588, 2019.

27. M. A. Talib, S. Majzoub, Q. Nasir, and D. Jamal. A systematic literature review on hardware implementation
of artificial intelligence algorithms. J Supercomput, 77:1897–1938, 2021.

28. M. Tatsumi, Y. Xie, C. White, S.-I. Filip, O. Sentieys, and G. Lemieux. MPTorch and MPArchimedes: Open
Source Frameworks to Explore Custom Mixed- Precision Operations for DNN Training on Edge Devices. In
ROAD4NN 2021 - 2nd ROAD4NN Workshop: Research Open Automatic Design for Neural Networks, San
Francisco, United States, December 2021.

29. S. Uhlich, L. Mauch, F. Cardinaux, K. Yoshiyama, J. A. Garcia, S. Tiedemann, T. Kemp, and A. Nakamura.
Mixed precision DNNs: All you need is a good parametrization. arXiv preprint arXiv:1905.11452, 2019.

30. K. Wang, Z. Liu, Y. Lin, J. Lin, and S. Han. HAQ: Hardware-aware automated quantization with mixed
precision. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2019,
pages 8612–8620.

https://proceedings.neurips.cc/paper_files/paper/2020/file/d77c703536718b95308130ff2e5cf9ee-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2020/file/d77c703536718b95308130ff2e5cf9ee-Paper.pdf
https://doi.org/10.1109/ICCV.2019.00038
https://doi.org/10.1109/ICCV.2019.00038
https://arxiv.org/abs/2408.03069
https://arxiv.org/abs/2408.03069
https://doi.org/10.1201/9781003162810-13
https://doi.org/10.1201/9781003162810-13
https://doi.org/10.1109/ICCAD45719.2019.8942147
https://doi.org/10.1109/ICCAD45719.2019.8942147
https://dl.acm.org/doi/10.5555/3045118.3045303
http://dx.doi.org/10.1137/1.9780898718027
http://dx.doi.org/10.1109/IEEESTD.2019.8766229
https://doi.org/10.1137/120894488
https://doi.org/10.1145/3079856.3080246
https://dl.acm.org/doi/10.5555/3045390.3045690
https://hal.science/hal-04671474
https://www.opencompute.org/documents/ocp-8-bit-floating-point-specification-ofp8-revision-1-0-2023-12-01-pdf-1
https://www.sciencedirect.com/science/article/pii/0925231291900235
https://arxiv.org/abs/2106.08295
https://arxiv.org/abs/2106.08295
https://openreview.net/forum?id=3SqrRe8FWQ-
https://openreview.net/forum?id=3SqrRe8FWQ-
https://arxiv.org/abs/1901.06588
https://arxiv.org/abs/1901.06588
https://doi.org/10.1007/s11227-020-03325-8
https://doi.org/10.1007/s11227-020-03325-8
https://hal.archives-ouvertes.fr/hal-03494256
https://hal.archives-ouvertes.fr/hal-03494256
https://doi.org/10.48550/arXiv.1905.11452
https://doi.org/10.1109/CVPR.2019.00881
https://doi.org/10.1109/CVPR.2019.00881

MIXED PRECISION ACCUMULATION GUIDED BY COMPONENTWISE FORWARD ERROR ANALYSIS 21

31. N. Wang, J. Choi, D. Brand, C. Chen, and K. Gopalakrishnan. Training deep neural networks with 8-
bit floating point numbers. In Proceedings of the 32nd International Conference on Neural Information
Processing Systems, NIPS’18, Red Hook, NY, USA, 2018, pages 7686–7695. Curran Associates Inc.

32. H. Xie, Y. Song, L. Cai, and M. Li. Overflow aware quantization: Accelerating neural network inference
by low-bit multiply-accumulate operations. In Proceedings of the Twenty-Ninth International Conference on
International Joint Conferences on Artificial Intelligence, 2021, pages 868–875.

33. H. Yang, L. Duan, Y. Chen, and H. Li. BSQ: Exploring bit-level sparsity for mixed-precision neural network
quantization. 2021.

34. Z. Yao, Z. Dong, Z. Zheng, A. Gholami, J. Yu, E. Tan, L. Wang, Q. Huang, Y. Wang, M. W. Mahoney, and K.
Keutzer. HAWQ-v3: Dyadic neural network quantization. In International Conference on Machine Learning,
PMLR, 2021, pages 11875–11886.

https://dl.acm.org/doi/10.5555/3327757.3327866
https://dl.acm.org/doi/10.5555/3327757.3327866
https://dl.acm.org/doi/10.5555/3491440.3491561
https://dl.acm.org/doi/10.5555/3491440.3491561
https://openreview.net/forum?id=TiXl51SCNw8
https://openreview.net/forum?id=TiXl51SCNw8
https://proceedings.mlr.press/v139/yao21a/yao21a.pdf

	1 Introduction
	2 Componentwise error analysis
	2.1 Setting, notations, and error model
	2.2 Preliminaries
	Condition number of a matrix–vector product.
	Condition number of a function.

	2.3 The analysis
	2.4 Interpretation of the analysis and consequences

	3 A mixed precision algorithm for NN inference
	3.1 Main principle
	3.2 From a theoretical to a practical criterion: estimating
	3.3 The algorithm

	4 Numerical experiments
	Experimental setting and description of the figures.
	Discussion of the results when using ReLU activation functions.
	Discussion of the results when using bold0mu mumu tanhtanhtanhtanhtanhtanh activation functions.

	5 Conclusion

