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Abstract. Low-rank approximations are widely used to reduce the memory footprint and opera-
tional complexity of numerous linear algebra algorithms in scientific computing and data analysis.
In some of our recent work we have demonstrated that low-rank approximations can be stored us-
ing multiple arithmetic precisions to further reduce the storage and execution time. In this work
we present a method that can produce this mixed-precision representation directly; this relies on
a mixed-precision truncated rank-revealing QR (RRQR) factorization with pivoting. We present a
floating-point error analysis and provide bounds on the error of the approximation demonstrat-
ing that the use of multiple precisions does not alter the overall accuracy. Finally, we present
experimental results showing the execution time reduction for the cases where either classical or
randomized pivoting are used.
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Résumé. Les approximations de rang faible sont couramment utilisées pour réduire la consom-
mation de mémoire et la complexité calculatoire de nombreux algorithmes d’algèbre linéaire en
calcul scientifique et analyse des données. Dans nos travaux récents, nous avons démontré que
les approximations de rang faible peuvent etre stockées en utilisant de multiples précisions arith-
métiques pour réduire d’avantage la mémoire et le temps d’exécution. Dans ce document, nous
présentons une nouvelle méthode qui produit directement ces représentations; elle repose sur une
factorisation QR en precision mixte tronquée et avec pivotage. Nous présentons une analyse des
erreurs d’arrondi en virgule flottante ainsi que des bornes pour l’erreur d’approximation montrant
que l’utilisation de plusieurs précisions ne dégrade pas la qualité de la solution finale. Finalement,
nous présentons des résultats expérimentaux montrant la réduction du temps d’exécution obte-
nue avec les méthodes proposées.
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1 Introduction
Alongside many classical applications in data analysis, the use of low-rank ap-

proximations in computing has become increasingly popular in recent years due
to their effectiveness in reducing both the memory consumption and the opera-
tional complexity of numerous linear algebra algorithms such as linear system
solvers [2, 20, 11]. Essentially, these rely on the idea that a matrix A ∈ Rm×n can
be approximately represented as a product XY T where X ∈ Rm×k and Y ∈ Rn×k

are matrices of sufficiently low rank k such that∥∥A−XY T
∥∥ ≤ ε ∥A∥

in some norm, where ε is a prescribed accuracy tolerance. For a given ε an
optimal approximation can be obtained by computing the singular value decom-
position of A and dropping all the singular values smaller than ε and the corre-
sponding left and right singular vectors [10]. Nevertheless, this method is rarely
used in practice due to its high cost and low efficiency. Instead, other methods
are preferred which are sufficiently accurate and robust in practice, and more
computationally efficient and/or scalable in a parallel setting; among these, we
can cite rank-revealing QR factorizations [4] or randomized approaches [18].

Concurrently, low-precision floating-point arithmetic units have become in-
creasingly available and supported not only in specialized computing platforms
(such as GPUs) but also in commodity CPUs. This is partly due to the recent ex-
plosion of artificial intelligence and machine learning algorithms in science and
engineering which work remarkably well with low (e.g., 16-bit) or even very low
(8-bit) precisions. As a result, new floating-point arithmetic formats have been
proposed and, sometimes, standardized, such as binary16 or BFloat16 which can
achieve higher performance than the traditional 32-bit or 64-bit floating-point
formats. Despite their wide adoption in machine learning, these low-precision
formats cannot be straightforwardly employed in applications which require rel-
atively high accuracy; this has reignited the interest of the scientific computing
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community around mixed-precision algorithms. These combine multiple arith-
metic formats in order to achieve provably accurate results while maximizing
the use of low-precision units in order to improve performance. In particular, in
our recent work [1] we have demonstrated that low-rank approximations can be
stored in a mixed-precision format which can then be used in a direct method
to solve linear systems of equations in a backward stable way. This approach
amounts to partitioning the columns of X and Y into block-columns such that
the overall accuracy of the approximation∥∥∥A−X1Y 1T − · · · −XpY pT

∥∥∥ ≤ ε ∥A∥ (1)

is still satisfied when the Xi and Y i data are stored, from left to right, using
different arithmetics of decreasing precision. Intuitively, this can be explained
by the fact that the rightmost columns of X and Y are associated with small
singular values which carry little information and play a minor role in the error
of the low-rank approximation. This splitting is dictated by the spectrum of A,
the number and accuracy of the p available precisions and the threshold ε. In
the same work we have demonstrated that this mixed-precision format can be
used to reduce the execution time of matrix factorizations without harming the
backward stability. The format in equation (1) can straightforwardly be obtained
by first computing the low-rank approximation fully in high precision and then
by appropriately casting the block-columns of X and Y into lower precisions;
nevertheless, using this naive approach leads to poor performance in contexts
where computing the high precision low-rank approximation is the bottleneck.

In the present work, we propose a mixed-precision pivoted QR factorization
that can directly compute the mixed-precision low-rank approximation of a ma-
trix A such that the condition in equation (1) is satisfied. We make the following
contributions:

1. We present, in Section 3, a rounding error analysis of the Householder QR
factorization where the arithmetic precision is gradually reduced in the
course of the algorithm. We produce a theoretical upper bound on the er-
ror demonstrating that, if these changes of precision are appropriately op-
erated, the accuracy of the resulting low-rank approximation can be made
the same as in the case where only high-precision arithmetic is used.

2. We present, in Section 4 two mixed-precision QR factorization algorithms
that rely, respectively, on the Businger-Golub and randomized pivoting.

3. Finally, in Section 5, we present an experimental evaluation of these algo-
rithms which validates the theoretical findings and demonstrates the higher
performance of the mixed-precision algorithms with respect to their full
high-precision counterparts.

A mixed-precision algorithm for computing a mixed-precision low-rank ap-
proximation of a matrix A was recently proposed by Connolly, Higham, and
Pranesh [5]. This, however, relies on the randomized range finder method [18]
and the resulting low-rank approximation is stored in high precision despite the
computations being carried in mixed-precision.

2 Background
In the reminder of this document, we will use the following notation. Upper-

case and lower-case roman letters denote, respectively, matrices and vectors,
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while Greek letters denote scalars. Subscripts will be used to denote matrix or
vector indices and superscripts to denote data associated with different steps of
some algorithm or sequence of operations. To keep the notation simple, when
there is no ambiguity, we will denote a column of a matrix using the correspond-
ing lower-case letter with a subscript indicating the column index; for example,
the j-th column of matrix A will be denoted aj.

2.1 Householder QR and error analysis

The Householder [15] QR factorization of anm×nmatrix A proceeds in n steps
where, at each step k, an elementary reflector Hk is computed such that all the
subdiagonal coefficients in column k are annihilated; as a result, the A matrix
is reduced into an upper triangular matrix R and the product of the reflectors
defines the orthogonal Q factor:

Hn · · ·H1A = QTA = R, where Hk = (I − τkvk(vk)T ).

Here the Q matrix is never explicitly computed but implicitly represented by
the vk vectors and τk scalars; furthermore, the first k− 1 coefficients in vector vk
are null. The vk and τk vectors can be computed in different ways, for example,
to prevent cancellations; we refer the reader to the article by Lehoucq [17] for
an exhaustive discussion of this argument. Our work relies on the error analysis
of Higham [14] (Chapter 19) which assumes that these are computed following
the convention used in the LINPACK and LAPACK libraries.

It must be noted that, for the sake of performance, these Householder trans-
formations are not computed and applied to A individually but, rather, in blocks
of size b ≪ n using the WY representation of Schreiber and Van Loan [21]; this
allows for using Level-3 BLAS operations for most of the computations which
results in a much faster execution due to an efficient use of cache memories.

In our error analysis of Section 3 we will make extensive use of the results
in lemmas 19.1, 19.2 and 19.3 and theorem 19.4 of Higham [14] which we will
report below (with some slight adaptations and notation changes) for the sake
of self-completeness prior to extending them to the case where the factorization
is truncated and conducted using multiple precisions. Accordingly, we use the
standard model of floating-point arithmetic [14, sect. 2.2], we put a hat on vari-
ables to denote that they represent computed quantities. For any integer k, we
define

γk =
ku

1− ku

where u denotes the unit rounding of the employed arithmetic; a superscript on
γ denotes that u carries that superscript; thus γf

k = kuf

(1−kuf )
, for example. We also

use the notation γ̃k = γηk to hide modest constants η.

Lemma 2.1 (19.1 and 19.2 of [14]). Assume a Householder transformation H
is computed and applied to a vector b using precision u. The computed result ŷ
satisfies

ŷ = (H +∆H)b, ∥∆H∥F ≤ γ̃m.

The previous lemma demonstrates that computing and applying a House-
holder transformation in finite precision is a backward stable operation. The
next one demonstrates that this property also holds when multiple transforma-
tions of this type are applied to a vector.

Working document

https://www.irit.fr - contact@irit.fr

3

https://www.irit.fr
mailto:contact@irit.fr


A. Buttari, T. Mary, A. Pacteau Truncated QR factorization with pivoting in mixed precision

Lemma 2.2 (19.3 of [14]). Consider the sequence of transformations

bi = Hibi−1, b0 = b, i = 1, . . . , k.

The computed b̂k satisfies

b̂k = Hk · · ·H1(b+∆b) = QT (b+∆b), ∥∆b∥2 ≤ γ̃mk∥b∥2.

A Householder QR factorization simply consists in applying to a matrix A a
sequence of transformations that annihilate all the subdiagonal coefficients one
column at a time; therefore, Lemma 2.2 applies on all columns, which leads to
the following theorem.

Theorem 2.3 (19.4 of [14]). Let R̂ ∈ Rm×n be the computed upper trapezoidal
QR factor of A ∈ Rm×n (m ≥ n) obtained via the Householder QR algorithm. Then
there exists an orthogonal Q ∈ Rm×m such that

A+∆A = QR̂

where
∥∆aj∥2 ≤ γ̃mn ∥aj∥2 , j = 1, . . . , n.

The latter theorem simply says that one such Q matrix exists. In practice, it
is more useful to have a bound using the actually computed Q̂, as stated in the
next Theorem.

Theorem 2.4 (from [14]). Let R̂ ∈ Rm×n and Q̂ ∈ Rm×m be, respectively, the
computed upper trapezoidal and orthogonal QR factors of A ∈ Rm×n (m ≥ n)
obtained via the Householder QR algorithm. Then∥∥∥A− Q̂R̂

∥∥∥
F
≤

√
nγ̃mn ∥A∥F . (2)

Proof. It must be noted that Q̂ is obtained by applying the sequence of transfor-
mations to the identity matrix; therefore, Theorem 19.4 can be used to derive
the following bound

Q̂ = Q(I +∆I), ∥∆ij∥2 ≤ γ̃mn

where ∆ij denoted the j-th column of matrix ∆I; this implies∥∥∥Q− Q̂
∥∥∥
F
≤

√
nγ̃mn. (3)

Now, using equation (3) and Theorem 2.3∥∥∥∥(A− Q̂R̂
)
j

∥∥∥∥
2

=

∥∥∥∥(A−QR̂
)
j
+
((

Q− Q̂
)
R̂
)
j

∥∥∥∥
2

≤ γ̃mn ∥aj∥2 +
√
nγ̃mn ∥r̂j∥2

= γ̃mn ∥aj∥2 +
√
nγ̃mn ∥Qr̂j∥2

= γ̃mn ∥aj∥2 +
√
nγ̃mn ∥aj +∆aj∥2

=
√
nγ̃mn ∥aj∥2

which implies the result.
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2.2 QR factorization with Businger-Golub pivoting

A QR factorization capable of revealing the rank of a matrix (RRQR for Rank-
Revealing QR) can be obtained using column pivoting as in the method proposed
by Businger and Golub [3]. Essentially, at each step k of the QR factorization,
this method permutes the columns of the trailing submatrix such that the pivotal
column k is the one that has maximum 2-norm. This implies that the diagonal co-
efficients of the R factor are of decreasing absolute value and that the following
property holds:

AP = QR where |Rk,k| ≥ ∥Rk:m,j∥2 j = k, ..., n. (4)

Note that explicitly recomputing the norm of all the columns in the trailing
submatrix not only is expensive but completely prevents the use of blocking (and,
thus, of Level-3 BLAS operations) because this requires to entirely update all the
remaining columns after every elimination step. This problem can be partially
overcome taking advantage of the fact that, once all the column norms of the
original A matrix have been computed, these do not have to be recomputed at
every step but can be cheaply updated. Essentially, at step k of the factorization,
the norm of column j in the trailing submatrix is updated by subtracting the
freshly computed Rk,j coefficient. This approach is shown in Algorithm 1 which
we refer to as QRCP; here we have assumed that V is a matrix containing all the
computed vk vectors in its columns, that householder(x, k) is a function which
computes and applies a Householder reflection that annihilates the bottom m−
k + 1 coefficients of a vector x of size m and that W is a workspace. Although, in
this algorithm, a large portion of computations is still done using Level-2 BLAS
operations, some Level-3 can be used (in line 13).

Algorithm 1 Blocked QR factorization with Businger-Golub pivoting (QRCP).
1: Input:A ∈ Rm×n

2: Let: ηj = ∥A:j∥2, j = 1, . . . , n, P = I
3: for j = 1 : b : n do
4: for k = j : j + b− 1 do
5: Find i ∈ k, . . . , n such that ηi is minimal
6: Swap columns k and i in A and P
7: Ak:m,k = Ak:m,k − Vk:m,j:k−1Wj:k−1,k

8: vk, τk = householder (A:,k, k)
9: Wk+1,k:n = τk(vk)TA:,k+1:n + τk(vk)TV:,j:k−1Wj:k−1,k+1:n

10: Ak,k+1:n = Ak,k+1:n − Vk,j:k−1Wj:k−1,k+1:n

11: ηi =
√
η2i −A2

k,i, i = k + 1, ..., n

12: end for
13: Aj+b:m,j+b:n = Aj+b:m,j+b:n − Vj+b:m,j:j+b−1Wj:j+b−1:j+b:n

14: end for
15: Output: Q =

∏
k=1,n (I − τkvk(vk)T ), R = triu(A), P

It must be noted that the column norm update in line 11 of Algorithm 1 is a
very delicate step when carried in finite precision as it may be subject to severe
cancellations. This problem might be overcome using the approach proposed by
Drmač and Bujanović [8] where if, in line 11 the norm of some columns drops
by a value larger than a prescribed threshold which depends on the arithmetic
unit roundoff, the algorithm breaks out of the inner loop of line 4, fully updates
the trailing submatrix (line 13) and explicitly recomputes the norm of the prob-
lematic columns. This approach might reduce the portion of Level-3 BLAS oper-
ations but renders the method robust. Algorithm 1 with this updating technique
is implemented in the LAPACK _GEQP3 routine.
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2.3 QR factorization with randomized pivoting

In practice, Algorithm 1 achieves very poor performance and parallel scala-
bility because a large portion of computations in Algorithm 1 are of Level-2 BLAS
type and because of the numerous communications that the Businger-Golub piv-
oting requires. For this reason alternative pivoting techniques have been pro-
posed in the literature that aim at overcoming these drawbacks. Multiple meth-
ods proposed in the literature, such as those by Duersch and Gu [9], Martinsson
et al. [19], Demmel et al. [6], and Dessole and Marcuzzi [7], rely on an approach
where, at every step of the factorization, not one but b (the panel size) selected
columns of the trailing submatrix are moved upfront, eliminated and the corre-
sponding transformations applied at once using Level-3 BLAS operations as in
the WY technique described above. These methods essentially differ in the way
these b columns are selected. In the approach proposed by Duersch and Gu [9]
and Martinsson et al. [19], illustrated in Algorithm 2, this selection is done us-
ing randomized sampling, that is, the trailing submatrix is left-multiplied by a
i.i.d. Gaussian matrix Ω ∈ N (0, 1)(b+p)×(m−j) which produces a sample matrix S;
here we assume that j− 1 columns of A have already been eliminated and p is an
oversampling parameter of moderate value (less than ten). Because of the prop-
erties that connect S to the trailing submatrix, the “important” b columns can be
selected by applying QRCP to the sample matrix S. This drastically improves the
amount of level-3 BLAS operations because S has a much smaller row-dimension
than the trailing submatrix. As a matter of fact, the sample matrix S does not
have to be recomputed at every factorization step but it can be computed only
once and cheaply updated [9, 19].

Algorithm 2 Blocked QR factorization with randomized pivoting (QRRP).
1: Input:A ∈ Rm×n

2: Let: P = I, Ω ∈ N (0, 1)(b+p)×(m−j), S = ΩA
3: for j = 1 : b : n do
4: Q̃, R̃, P̃ = QRCP(S:,j:n)

5: A:,j:n = A:,j:nP̃ , P:,j:n = P:,j:nP̃
6: Qj , Rj = QR(Aj:m,j:j+b−1)
7: Aj:m,j+b:n = (Qj)TAj:m,j+b:n

8: Update S
9: end for
10: Output: Q =

∏
Qj , R = triu(A), P

Xiao, Gu, and Langou [22] demonstrate that the property of equation (4) does
not apply formally to the result of QRRP but holds in a probabilistic sense. Given
ε, ∆ ∈ (0, 1) and an oversampling parameter p ≥ ⌈ 4

ε2−ε3 log(
2nk
∆ )⌉ the following

property

|Rk,k| ≥
√

1− ε

1 + ε
∥Rk:m,j∥2 , i+ 1 ≤ j ≤ n (5)

holds with probability at least 1−∆.

3 Error analysis
Let us assume that we have p precisions such that the respective unit roundoff

verify
u1 ≤ u2 ≤ · · · ≤ up
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and for each precision i a sequence of ki transformations are computed and ap-
plied to matrix A such that

p∑
i=1

ki = k ≤ n.

Therefore, first k1 transformations are computed and applied with precision u1,
then k2 with precision u2 and so forth:

up(
Hp,kp

· · ·Hp,1
)
· · ·

u1(
H1,k1

· · ·H1,1
)
A = QTA =

[
R

Ap+1

]
. (6)

Here we use an extra superscript to denote the precision at which each trans-
formation is computed and applied. furthermore, we denote Ai+1 the trailing
submatrix after Ki of the above transformations are applied where

Ki =

i∑
j=1

kj .

Note that, because we are interested in a truncated QR factorization, k might be
smaller than n, in which case Ap+1 corresponds to a (m − k) × n matrix with the
rightmost n− k columns being non-zero.

Each Ai matrix has m−Ki−1 rows and n columns, the first Ki−1 being equal to
zero; A1 corresponds to the initial matrix A. The Q and Rmatrices in equation (6)
can be split in block-columns and block-rows, respectively, such that

A = [Q1 · · ·QpQp+1]


R1

...
Rp

Ap+1

 . (7)

Note that each Qi is am×ki submatrix of Q = and is the result of computations
carried in precisions 1 through i. Equivalently, Ri is a ki×n submatrix of R and is
the result of computations carried in precisions 1 through i. Our mixed-precision
low-rank approximation of A is obtained by dropping Qp+1 and Ap+1 in the above
equation.

Our analysis will rely on the observation that in the QR factorization the i-th
of such transformations has the following structure[

Ii−1

H̄i

]
where Ii−1 is the identitymatrix of size i−1; this is because the i-th transformation
is computed so as to annihilate all the subdiagonal coefficients in the i-th column
of A and implies that the application of such transformation will only concern the
bottom m− i+ 1 rows of the matrix. In the analysis of Higham [14] this property
was not used because in the case where a single precision is used it does not yield
any significant improvement of the bounds. For our analysis, it is not necessary
to consider the structure of each single transformation but, rather, it is enough
to note that all transformations at precision i have the same structure[

IK
i−1

H̄i,j

]
, j = 1, . . . , ki.
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Lemma 3.1 (equivalent of Lemma 2.2 in mixed precision). Consider the se-
quence of transformations

bK
i

=

ki∏
j=1

Hi,jbK
i−1

, b0 = b, i = 1, . . . , p, Kp = k.

where all transformations Hi,j , j = 1, ..., ki are computed and applied in precision
ui and have the following structure

Hi,j =

[
IK

i−1

H̄i,j

]
. (8)

The computed b̂k satisfies

b̂k = QT (b+∆b), ∥∆b∥2 ≤
p∑

i=1

γ̃i
mki

∥∥∥bKi−1

Ki−1+1:m

∥∥∥
2
.

Proof. The results follows by using Theorem 2.2 “in packets” where, in each
packet, the Householder transformations have the structure of equation (8).
Each packet of ki transformation at precision ui only concerns rowsKi−1+1, . . . ,m

of bKi−1 and, by Theorem 2.2, introduces an error bounded by γ̃i
mki

∥∥∥bKi−1

Ki−1+1:m

∥∥∥
2
.

Note that it would be more appropriate to use γ̃i
(m−Ki−1)ki but we use m instead

of m−Ki−1 to keep the notation simple.

Based on Lemma 3.1, we are now ready to derive a columnwise error bound
for a truncated QR factorization in mixed precision.

Lemma 3.2 (equivalent of Lemma 2.3 with truncation and mixed precision). As-
sume that a truncated QR factorization is computed such that k ≤ nHouseholder
transformations are computed and applied to a matrix A ∈ Rm×n using p different
precisions of increasing unit roundoff ui. Let ki be the number of transformations
that are computed using precision i. Then there exist matrices Q1, . . . , Qp+1 such
that the computed R̂i and Âp+1 satisfy

(A+∆A) = [Q1 · · ·QpQp+1]


R̂1

...
R̂p

Âp+1

 , ∥∆aj∥2 ≤
p∑

i=1

γ̃i
mki

∥∥aij∥∥2 (9)

and, consequently,∥∥∥∥∥∥
(
A−

p∑
i=1

QiR̂i

)
j

∥∥∥∥∥∥
2

≤
∥∥∥ap+1

j

∥∥∥
2
+

p∑
i=1

γ̃i
mki

∥∥aij∥∥2 . (10)

Proof. Equation (9) straightforwardly results from the application of Lemma 3.1
to the case where the sequence of Householder transformations is computed so
as to annihilate all the subdiagonal coefficients of A and, therefore, have the
structure defined in equation (8). Equation (10), instead, follows from the ob-
servation that

âp+1
j = ap+1

j +∆ap+1
j ,

∥∥∥∆ap+1
j

∥∥∥
2
≤

p∑
i=1

γ̃i
mki

∥∥aij∥∥2 .
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Theorem 3.3 (equivalent of Theorem 2.4 with truncation and mixed precision).
Assume that a truncated QR factorization is computed such that k ≤ n House-
holder transformations are computed and applied to a matrix A ∈ Rm×n using
p different precisions of increasing unit roundoff ui. Let ki be the number of
transformations that are computed using precision i. The computed R̂i and Q̂i

satisfy ∥∥∥∥∥A−
p∑

i=1

Q̂iR̂i

∥∥∥∥∥
F

≤
∥∥Ap+1

∥∥
F
+

p∑
i=1

√
kiγ̃i

mki

∥∥Ai
∥∥
F
. (11)

Proof. Following the same path that led us to equation (3), in the case where
multiple precisions are used we obtain∥∥∥Qi − Q̂i

∥∥∥
F
≤

√
ki

i∑
j=1

γ̃j
mkj =

√
kiγ̃i

mki

which allows us to derive a bound on the quality of the approximation using the
actually computed Q̂i and R̂i∥∥∥∥(A−

∑p
i=1 Q̂iR̂i

)
j

∥∥∥∥
2

=

∥∥∥∥(A−
∑p

i=1 QiR̂i

)
j
+
∑p

i=1

((
Qi − Q̂i

)
R̂i

)
j

∥∥∥∥
2

≤
∥∥∥∥(A−

∑p
i=1 QiR̂i

)
j

∥∥∥∥
2

+
∑p

i=1

∥∥∥Qi − Q̂i

∥∥∥
F

∥∥∥∥(R̂i

)
j

∥∥∥∥
2

≤
∥∥∥ap+1

j

∥∥∥
2
+
∑p

i=1 γ̃
i
mki

∥∥aij∥∥2 +∑p
i=1

√
kiγ̃i

mki

∥∥∥∥(R̂i

)
j

∥∥∥∥
2

≤
∥∥∥ap+1

j

∥∥∥
2
+
∑p

i=1

√
kiγ̃i

mki

∥∥aij∥∥2
which implies the result.

4 Pivoted QR factorization in mixed precision
Based on the theoretical findings of the previous section, we are now ready

to formulate a truncated rank-revealing QR factorization in mixed precision.
We will first introduce two truncated QR factorization algorithms based, re-
spectively, on the Businger-Golub and randomized pivoting and then a mixed-
precision algorithm that can use either of these.

Specifically, the truncated mixed-precision algorithm relies on the use of the
error bound in equation (11) to gradually switch to lower precision and, even-
tually, to halt the factorization as soon as the prescribed accuracy ε is reached.
The terms of this bound, however, are difficult, in practice, to compute accu-
rately. In order to make this bound more usable in practice, we can proceed
to some simplifications. First of all we can ignore the constants related to the
accumulation of rounding errors, which are often pessimistic [13]; this amounts
to replacing each γ̃i

mki with the unit roundoff of the corresponding arithmetic
precision ui. Second, because in the course of the factorization it is not known
beforehand how many transformations will be computed with each precision i,
we will replace ki with n−Ki−1. The error bound thus becomes
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∥∥∥∥∥A−
p∑

i=1

Q̂iR̂i

∥∥∥∥∥
F

≤
∥∥Ap+1

∥∥
F
+

p∑
i=1

√
n−Ki−1ui

∥∥Ai
∥∥
F
. (12)

Assuming that a low-rank approximation of relative accuracy ε is to be com-
puted ∥∥∥∥∥A−

p∑
i=1

Q̂iR̂i

∥∥∥∥∥
F

≤
∥∥Ap+1

∥∥
F
+

p∑
i=1

√
n−Ki−1ui

∥∥Ai
∥∥
F
≤ ε ∥A∥F

and, once again, ignoring the constants, it will be enough to ensure that all the
terms in the bound are smaller than or equal to ε ∥A∥F . That is to say, it will be
possible to switch from precision i to precision i+1 at step j of the factorization
such that √

n− jui+1 ∥Aj:m,j:n∥F ≤ ε ∥A∥F (13)
and the factorization can be truncated at step k such that

∥Ak:m,k:n∥F ≤ ε ∥A∥F . (14)

It must be noted that our error analysis does not make any assumption on how
the pivoting is done. Actually, for our method to work, it is only required that
the norm of the trailing submatrix decreases in the course of the factorization
which happens even in the case where no pivoting is applied. Obviously, the
use of pivoting will lead to a faster decay of the trailing submatrix norm and,
consequently, to an earlier truncation and change of precisions.

4.1 Truncated QR factorization with Businger-Golub pivoting

The two criteria in equations (13) and (14) can be straightforwardly used
used to halt Algorithm 1 because the Frobenius norm of the trailing submatrix
is readily available as the 2-norm of part of the vector storing the ηi, that is,
the 2-norm of the corresponding columns. The resulting algorithm is presented
in Algorithm 3 and amounts to a simple modification of Algorithm 1 where the
factorization is interrupted as soon as either equation (13) or (14) is verified.
It must be noted that, when the truncation happens because equation (13) is
verified, it is implicitly assumed that the factorization will be continued using a
lower precision (see the details in Section 4.3) and, therefore, the trailing sub-
matrix update on line 17 is necessary. If, instead, the factorization is interrupted
because equation (14) is verified, the trailing submatrix is discarded and there-
fore need not be updated; for the sake of conciseness we do not include this
optimization in Algorithm 3 although it is implemented in the code we used for
the experimental evaluation of Section 5.2.

It must be noted that, thanks to the property in equation (4), the Frobenius
norm of the trailing submatrix at step k can be bounded using |Rk,k|, that is,
∥Ak:n,k:n∥F ≤

√
n− k|Rk,k|; this criterion, however, can largely overestimate the

norm of the trailing submatrix and result in a late switch of precision, or trunca-
tion leading to sub-optimal performance.

4.2 Truncated QR factorization with randomized pivoting

In the case of the QR factorization with randomized pivoting in Algorithm 2,
the norm of the trailing submatrix cannot be easily computed. Nevertheless, it
is possible to check for precision switch and truncation within the QRCP factor-
ization of the sample matrix based on the norm of the trailing submatrix of the
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Algorithm 3 Truncated blocked QR factorization with Businger-Golub pivoting
(TQRCP).
1: Input:A ∈ Rm×n, εt, εp
2: Let: ηj = ∥A:j∥2, j = 1, . . . , n, P = I
3: for j = 1 : b : n do
4: for k = j : j + b− 1 do
5: if ∥ηk:n∥2 ≤ εt or

√
n− j ∥ηk:n∥2 ≤ εp then

6: b = k − j; k = k − 1
7: goto 17 and break
8: end if
9: argmini {ηi, i = k : n}
10: Swap column k and i in A and P
11: Ak:m,k− = Vk:m,j:k−1Wj:k−1,k

12: vk, τk = householder (A:,k))
13: Wk+1,k:n = τk(vk)TA:,k+1:n + τk(vk)TV:,j:k−1Wj:k−1,k+1:n

14: Ak,k+1:n = Ak,k+1:n) − Vk,j:k−1Wj:k−1,k+1:n

15: ηi =
√
η2i −A2

k,i, i = k + 1, ..., n

16: end for
17: Aj+b:m,j+b:n− = Vj+b:m,j:j+b−1Wj:j+b−1:j+b:n

18: end for
19: Output: Q1:m,1:k =

∏
i=1,k (I − τ ivi(vi)T ), R = triu(A1:k,1:n), P, k

sample. According to Theorem 3.1 by Duersch and Gu [9], after i transformations
the trailing 2-norm squared of the sample, that is, the norm of the columns in the
trailing submatrix of the sample, can be written as a factor of the actual trailing
column norms. Assuming S is a sample of row-dimension l = b+ p for a matrix A
and Si and Ai the corresponding trailing submatrices after i Householder trans-
formations,

∥∥sij∥∥22 = xj

∥∥aij∥∥22 where xj has a truncated chi-squared distribution
with l − i degrees of freedom. Although the expectation of xj can theoretically
be smaller than l − i, in practice we have found that assuming xj = l − i or, more
conservatively, xj = p works very well on our experimental test set (see experi-
ments in Section 5.2). Alternatively, the property in equation (5) can be used to
obtain a probabilistic bound on the norm of the trailing submatrix but this would
likely result in an excessively pessimistic criterion.

Based on this discussion, we propose the truncated QR factorization with ran-
domized pivoting in Algorithm 4; this relies on Algorithm 3 for the factorization
of the sample matrix.

4.3 Truncated QR factorization in mixed precision

The truncated QR factorization inmixed precision is illustrated in Algorithm 5.
Essentially, assuming p precisions are to be used, the algorithm proceeds in p it-
erations where, at iteration i, the current trailing submatrix Ai is factorized in
precision ui using either Algorithm 3 or 4 and, then, the resulting trailing sub-
matrix Ai+1 is cast into precision ui+1.

5 Numerical experiments
In this section we present an experimental evaluation of the theoretical re-

sults and algorithms presented in the previous sections. This evaluation is twofold.
First, in Section 5.1 we validate the correcteness of the error analysis in Sec-
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Algorithm 4 Truncated blocked QR factorization with randomized pivoting
(TQRRP).
1: Input:A ∈ Rm×n, εt, εp
2: Let: P = I, Ω ∈ N (0, 1)(b+p)×(m−j), S = ΩA
3: for j = 1 : b : n do
4: Q̃, R̃, P̃ , k̃ = TQRCP(S:,j:n,

√
pεt,

√
pεp)

5: A:,j:n = A:,j:nP̃ , P:,j:n = P:,j:nP̃
6: Qj , Rj = QR(Aj:m,j:j+k̃−1)

7: Aj:m,j+k̃:n = (Qj)TAj:m,j+k̃:n

8: if k̃ ≤ b then
9: break
10: end if
11: Update S
12: end for
13: Output: Q:,1:k =

∏
Qj , R = triu(A1:k,1:n), P, k = j + k̃

Algorithm 5 Truncated RRQR factorization in mixed precision (MPTRRQR).
1: Input:A ∈ Rm×n, ε,

[
u1, ..., up

]
2: Let:A1 = A, up+1 = ∞
3: for i = 1, . . . , p do
4: Set working precision to ui

5: Qi, Ri, P i, ki = TQR*P(Ai, ε ∥A∥F , ε ∥A∥F /ui+1)
6: if i < p, Ai+1 = cast(Ai

ki+1:,ki+1:, ui+1)

7: end for

tion 3 using up to three different precisions, that is, double (fp64), single (fp32)
and BFloat16 (bf16). Second, in Section 5.2, we assess the performance of
the mixed-precision variants compared with their high-precision counterpart;
for these experiments, we will use precisions for which support is available in
commodity CPUs and optimized LAPACK and BLAS libraries, namely double and
single precision.

Experiments were conducted on the following problems:

• randsvd [14]: randommatrices with geometrically distributed singular val-
ues between 1 and 10−16;

• gravity [12]: Discretization of a 1-D model problem in gravity surveying;

• heat [12]: inverse heat equation;

• kahan [16]: this is a triangular matrix with columns of decreasing norms;
therefore, the pivoted QR factorization does not perform any computations.
To avoid this trivial behavior, we scaled the columns of this matrix in such
a way that column j is multiplied by (1− τ)n−j with τ = 10−10 and n being the
number of columns in the matrix;

• phillips [12]: Phillips’ famous test problem;

for all problems, only square matrices were generated of varying sizes.

5.1 Theory validation with a Julia prototype

In this section we present an experimental analysis aiming at validating the
theoretical analysis of Section 3. For this purpose, we have implemented a
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prototype using the Julia languague which provides half precision, namely, the
BFloat16 arithmetic through the BFloat16s1 package. Because the only purpose
of this prototype is to validate the theoretical results, it does not actually imple-
ment Algorithms 3 and 4 but, instead, proceeds through the following steps:

1. Fully factorizes the input matrix A using Householder QR with Businger-
Golub pivoting (i.e., Algorithm 1);

2. explicitly permutes the input matrix Ã = AP using the permutation resulting
from the previous step;

3. computes the ki based on criteria in equations (13) and (14) using, instead
of A, the R factor resulting from step 1;

4. factorizes Ã using Algorithm 5 with standard, unpivoted QR on line 5.

Note that this procedure is consistent with the fact that our error analysis does
not make any assumptions on whether and how the pivoting is done, as explained
in Section 4.

Tables 1 and 2 show experimental results for the randsvd and phillips ma-
trices, respectively, of size 2048. In the first column we report the value of the
chosen ε threshold, in the second, the measured error when the factorization is
computed entirely in double precision, in the third the error bound computed
using equation (12) assuming three precisions are used, in the fourth the actual
error and in the fifth, sixth and seventh, respectively, the column at which hap-
pened the precision switch from fp64 to fp32, the precision switch from fp32 to
bf16 and the truncation; note that the truncation happens on the same column
both in full double precision and mixed precision. The following conclusions can
be drawn by these results. First, the error bound slightly exceeds but closely
tracks the ε threshold; this is perfectly expected because in our error analy-
sis some constants were ignored. Second, the actual error never exceeds the
bound, which validates our rounding error analysis. Third, as the ε threshold
grows, an increasingly large amount of factorization steps are computed using
lower-precision arithmetics; clearly, as ε exceeds us

√
n, fp64 is not needed any-

more and all computations are done in fp32 and bf16. All these observations are
confirmed by experiments conducted on the other matrices of our test set which
we omit for the sake of space.

fp64 fp64/fp32/bf16
ε Error Bound Error fp64/fp32 fp32/bf16 Trunc.

1.0e-14 9.80e-15 3.42e-14 1.04e-14 1184 1781 1898
1.0e-12 9.72e-13 2.40e-12 1.04e-12 929 1538 1637
1.0e-10 9.79e-11 2.27e-10 1.02e-10 670 1287 1375
1.0e-08 9.75e-09 2.18e-08 1.03e-08 404 1033 1112
1.0e-06 9.78e-07 2.17e-06 1.02e-06 125 775 850
1.0e-05 9.75e-06 1.81e-05 1.02e-05 1 645 717
1.0e-04 9.73e-05 1.53e-04 1.01e-04 1 514 584
1.0e-03 9.74e-04 1.51e-03 1.02e-03 1 379 448
1.0e-02 9.75e-03 1.53e-02 1.02e-02 1 243 310

Table 1: Error and use of precisions for the randsvd matrix of size 2048.

In Figure 1 we report results of an image compression experiment for an
image of size 1057 × 1600. In this figure we compare the original image (top-
left) with images that are compressed using a truncated QR factorization in full

1https://github.com/JuliaMath/BFloat16s.jl
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fp64 fp64/fp32/bf16
ε Error Bound Error fp64/fp32 fp32/bf16 Trunc.

1.0e-14 1.20e-15 2.44e-13 8.36e-14 1850 2048 2049
1.0e-12 1.20e-15 2.02e-12 6.50e-13 775 2046 2049
1.0e-10 4.07e-11 2.76e-10 5.54e-11 141 1989 2047
1.0e-08 9.92e-09 2.75e-08 1.13e-08 25 1267 1749
1.0e-06 9.93e-07 2.89e-06 1.05e-06 7 291 442
1.0e-05 9.83e-06 2.59e-05 1.02e-05 1 117 188
1.0e-04 9.55e-05 2.14e-04 1.05e-04 1 51 76
1.0e-03 9.12e-04 2.33e-03 1.11e-03 1 22 31
1.0e-02 7.62e-03 2.20e-02 1.19e-02 1 11 15

Table 2: Error and use of precisions for the phillips matrix of size 2048.

fp32 (top-right), fp32/bf16 (bottom-left) and full bf16 (bottom-right) and then
reconstraucted in fp32. Here, the truncation threshold ε was set to 0.04 and thus
only fp32 and bf16 arithmetics were used; the truncation happened on column
191 in all the three reconstructed images. It can clearly be seen that using
bf16 only it is not possible to achieve a satisfactory compression. Both the other
two approaches, instead, achieve a satisfactory result although, in the mixed-
precision case, only 12 out of 190 columns are computed and stored in fp32 and
the rest in bf16 which might result in considerable time savings especially on
modern GPUs where bf16 computations are much faster than fp32 ones.

Figure 1: Image compression. Original image (top-left); reconstructed image
after compression in full fp32 (top-right), in fp32/bf16 (bottom-left) and full bf16
(bottom-right). ε was set to 0.04 and the truncation happened at column 190 but
in the mixed-precision case only 12 transformations were computed in fp32 and
the rest in bf16. Image size is 1057× 1600.
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5.2 Performance analysis with optimized code

In this section we evaluate the performance improvement brought by the use
of the mixed-precision algorithm proposed in Section 4.3 using both Businger-
Golub and randomized pivoting compared with the full, high-precision corre-
sponding variants. For these experiments we have implemented Algorithms 3, 4
and 5 in the Fortran language. The code for Algorithm 3 is a straightforward
adaptation of the DGEQP3/SGEQP3 and DLAQPS/SLAQPS routines in LAPACK.
Algorithm 4, instead, is implemented with an entirely new code which, however,
heavily relies on other LAPACK and BLAS routines.

Our experiments were conducted on an AMD Zen3 EPYC 7763 processor, us-
ing the BLAS and LAPACK routines in the Intel MKL 2020 package and the GNU
gfortran 11.2 Fortran compiler. All experiments are sequential; although paral-
lelism could be straightforwardly used within BLAS operations, we have chosen
not to do so because this does not bring any specific insight on the behavior of
the proposed methods.

Figure 2 shows, for the matrices in our test set, the execution time for double-
precision (dark color) and mixed single/double-precision (light color) truncated
QR factorization algorithms with Businger-Golub (yellow) and randomized (blue)
pivoting with respect to the truncation threshold ε. For each matrix, the values
are normalized to the execution time of the corresponding full double-precision
QR factorization.

The behavior of the proposed algorithms varies considerably across the test
problems. Nevertheless, some conclusions can be drawn.

Obviously, the benefit of using the mixed-precision algorithms heavily de-
pends on the spectrum of the problem and the distribution of its singular val-
ues which utlimately determines the ratio of operations that are done in double
and single precision. As the truncation threshold increases, this ratio normally
evolves favorably making the potential benefit of mixed precision higher. This
is clearly visible on the randsvd matrix. Although this trend also applies to the
other matrices, the execution time does not always evolve correspondigly. This is
due to the fact that the ratio of double and single-precision operations alone does
not entirely describe performance but other factors must be taken into account.
One important factor is the arithmetic intensity of operations. Despite the fact
that a fixed panel size is chosen for all algorithms, as explained in Section 2.2,
a panel reduction may be interrupted if the norm of some columns drops be-
yond a prescribed value which eventually reduces the granularity of operations
and, consequently, their speed. This happens in a hardly predictable way and
may adversely affect the speed of computation in either double or single preci-
sion. This behavior is clearly visible on the phillips matrix comparing the results
obtained on the Businger-Golub case with ε = 10−12 and ε = 10−8: in the second
case, the single to double-precision operations ratio is more favorable but a large
number of restarts happens during the single-precision computations. As a re-
sult, the mixed-precision algorithm is slightly slower than the double-precision
one, whereas, in the first case, it is 33% faster. Note that in the variant with
randomized pivoting, restarts happen in the pivoted factorization of the sample
matrix; however, this operation only accounts for a small fraction of the over-
all operational complexity and, therefore, there restarts have a limited impact.
Note that, on standard CPUs, single-precision computations are expected to be
twice as fast as double-precision ones. For CPU-bound operations, this is mainly
related to the use of vector units (one vector instruction can do twice as many
fp32 operations as fp64 ones) whereas for memory-bound operations this is due
to a better use of the memory bandwidth (twice as many fp32 coefficients can be
transferred ad fp64 in the same time). Nevertheless, this assumption does not
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Figure 2: Execution times for double-precision (dark color) and mixed
single/double-precision (light color) truncated QR factorization algorithms with
Businger-Golub (yellow) and randomized (blue) pivoting with respect to the trun-
cation threshold ε. All values are normalized to the execution time of the full
double-precision QR factorization. All the matrices are of size 8192.

take into account other factors related to the use of cache memories. Although
we cannot assume that the original matrix fits into cache, at some point of the
factorization the trailing submatrix, whose size is smaller and smaller, will; when
single precision is used, this will happen at an earlier step of the factorization
with respect to the double-precision case. Although we haven’t conducted ded-
icated experiments to validate this effect, we speculate that it can explain the
fact that in some cases the mixed-precision algorithm is more than twice as fast
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as the full double-precision one (for example the randomized algorithm on the
phillips matrix at ε = 10−10 or the kahan matrix at ε = 10−12).

6 Conclusions and future work
In this work we have introduced a mixed-precision truncated Householder

QR factorization where the arithmetic precision of computations is gradually
reduced as the norm of the trailing submatrix decreases. We presented an er-
ror analysis that results in an error bound demonstrating that if these changes
of precision are appropriately operated, the resulting mixed-precision low-rank
representation has the same accuracy as in the case where all computations are
done in high precision.

Based on our theoretical findings, we have presented two Householder QR
factorization algorithms based on Businger-Golub and randomized pivoting, re-
spectively. Pivoting is not necessary for the mixed-precision algorithm to work
because this simply relies on the assumption that the Frobenius norm of the trail-
ing submatrix decreases, which holds true regardless of pivoting; nevertheless,
if pivoting is applied, the trailing submatrix norm decays much faster which ul-
timately leads to more compact low-rank representations and more efficient use
of low-precision arithmetics.

We have presented a twofold experimental analysis. First we focused on vali-
dating the theoretical analysis. We did this using a prototype written in the Julia
languagewherewe could use up to three different precisions. The corresponding
experiments validate the presented theoretical analysis. Second, we evaluated
the performance of the two proposed mixed-precision algorithms using double
and single-precision arithmetics. Our experimental results on synthetic matri-
ces with different spectra demonstrate that the mixed-precision algorithms can
achieve better performance than the full double-precision counterparts, some-
times exceeding a factor two.

Some opportunities can be identified for pushing the presented ideas further.
First, the performance of the mixed-precision algorithms must be evaluated us-
ing even lower-precision arithmetic such as Float16 or BFloat16 which, on some
hardware, achieve much higher performance that single precision; these are
supported in hardware on modern CPUs and GPUs but the corresponding LA-
PACK and BLAS libraries are still lacking, which prevents us from implementing
the mixed-precision algorithms. Second, we must investigate whether and how
our approach can be used with other pivoting strategies such as tournament
pivoting which might be better suited to parallel implementations. Finally, we
would like to study scaling algorithms to prevent issues related to overflow and
underflow in low-precision computations.

7 Acknowledgments
This work was supported by the France 2030 NumPEx Exa-SofT (ANR-22-

EXNU-0003) project managed by the French National Research Agency (ANR)
and the ANR MixHPC project (ANR-23-CE46-0005-01).

Experiments presented in this paper were carried out using the PlaFRIM ex-
perimental testbed, supported by Inria, CNRS (LABRI and IMB), Université de
Bordeaux, Bordeaux INP and Conseil Régional d’Aquitaine 2.

2https://www.plafrim.fr

Working document

https://www.irit.fr - contact@irit.fr

17

https://www.plafrim.fr
https://www.irit.fr
mailto:contact@irit.fr


A. Buttari, T. Mary, A. Pacteau Truncated QR factorization with pivoting in mixed precision

André Pacteauwas supported by theNational Polytechnic Institute of Toulouse
(Toulouse INP) through the EIT program.

References
[1] Patrick Amestoy et al. “Mixed precision low-rank approximations and their

application to block low-rank LU factorization”. In: IMA Journal of Nu-
merical Analysis (Aug. 2022). drac037. ISSN: 0272-4979. DOI: 10.1093/
imanum/drac037.

[2] Patrick Amestoy et al. “On the Complexity of the Block Low-Rank Mul-
tifrontal Factorization”. In: SIAM Journal on Scientific Computing 39.4
(2017), A1710–A1740. DOI: 10.1137/16M1077192.

[3] Peter Businger and Gene H. Golub. “Linear Least Squares Solutions by
Householder Transformations”. In:Numer. Math. 7.3 (June 1965), pp. 269–
276. ISSN: 0029-599X. DOI: 10.1007/BF01436084.

[4] Tony F. Chan. “Rank revealing QR factorizations”. In: Linear Algebra and
its Applications 88-89 (1987), pp. 67–82. ISSN: 0024-3795. DOI: https:
//doi.org/10.1016/0024-3795(87)90103-0.

[5] Michael P. Connolly, Nicholas J. Higham, and Srikara Pranesh.Randomized
Low Rank Matrix Approximation: Rounding Error Analysis and a Mixed
Precision Algorithm. Tech. rep. 2022.10. The University of Manchester,
2022.

[6] James W. Demmel et al. “Communication Avoiding Rank Revealing QR Fac-
torization with Column Pivoting”. In: SIAM Journal on Matrix Analysis and
Applications 36.1 (2015), pp. 55–89. DOI: 10.1137/13092157X.

[7] Monica Dessole and Fabio Marcuzzi. “Deviation Maximization for Rank-
Revealing QR Factorizations”. In: Numer. Algorithms 91.3 (Nov. 2022),
pp. 1047–1079. ISSN: 1017-1398. DOI: 10.1007/s11075-022-01291-1.

[8] Zlatko Drmač and Zvonimir Bujanović. “On the Failure of Rank-Revealing
QR Factorization Software – A Case Study”. In: ACM Trans. Math. Softw.
35.2 (July 2008). ISSN: 0098-3500. DOI: 10.1145/1377612.1377616.

[9] Jed A. Duersch and Ming Gu. “Randomized QR with Column Pivoting”. In:
SIAM Journal on Scientific Computing 39.4 (2017), pp. C263–C291. DOI:
10.1137/15M1044680.

[10] Carl Eckart and Gale Young. “The approximation of one matrix by another
of lower rank”. In: Psychometrika 1.3 (Sept. 1936), pp. 211–218. ISSN:
1860-0980. DOI: 10.1007/BF02288367.

[11] Pieter Ghysels et al. “An Efficient Multicore Implementation of a Novel
HSS-StructuredMultifrontal Solver Using Randomized Sampling”. In: SIAM
Journal on Scientific Computing 38.5 (2016), S358–S384. DOI: 10.1137/
15M1010117.

[12] Per Christian Hansen. “Regularization Tools version 4.0 for Matlab 7.3”.
In:Numerical Algorithms 46.2 (Oct. 2007), pp. 189–194. ISSN: 1572-9265.
DOI: 10.1007/s11075-007-9136-9.

[13] Nicholas Higham and TheoMary. “ANewApproach to Probabilistic Round-
ing Error Analysis”. In: SIAM Journal on Scientific Computing 41 (Jan.
2019), A2815–A2835. DOI: 10.1137/18M1226312.

[14] Nicholas J. Higham. Accuracy and Stability of Numerical Algorithms. 2nd.
USA: Society for Industrial and AppliedMathematics, 2002. ISBN: 0898715210.

Working document

https://www.irit.fr - contact@irit.fr

18

https://doi.org/10.1093/imanum/drac037
https://doi.org/10.1093/imanum/drac037
https://doi.org/10.1137/16M1077192
https://doi.org/10.1007/BF01436084
https://doi.org/https://doi.org/10.1016/0024-3795(87)90103-0
https://doi.org/https://doi.org/10.1016/0024-3795(87)90103-0
https://doi.org/10.1137/13092157X
https://doi.org/10.1007/s11075-022-01291-1
https://doi.org/10.1145/1377612.1377616
https://doi.org/10.1137/15M1044680
https://doi.org/10.1007/BF02288367
https://doi.org/10.1137/15M1010117
https://doi.org/10.1137/15M1010117
https://doi.org/10.1007/s11075-007-9136-9
https://doi.org/10.1137/18M1226312
https://www.irit.fr
mailto:contact@irit.fr


A. Buttari, T. Mary, A. Pacteau Truncated QR factorization with pivoting in mixed precision

[15] Alston S. Householder. “Unitary Triangularization of a Nonsymmetric Ma-
trix”. In: J. ACM 5.4 (Oct. 1958), pp. 339–342. ISSN: 0004-5411. DOI: 10.
1145/320941.320947.

[16] W. Kahan. “Numerical Linear Algebra”. In: Canadian Mathematical Bul-
letin 9.5 (1966), pp. 757–801. DOI: 10.4153/CMB-1966-083-2.

[17] R. B. Lehoucq. “The Computation of Elementary Unitary Matrices”. In:
ACM Trans. Math. Softw. 22.4 (Dec. 1996), pp. 393–400. ISSN: 0098-3500.
DOI: 10.1145/235815.235817.

[18] Edo Liberty et al. “Randomized algorithms for the low-rank approximation
of matrices”. In: Proceedings of the National Academy of Sciences 104.51
(2007), pp. 20167–20172.

[19] Per-Gunnar Martinsson et al. “Householder QR Factorization With Ran-
domization for Column Pivoting (HQRRP)”. In: SIAM Journal on Scientific
Computing 39.2 (2017), pp. C96–C115. DOI: 10.1137/16M1081270.

[20] G. Pichon et al. “Sparse Supernodal Solver Using Block Low-Rank Com-
pression”. In: 2017 IEEE International Parallel and Distributed Process-
ing Symposium Workshops (IPDPSW). May 2017, pp. 1138–1147. DOI:
10.1109/IPDPSW.2017.86.

[21] R. Schreiber and C. Van Loan. “A storage-efficient WY representation for
products of Householder transformations”. In: SIAM J. Sci. Stat. Comput.
10 (1989), pp. 52–57.

[22] Jianwei Xiao, Ming Gu, and Julien Langou. “Fast Parallel Randomized QR
with Column Pivoting Algorithms for Reliable Low-Rank Matrix Approx-
imations”. In: 2017 IEEE 24th International Conference on High Perfor-
mance Computing (HiPC) (2017), pp. 233–242. URL: https://api.semanticscholar.
org/CorpusID:3444436.

Working document

https://www.irit.fr - contact@irit.fr

19

https://doi.org/10.1145/320941.320947
https://doi.org/10.1145/320941.320947
https://doi.org/10.4153/CMB-1966-083-2
https://doi.org/10.1145/235815.235817
https://doi.org/10.1137/16M1081270
https://doi.org/10.1109/IPDPSW.2017.86
https://api.semanticscholar.org/CorpusID:3444436
https://api.semanticscholar.org/CorpusID:3444436
https://www.irit.fr
mailto:contact@irit.fr


Institut de Recherche en Informatique de Toulouse
CNRS - INP - UT3 - UT1 - UT2J

ASR – Architecture, Systems and Networks
RMESS – Networks, Mobile, Embedded, Wireless, Sattelites

SEPIA – Operating systems, distributed systems, from Middleware to Architecture
SIERA – Service IntEgration and netwoRk Administration

T2RS – Real-Time in networks and systems
TRACES – Trace stands for research groups in architecture and compilation for embedded systems

CISO – HPC, Simulation, Optimization
APO – Parallel Algorithms and Optimisation

REVA – Real Expression Artificial Life

FSL – Reliability Systems and Software
ACADIE – Assistance for certification of distributed and embedded applications

ARGOS – Advancing Rigorous Software and System Engineering
ICS – Interactive Critical Systems

SM@RT – Smart Modeling for softw@re Research and Technology

GD – Data Management
IRIS – Information Retrieval and Information Synthesis

PYRAMIDE – Dynamic Query Optimization in large-scale distributed environments
SIG – Generalized information systems

IA – Artificial Intelligence
ADRIA – Argumentation, Decision, Reasoning, Uncertainty and Learning methods

LILaC – Logic, Interaction, Language and Computation
MELODI – Methods and Engineering of Language, Ontology and Discourse

ICI – Interaction, Collective Intelligence
ELIPSE – Human computer interaction

SMAC – Cooperative multi-agents systems
TALENT – Teaching And Learning Enhanced by Technologies

SI – Signals and Images
MINDS – coMputational Imaging anD viSion

SAMoVA – Structuration, Analysis, Modeling of Video and Audio documents
SC – Signal and Communications

STORM – Structural Models and Tools in Computer Graphics
TCI – Images processing and understanding


	Introduction
	Background
	Householder QR and error analysis
	QR factorization with Businger-Golub pivoting
	QR factorization with randomized pivoting

	Error analysis
	Pivoted QR factorization in mixed precision
	Truncated QR factorization with Businger-Golub pivoting
	Truncated QR factorization with randomized pivoting
	Truncated QR factorization in mixed precision

	Numerical experiments
	Theory validation with a Julia prototype
	Performance analysis with optimized code

	Conclusions and future work
	Acknowledgments

