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Abstract. Matrices possessing a low-rank property arise in numerous scientific applications. This property can be
exploited to provide a substantial reduction of the complexity of their LU or LDLT factorization. Among the possible low-
rank formats, the flat Block Low-Rank (BLR) format is easy to use but achieves superlinear complexity. Alternatively, the
hierarchical formats achieve linear complexity at the price of a much more complex, hierarchical matrix representation. In
this paper, we propose a new format based on multilevel BLR approximations: the matrix is recursively defined as a BLR
matrix whose full-rank blocks are themselves represented by BLR matrices. We call this format multilevel BLR (MBLR).
Contrarily to hierarchical matrices, the number of levels in the block hierarchy is fixed to a given constant; while this
format can still be represented within the H formalism, we show that applying the H theory to it leads to very pessimistic
complexity bounds. We therefore extend the theory to prove better bounds, and show that the MBLR format provides a
simple way to finely control the desired complexity of dense factorizations. By striking a balance between the simplicity
of the BLR format and the low complexity of the hierarchical ones, the MBLR format bridges the gap between flat and
hierarchical low-rank matrix formats. The MBLR format is of particular relevance in the context of sparse direct solvers,
for which it is able to trade off the optimal dense complexity of the hierarchical formats to benefit from the simplicity
and flexibility of the BLR format while still achieving O(n) sparse complexity. We finally compare our MBLR format with
the related BLR-H (or Lattice-H ) format; our theoretical analysis shows that both formats achieve the same asymptotic
complexity for a given top level block size.
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1. Introduction. Efficiently computing the solution of a dense linear system is a fundamental
building block of numerous scientific computing applications. Let us refer to such a system as

FuF = vF , (1.1)

where F is a dense matrix of order m, uF is the unknown vector of size m, and vF is the right-hand
side vector of size m.

This paper focuses on solving (1.1) with direct approaches based on Gaussian elimination,
which consist in factorizing matrix F as F = LU or F = LDLT , depending on whether the matrix is
unsymmetric or symmetric, respectively.

In many applications (e.g., Schur complements arising from the discretization of elliptic partial
differential equations), the matrix F has been shown to have a low-rank property: many of its off-
diagonal blocks can be approximated by low-rank matrices [10].

Several formats have been proposed to exploit this property. The simplest one is the Block
Low-Rank (BLR) format [2], which partitions the matrix with a flat, 2D blocking and approximates
its off-diagonal blocks by low-rank submatrices, as illustrated in Figure 1.1a. Compared with the
cubic O(m3) complexity of the dense full-rank LU or LDLT factorizations, the complexity of the
dense BLR factorization can be as low as O(m2) [4].

More advanced formats are based on a hierarchical partitioning of the matrix: the matrix F is
partitioned with a 2×2 blocking and the two diagonal blocks are recursively refined, as illustrated
in Figures 1.1c and 1.1d. Different hierarchical formats can be defined depending on whether
the off-diagonal blocks are directly approximated (so-called weakly-admissible formats) or further
refined (so-called strongly-admissible formats). The most general of the hierarchical formats is the
strongly-admissible H -matrix format [10, 21, 12]; the HODLR format [6] is its weakly-admissible
counterpart. These hierarchical formats can factorize a dense matrix in near-linear complexity
O(m logq m), where q is a small integer that depends on which factorization algorithm is used; in
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(a) BLR partitioning
(weak admissibility).

(b) BLR partitioning
(strong admissibility).

(c) HODLR partitioning
(weak admissibility)

(d) H partitioning (strong
admissibility)

Fig. 1.1: Illustration of different low-rank formats. Gray blocks are stored in full-rank whereas
white ones are approximated by low-rank matrices.

the following, we will consider q = 2. The log factor can be removed by using a so-called nested-basis
structure. The strongly-admissible H 2-matrix format [12] and the weakly-admissible HSS [31, 13]
and HBS [19] formats exploit such nested basis structures to achieve linear complexity O(m).

In this paper, we propose a new format based on multilevel BLR approximations. The matrix
F is recursively represented as a BLR matrix whose full-rank blocks are themselves BLR matrices.
We call this format multilevel BLR (MBLR). In the hierarchical format, the matrix is refined until
the diagonal blocks are of constant size; this therefore leads to a number of levels in the block
hierarchy which is nonconstant (usually O(log2 m)). With the MBLR format, we propose to make
this number of levels a tunable parameter to be set to a given value ` that does not asymptotically
depend on the matrix size m. We prove that this parameter provides a simple way to finely control
the complexity of the dense MBLR factorization. The complexity varies from O(m2) for monolevel
BLR down to nearly O(m) for an infinite number of levels. By striking a balance between the
simplicity of the BLR format and the low complexity of the hierarchical ones, the MBLR format
bridges the gap between flat and hierarchical low-rank matrix formats.

We will show that the MBLR format is of particular relevance in the context of sparse direct
solvers, which aim to compute the solution of a sparse linear system

AuA = vA , (1.2)

where A is a sparse matrix of order n, uA is the unknown vector of size n, and vA is the right-hand
side vector of size n. Two widely studied classes of sparse direct methods are the multifrontal [15,
24] and supernodal [9, 14] approaches.

Sparse direct methods rely on a sequence of partial factorizations of dense matrices F, referred
to as supernodes or fronts. Therefore, the complexity of sparse direct methods is directly derived
from the complexity of the factorization of each dense matrix F. For example, with an adequate
reordering, a well-known result is that the dense standard full-rank O(m3) factorization leads to a
O(n2) sparse complexity for regular 3D problems [16]. The low-rank formats described above can
be efficiently exploited within sparse solvers to provide a substantial reduction of their complexity.

The potential of BLR sparse solvers has been first investigated in [2]; the simplicity and flexi-
bility of the BLR format makes it easy to use in the context of a general purpose, algebraic solver,
as presented in [5, 3, 28, 26]. [5] focuses on the multicore performance of BLR multifrontal solvers,
while [3] and [28] present their use in two real-life industrial applications coming from geosciences.
[26] present the use of the BLR format in supernodal solvers. Furthermore, it has been proved in [4]
that the theoretical complexity of the BLR multifrontal factorization may be as low as O(n4/3) (for
3D problems with constant ranks).

Alternatively, most sparse solvers based on the more complex hierarchical formats have been
shown to possess near-linear complexity. To cite a few, [30, 29, 18, 17] are HSS-based, [19] is
HBS-based, [7] is HODLR-based, and [27] is H 2-based.

However, a critical observation is that achieving O(n) sparse complexity does not actually
require a linear dense complexity O(m). For instance, for 3D problems, all that is required is a
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dense complexity lower than O(m1.5). Therefore, we will prove that the MBLR format is able to
trade off the optimal dense complexity of the hierarchical formats to benefit from the simplicity
and flexibility of the flat BLR format while still achieving O(n) sparse complexity.

We now describe the organization of the rest of this paper. In Section 2, we provide some
background on the BLR factorization and its complexity and we motivate the key idea behind
MBLR approximations. We explain in Section 3 how the MBLR format can be described using the
cluster tree representation commonly used in the H literature; this provides a convenient way to
explain the key difference between the MBLR and H formats. We show that, similarly to the BLR
case, the H theoretical formalism leads to MBLR complexity bounds that are very pessimistic. We
therefore extend the theory, beginning by the two-level case in Section 4. We prove that two levels
can already significantly improve the theoretical complexity of the factorization. In Section 5, we
generalize the previous proof to the MBLR format with an arbitrary number of levels; we prove
that, for constant ranks, only four levels are already enough to reach O(n) sparse 3D complexity
(and three levels already achieve near-linear O(n logn) complexity). In Section 6, we validate our
theoretical results with numerical experiments. We provide our concluding remarks in Section 7.
In the main body of this article, we consider for the sake of simplicity the weakly-admissible case, in
which only the diagonal blocks are refined. In the appendix, we provide the extension of the MBLR
format to the strongly-admissible case, in which off-diagonal full-rank blocks are also recursively
refined. We prove that our complexity bounds remain valid in this context.

2. Background and motivation.

2.1. Block Low-Rank approximations. The BLR format is based on a flat, non-hierarchical
blocking of the matrix which is defined by conveniently clustering the associated unknowns. A BLR
representation F̃ of a dense matrix F is shown in (2.1), where we assume that p×p blocks have been
defined. Off-diagonal blocks Fi j (i 6= j) of size mi ×n j and numerical rank kεi j are approximated by
a low-rank matrix F̃i j = X i jY T

i j at accuracy ε, where X i j is a mi × kεi j matrix and Yi j is a n j × kεi j
matrix. The diagonal blocks Fii are stored as full-rank matrices (F̃ii = Fii).

F̃ =


F̃11 F̃12 · · · F̃1p

F̃21 · · · · · · ...
... · · · · · · ...

F̃p1 · · · · · · F̃pp

 . (2.1)

Throughout this article, we will note Fi j the (i, j)-th block of F and F:,k its k-th block-column.
We will also assume that all blocks have a size of order b, i.e., mi = n j =O(b).

Computing the low-rank approximation F̃i j to each block, referred to as the compression step,
can be performed in different ways. We have chosen to use a truncated QR factorization with
column pivoting; this corresponds to a QR factorization with pivoting which is truncated as soon
as a diagonal coefficient of the R factor falls below the prescribed threshold ε. For a block of size
b×b and rank r, the cost of the compression is O(b2r), whereas computing the exact singular value
decomposition of the block would require O(b3) operations. This choice thus allows for a convenient
compromise between cost and accuracy of the compression operation.

2.2. Block Low-Rank dense factorization. We describe in Algorithm 2.1 the CUFS variant
(the “CUFS” acronym is explained below) of the BLR factorization algorithm for dense matrices,
introduced in [4]. Algorithm 2.1 is presented in its LU version, but it can easily be adapted to the
symmetric case.

In order to perform the LU or LDLT factorization of a dense BLR matrix, the standard block
LU or LDLT factorization has to be modified so that the low-rank blocks can be exploited to per-
form fast operations. Many such algorithms can be defined depending on where the compression
step is performed. As described in [4], the CUFS variant achieves the lowest complexity of all BLR
variants by performing the compression as early as possible.

This algorithm is referred to as CUFS (standing for Compress, Update, Factor, and Solve), to
indicate the order in which the steps are performed. All low-rank updates of a given block F̃ik are
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Algorithm 2.1 Dense BLR LU factorization: CUFS variant.
Input: a p× p block matrix F of order m.
Output: F overwritten by its BLR LU factors F̃.

1: for k = 1 to p do
2: for i = k+1 to p do
3: Compress (L): Fik ← F̃ik = X ikY T

ik
4: Compress (U): Fki ← F̃ki =Yki X T

ki
5: end for
6: for i = k to p do
7: for j = 1 to k−1 do
8: Update (L): F̃ik ← F̃ik − X i jY T

i j Y jk X T
jk

9: Update (U): F̃ki ← F̃ki − Xk jY T
k jY ji X T

ji
10: end for
11: F̃ik ←Recompress

(
F̃ik

)
12: F̃ki ←Recompress

(
F̃ki

)
13: end for
14: Factor: Fkk = LkkUkk
15: for i = k+1 to p do
16: Solve (L): F̃ik ← F̃ikU−1

kk = X ikY T
ikU−1

kk
17: Solve (U): F̃ki ← L−1

kkF̃ki = L−1
kk XkiY T

ki
18: end for
19: end for

accumulated together before being recompressed, in order to achieve the smallest rank possible for
F̃ik.

The CUFS BLR variant is referred to as fully-structured, which means the off-diagonal low-
rank blocks F̃ik are never stored in full-rank again after being initially compressed. Furthermore,
in the rest of this article, we will assume that the matrix is already available in compressed form,
that is, that the cost of the Compress step is negligible with respect to the total complexity of the
factorization. This is for example the case when the blocks of the original matrix F are sparse,
since their low-rank representation can be computed in only O(br) flops.

One of the main results of [4] is that the storage complexity of the factorization of a dense
matrix of order m with off-diagonal blocks of rank at most r is equal to

S 1
ds(m, r)=O(m1.5pr) (2.2)

and the flop complexity is
F 1

ds(m, r)=O(m2r). (2.3)

The proof of this result will be recalled in Section 2.4. The 1 superscript refers to the monolevel
BLR factorization. This notation will be generalized in the next sections.

2.3. BLR sparse factorization. Because sparse direct factorizations such as multifrontal
or supernodal approaches rely on dense factorizations, block low-rank approximations can easily
be incorporated into the sparse factorization by representing the fronts (or supernodes) with the
chosen low-rank format. For example, in the BLR case, the fronts are represented as defined
by (2.1), and Algorithm 2.1 is adapted to perform their partial factorization. This is described in
detail in [2, 25].

As a consequence, the complexity of the sparse factorization can be directly computed from
the complexity of the dense factorization. We consider a matrix of order n = Nd , where d denotes
the problem dimension, that is reordered using nested dissection [16]: the domain is recursively
partitioned by so-called separators. The sparse complexity is then computed as follows (assuming
cross-shaped separators): at each level ` of the separator tree, we need to factorize (2d)` fronts of
order O((N/2`)d−1), for ` ranging from 0 to L = log2(N). Therefore, the flop complexity Fsp(N) is
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Table 2.1: Flop and storage complexities of the factorization of a sparse system of n = N ×N (2D
case) or n = N ×N ×N (3D case) unknowns, assuming a dense factorization complexity O(mβ).

2D 3D

β> 2 O(nβ/2) β> 1.5 O(n2β/3)
β= 2 O(n logn) β= 1.5 O(n logn)
β< 2 O(n) β< 1.5 O(n)

Table 2.2: Flop and storage complexities of the FR, BLR, and H factorizations of a sparse system
of n = N ×N (2D case) or n = N ×N ×N (3D case) unknowns, derived from the complexities of the
factorization of a dense matrix of order m and with a rank bound r. The BLR variant considered is
CUFS.

Fds(m, r) Fsp(n, r) Sds(m, r) Ssp(n, r)
2D 3D 2D 3D

FR O(m3) O(n3/2) O(n2) O(m2) O(n logn) O(n4/3)
BLR O(m2r) O(nmax(r, logn)) O(n4/3r) O(m3/2r1/2) O(n) O(nmax(r1/2, logn))
H O(mr2 log2 m) O(max(n,n1/2r2)) O(max(n,n2/3r2)) O(mr logm) O(n) O(max(n,n2/3r))

equal to

Fsp(N)=
L∑
`=0

(2d)`Fds((
N
2`

)d−1), (2.4)

where Fds(m) is the dense flop complexity. In BLR, it is given by (2.3). Similarly, the storage
complexity Ssp(N) is equal to

Ssp(N)=
L∑
`=0

(2d)`Sds((
N
2`

)d−1), (2.5)

where Sds(m) is the dense storage complexity. In BLR, it is given by (2.2).
Assuming a dense complexity O(mβ), it can easily be shown from (2.4) and (2.5) that the sparse

complexities only depend on the dense complexity exponent β and the dimension d. This correspon-
dence is reported in Table 2.1. The key observation is that a linear O(m) dense complexity is not
required to achieve a linear O(n) sparse complexity. In fact, a dense complexity lower than O(m2)
and O(m1.5) suffices for 2D and 3D problems, respectively.

Then, the sparse complexities are reported in Table 2.2, for the FR, BLR, and H factorizations.
Thanks to the key observation above, the BLR sparse complexities are not that far from the H

complexities. For example, the BLR 2D storage complexity is already optimal; furthermore, the 2D
flop and 3D storage complexities are nearly linear, with only an additional factor depending only
on r and logn compared with H . More importantly, thanks to the same key observation, we only
need a modest improvement of the dense complexity to reach O(n) complexity. Specifically:

• To drop the max(r, logn) factor in the 2D flop complexity, the dense complexity Fds(m) only
needs to be strictly inferior to O(m2);

• Similarly, to drop the max(r1/2, logn) factor in the 3D storage complexity, the dense com-
plexity Sds(m) only needs to be strictly inferior to O(m1.5);

• Finally, the superlinear 3D flop complexity can be made linear with a dense complexity
Fds(m) strictly inferior to O(m1.5).

The main motivation behind the MBLR format is to find a simple modification of the BLR fac-
torization that preserves its simplicity and flexibility, while improving the complexity just enough
to get the desired exponent. We will prove in Section 5 that this complexity improvement can be
controlled by the number of levels.
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Table 2.3: Main operations for the BLR factorization of a dense matrix of order m, with blocks of
size b, and low-rank blocks of rank at most r. We note p = m/b. Type: type of the block(s) on which
the operation is performed. cost1

Step: cost of performing the operation once. numberStep: number
of times the operation is performed. F 1

Step: obtained by multiplying the cost1
Step and numberStep

columns (equation (2.11)). The first expression is given as a function of b, p, and r, while the
second is obtained with the assumption that b = O(mx) (and thus p = O(m1−x)) and r = O(mα), for
x,α ∈ [0,1].

Step Type cost1
Step numberStep F 1

Step(b, p, r) = F 1
Step(m, x,α)

Factor FR O(b3) O(p) O(pb3) = O(m1+2x)
Solve FR-LR O(b2r) O(p2) O(p2b2r) = O(m2+α)
Product LR-LR O(br2) O(p3) O(p3br2) = O(m3−2x+2α)
Recompress LR O(bpr2) O(p2) O(p3br2) = O(m3−2x+2α)

2.4. Complexity analysis for BLR. To motivate the key idea behind MBLR, let us sum-
marize the dense storage and flop complexity analysis found in [4] that leads to the formulas (2.2)
and (2.3). We consider the CUFS variant of the BLR factorization. As indicated in the introduction,
we first consider the weakly-admissible case: we assume that all off-diagonal blocks are low-rank.
The extension to the strongly-admissible case is provided in the appendix.

We consider a dense BLR matrix of order m. We note b the block size and p = m/b the number
of blocks per row and/or column. The amount of storage required to store the factors of such a
matrix can be computed as the sum of the storage for the full-rank diagonal blocks and that for the
low-rank off-diagonal blocks:

S 1
ds(b, p, r)=O(pb2)+O(p2br). (2.6)

Then, we assume that the block size b is of order O(mx), where x is a real value in [0,1], and thus
the number of blocks p per row and/or column is of order O(m1−x). We also assume that the rank
bound is of the form r = O(mα). By replacing b, p, and r by their expression in (2.6), we obtain an
expression of S 1

ds which depends on (m, x,α) instead of (b, p, r):

S 1
ds(m, x,α)=O(m1+x)+O(m2−x+α). (2.7)

We then define x∗ as the optimal choice of x which minimizes the asymptotic complexity of (2.7).
x∗ can be computed as the value which makes each term in (2.7) asymptotically equal. We obtain

x∗ = (1+α)/2, (2.8)

which means the optimal choice of block size is

b∗ =O(
p

mr). (2.9)

This leads to the final dense complexity (already given in (2.2))

S 1
ds(m, r)=O(m1.5pr). (2.10)

Next, to compute the flop complexity, we compute the cost of the Factor, Solve, Product, and
Recompress steps and report them in Table 2.3 (third column). This cost depends on the type (full-
rank or low-rank) of the block(s) on which the operation is performed (second column). Note that
the Product operation can only take the form of a product of two low-rank blocks (LR-LR), because
it involves only off-diagonal blocks, which are low-rank in the weakly-admissible case. We also
recall that we have assumed that the matrix is already available in compressed form and thus we
do not report the Compress step in Table 2.3.

In the weakly-admissible case, there is only one full-rank block on each block-row (the diagonal
one); therefore, we can easily count the number of blocks on which each step is performed; we report
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(a) Monolevel BLR partitioning. (b) Two-level BLR partitioning. (c) HODLR partitioning

Fig. 2.1: Comparison of BLR, MBLR, and hierarchical formats in the weakly-admissible case.

it on the fourth column of Table 2.3. The BLR factorization cost of each step is then equal to

F 1
Step = cost1

Step ×numberStep (2.11)

and is reported in the fifth and sixth columns of Table 2.3. In the fifth column, its expression
depends on b, p, and r, while in the sixth column it is given as a function of m, x, and α by by
substituting b, p, and r by O(mx), O(m1−x), and O(mα), respectively.

The total flop complexity of the dense BLR factorization is equal to the sum of the cost of all
steps

F 1
ds(m, x,α)=O(m1+2x +m2+α+m3−2x+2α). (2.12)

We compute x∗, the optimal choice of x which minimizes the complexity, and find again x∗ = (1+
α)/2, which means that the same x∗ value minimizes both the storage and flop complexities, a
valuable property. We finally obtain

F 1
ds(m, r)=O(m2r). (2.13)

2.5. Key idea of the MBLR format. Let us now consider each step of Table 2.3 with the
objective of reducing the total cost of the factorization. The Product and Recompress steps involve
exclusively low-rank blocks and their cost is already optimal as it is linear with respect to the block
size b. Therefore, we focus on the Factor and Solve steps. These steps have superlinear cost with
respect to b because they involve the diagonal full-rank blocks.

Thus, the key idea of the MBLR format is to further refine these full-rank diagonal blocks by
replacing them by BLR matrices. This is illustrated in Figure 2.1b. Compared with the BLR format
(Figure 2.1a), we will show in Section 4 that this more compressed representation decreases the
cost of performing the Factor and Solve steps, which allows to increase the block size to achieve a
lower complexity. However, it also remains very different from a hierarchical format (Figure 2.1c).
First, the diagonal blocks are represented by the simple BLR format, rather than a more complex
hierarchical format. Second, while larger than in the BLR case, the off-diagonal blocks are in
general still much smaller than in the H case. This has several advantages:

• No relative order is needed between blocks; this allows the clustering to easily be computed
and delivers a great flexibility to distribute the data in a parallel environment.

• The size of the blocks can be small enough to fit on a single shared-memory node; there-
fore, in a parallel environment, each processor can efficiently and concurrently work on
different blocks.

• To perform numerical pivoting, the quality of the pivot candidates in the off-diagonal
blocks Fik can be estimated with the entries of its low-rank basis Yik, provided that X ik
is an orthonormal matrix. However, as explained in [25], the quality of this estimation
depends on the size of the block; smaller blocks lead to a tighter estimate. This makes the
BLR format particularly suitable to handle numerical pivoting, a critical feature lacking
in most hierarchical solvers presented in the literature.
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(b) HODLR block-clustering.

Fig. 3.1: An example of cluster tree and its associated HODLR block-clustering.

While many advantages of the BLR and MBLR formats lie in their efficiency and flexibility in
the context of a parallel execution, the parallel implementation of the MBLR format is out of the
scope of this paper. Similarly, we omit a detailed description of the algorithms designed to handle
numerical pivoting; see [25] for a thorough discussion. In this paper, we focus on the theoretical
complexity analysis of the MBLR factorization.

3. Difference between MBLR and H matrices. In this section, we first explain how
MBLR matrices can be represented using the cluster tree modelization typically used in the H

literature; this provides a convenient tool to formalize the key difference between the MBLR and
hierarchical formats that was informally presented in the previous section: the number of levels
in the cluster tree is a constant in the MBLR format, while it is logarithmically dependent on the
problem size in the H format.

Using this formalism, H theory is thus applicable to the MBLR format; however, we show in
Section 3.3 that it leads to very pessimistic complexity bounds. We must therefore develop a new
theory to compute satisfying bounds, which is the object of Sections 4 and 5. Since the proofs and
computations in these sections are not based on the H theory, this section may be skipped by the
reader, at least on a first read.

3.1. The hierarchical case. Here, we briefly recall the definition of cluster trees, and how
they are used to represent hierarchical partitionings. We refer to [10, 22] for a formal and detailed
presentation.

Let us note I the set of unknowns. We assume that the sets of row and column indices of the
matrix are the same, for the sake of simplicity, and because we do not need to distinguish them for
the purpose of this section.

Computing a recursive partition S(I ) of I can be modeled with a so-called cluster tree.

DEFINITION 3.1 (Cluster tree). Let I be a set of unknowns and TI a tree whose nodes v are
associated with subsets σv of I . TI is said to be a cluster tree iff:

• The root of TI , noted r, is associated with σr =I ;
• For each non-leaf node v ∈ TI , with children noted CTI

(v), the subsets associated with the
children form a partition of σv, that is, the σc subsets are disjoint and satisfy⋃

c∈CTI
(v)
σc =σv.

An example of cluster tree is provided in Figure 3.1a. As illustrated, cluster trees establish a
hierarchy between clusters. A given cluster tree uniquely defines a weakly-admissible, hierarchical
block-clustering (so-called HODLR matrix), as illustrated in Figure 3.1b.

Note that the cluster tree is not enough to define general, strongly-admissible hierarchical
block-clusterings such as an H block-clustering. In that case, a new tree structure, so-called
block-cluster tree, must be introduced. For the sake of simplicity, we do not discuss them here,
since cluster trees (and weakly-admissible hierarchical block-clusterings) are enough to explain
the difference between MBLR and hierarchical matrices.
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(a) Flat cluster tree.
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Fig. 3.2: An example of flat cluster tree and its associated BLR block-clustering.
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(a) Cluster tree of depth 2.
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(b) Two-level BLR block-clustering.

Fig. 3.3: An example of cluster tree of depth 2 and its associated two-level BLR block-clustering.

3.2. The BLR and MBLR formats, explained with cluster trees. It is interesting to first
mention how the BLR format can be viewed as a very particular kind of H -matrix. In [4], we
made a first attempt to model BLR partitionings with cluster trees, where the BLR partitioning
is defined using only the leaves of the cluster tree. However, this model is inadequate because
the other nodes of the tree are unnecessary (and thus there are several possible cluster trees for a
unique BLR partitioning).

Therefore, we newly propose to define a given BLR partitioning with a unique, flat cluster tree
of depth 1, as illustrated in Figure 3.2.

With this definition, it is straightforward to extend the model to the MBLR format. An `-
level BLR block-clustering can be represented by a cluster tree of depth `. This is illustrated in
Figure 3.3 in the two-level case.

It is thus clear that, just like the BLR format, the MBLR one can also be viewed as a very
particular kind of H -matrix, since any MBLR matrix can be represented with a cluster tree that
satisfies Definition 3.1. However, while H -matrices are indeed also represented by cluster trees,
in practice, they are virtually always built with an implicit assumption: the number of children
of any node in the cluster tree is constant with respect to the size of the matrix. Most commonly,
cluster trees are binary trees, and thus this number is 2. Since the diagonal blocks of an H -matrix
are of constant size, this leads to O(logm) levels in the cluster tree.

The MBLR format is based on the converse approach: the number of levels is fixed to some
constant ` = O(1), which in turn leads to a number of children per node that is asymptotically
dependent on m. For example, assuming a constant rank r =O(1), we will prove in Section 4 that a
two-level BLR matrix is represented by a cluster tree with O(m1/3) nodes on the first level (children
of the root node), and each of these nodes has O((m2/3)1/2)=O(m1/3) children on the second level.

While this is technically not prohibited by the general H -format definition, it has, to the best
of our knowledge, never been considered in the H literature. As a matter of fact, in his recent
book, Hackbusch writes ([22], p.83): ‘The partition should contain as few blocks as possible since
the storage cost increases with the number of blocks”. While that is true, we believe that the
smaller size and greater number of blocks can provide a gain in flexibility that can be useful in a
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parallel solver.
One may in fact find it surprising that this simple idea of having a constant number of levels

has never been proposed before. We believe that this is mainly explained by the fact that the
H theoretical formalism does not provide a satisfying result if applied to the MBLR format, as
explained in the following.

3.3. H theory leads to pessimistic MBLR complexity bounds. In [4, Section 3.2], we
explained that applying the H theoretical complexity formulas to the BLR format does not provide
a satisfying complexity bound. Here, we show this remains the case for the MBLR format.

The storage and flop complexities of the factorization of a dense H -matrix of order m have
been shown [20] to be

S H
ds (m)=O(mLcsp max(rmax,bdiag)), (3.1)

FH
ds (m)=O(mL2c2

sp max(rmax,bdiag)2). (3.2)

L is the depth of the cluster tree. csp is the so-called sparsity constant, defined as the maximum
number of blocks of a given level in the cluster tree that are in the same row or column of the
matrix; it is a measure of how much the original matrix has been refined. rmax is the maximal
rank of all the blocks of the matrix, while bdiag is the size of the diagonal blocks. Note that the
power to which csp is elevated to in the flop complexity depends on the reference considered. The
term c3

sp is found in [20]; a reduced complexity with c2
sp instead is given in [11]. Since our aim is

to show that the H complexity formulas do not provide a satisfying result when applied to MBLR
matrices, in the following, we use the best case formula with c2

sp; the formula with c3
sp would lead

to an even more pessimistic complexity bound.
Under some assumptions on how the partition S(I ) is built [20, Lemma 4.5], the sparsity

constant can be bounded by O(1) in the H case. By recursively refining the diagonal blocks until
they become of constant size, we have bdiag =O(1) and L =O(logm). Therefore, (3.1) and (3.2) lead
to S H

ds (m)=O(rm logm) and FH
ds (m)=O(r2m log2 m).

In the BLR case, we have L = 1 and bdiag = b; the sparsity constant is equal to the number of
blocks per row m/b, a high value that translates the fact that BLR matrices are much more refined
than hierarchical ones. This leads to S

H ,1
ds (m)=O(m2) and F

H ,1
ds (m)=O(m3), where the notation

S
H ,1

ds and F
H ,1
ds signifies “H complexity formula applied to the monolevel BLR case”. We thus

obtain a very pessimistic complexity bound, which is due to the fact that the diagonal blocks are of
the same size as all the other blocks, i.e., bdiag = b.

Applying the formulas to the MBLR case leads to the same problem. Assuming that r = O(1)
for the sake of simplicity, let us consider the two-level case and denote by b1 and b2 the outer and
inner blocks sizes, respectively. We have L = 2, bdiag = b2, and csp =max(m/b1,b1/b2). The storage
complexity

S
H ,2

ds (m)=O(max(m2b2/b1,mb1))

is minimized for b1 = O(
p

m) and b2 = O(1), and equal to O(m3/2), which is not a satisfying result
since we have proven in Section 2.4 that this is the BLR complexity. A similarly unsatisfying result
is obtained for the flop complexity, again minimized for b1 =O(

p
m) and b2 =O(1) and equal to

F
H ,2
ds (m)=O(max(m3b2

2/b2
1,mb2

1))=O(m2).

Does the problem persist with a higher number of levels `? The answer is unfortunately positive.
Indeed, we have

S
H ,`

ds (m)=O( max
i=0,`−1

(
mbib`
bi+1

)),

with the notation b0 = m. To minimize the expression, we equilibrate each term in the maximum,
which leads to the recursive relation b2

i = bi−1bi+1. Noting b1 = b the outer block size, it is clear
that the closed-form expression of bi is bi = bi/mi−1. Since the smallest block size bl must be at
least O(1), this leads to

b`

m`−1 ≥O(1)
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Table 3.1: Applying the H theoretical complexity formulas to the BLR or MBLR cases does not
provide a satisfying result. We have assumed that r = O(1) for the sake of clarity, but the bounds
would remain pessimistic for general ranks.

H BLR MBLR

L O(logm) 1 `

csp O(1) m/b maxi=1,`
bi−1
bi

∗

bdiag O(1) b b`
S H

ds O(m logm) O(m2) O(m(`+1)/`)
FH

ds O(m log2 m) O(m3) O(m(`+2)/`)
∗with the notation b0 = m

and thus b ≥O(m(`−1)/`), which in turn leads to the complexity bound

S
H ,`

ds (m)≥O(
m2b`

b1
)≥O(m(`+1)/`).

In Section 5, we will prove that for r = O(1) we have S `
ds(m) = O(m(`+2)/(`+1)), which is a better

bound, especially when considering a small number of levels `. The analysis for the flop complexity
leads to the same expression of bi and to the complexity bound F

H ,`
ds (m) = O(m(`+2)/`), which is

again overly pessimistic compared with the bound F `
ds(m) = O(m(`+3)/(`+1)) that we will prove in

Section 5.
We summarize the result of applying the H complexity formulas in Table 3.1. It is interesting

to note that these bounds overestimate the actual complexity by exactly one level. This is actually
not surprising: in the H theory, all the blocks at the bottom level are assumed to be non-admissible,
which accounts for the “loss” of one level in the complexity bounds.

It is therefore clear that we must develop a new theory extending the H formalism to be able
to prove better MBLR complexity bounds, just as we did in [4] for the BLR case. We begin by the
two-level case in the next section.

4. Two-level BLR matrices. In this section, we compute the theoretical complexity of the
two-level BLR factorization. The proofs and computations on this particular two-level case are
meant to be illustrative of those of the general multilevel case with an arbitrary number of levels,
which is discussed in Section 5.

We remind the reader that in this section, we are considering the weakly-admissible case only.

4.1. Two-level kernels description. In order to adapt Algorithm 2.1 to two-level BLR ma-
trices, two modifications must be performed.

First, the Factor kernel is not a full-rank factorization of the diagonal blocks Fkk anymore, but
a BLR factorization. Thus, line 14 must be replaced by

F̃kk = L̃kkŨkk =BLR-Factor (Fkk) , (4.1)

where BLR-Factor refers to the BLR factorization described in Algorithm 2.1.
Second, the FR-LR Solve kernel at lines 16 and 17 must be changed to a BLR-LR Solve:

F̃ik ←BLR-LR-Solve
(
Ũkk, F̃ik

)
(4.2)

F̃ki ←BLR-LR-Solve
(
L̃kk, F̃ki

)
, (4.3)

where F̃ik and F̃ki are LR matrices and L̃kk and Ũkk are lower and upper triangular BLR matrices.
We describe in Algorithm 4.1 the BLR-LR-Solve kernel, in the upper triangular case, omitting

the lower triangular case which is very similar. The kernel consists in applying a triangular solve
with a upper triangular BLR matrix Ũ to a low-rank matrix B̃ =ΦΨT . We recall that Ũi j denotes
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Algorithm 4.1 BLR-LR-Solve kernel (upper triangular case)

Input: a p× p block upper triangular BLR matrix Ũ ; Ũ = [
Ũi j

]
i=1: j, j=1:p such that Ũi j =Yi j X T

i j for
i 6= j and Ũ j j =U j j is a full-rank matrix; a LR matrix B̃ =ΦΨT .
Output: overwritten Ψ (modified in-place) corresponding to the operation B̃ ← B̃Ũ−1.

1: for j = 1 to p do
2: ΨT

j,: ←ΨT
j,: −

∑ j−1
i=1Ψ

T
i,:Yi j X T

i j
3: ΨT

j,: ←ΨT
j,:U

−1
j j

4: end for

Φ

ΨT
1,: ΨT

2,: ΨT
3,:

B̃:,1 B̃:,2 B̃:,3 ×

U11

U22

U33

−1

Ũ12 Ũ13

Ũ23

Fig. 4.1: The BLR-LR-Solve kernel

the (i, j)-th low-rank sub-block of Ũ (with the notation Ũ j j = U j j), and that Ψ j,: denotes the j-th
block-row of Ψ.

Two main operations must be performed: a triangular solve using the full-rank diagonal blocks
U j j of Ũ , and an update using the low-rank off-diagonal blocks Ũi j =Yi j X T

i j of Ũ . Both are applied
on the low-rank block-columns B̃:, j =ΦΨT

j,: of B̃. These two operations take place at lines 3 and 2
of Algorithm 4.1, respectively.

The FR-LR triangular solve can be written as

B̃:, j ← B̃:, jU−1
j j =Φ

(
ΨT

j,:U
−1
j j

)
(4.4)

and thus only ΨT
j,: needs to be updated, as shown at line 3.

The LR-LR update takes the following form:

B̃:, j ← B̃:, j −∑ j−1
i=1 B̃:,iŨi j =ΦΨT

j,: −
∑ j−1

i=1Φ
(
ΨT

i,:Yi j X T
i j

)
=Φ

(
ΨT

j,: −
∑ j−1

i=1Ψ
T
i,:Yi j X T

i j

) (4.5)

and thus, again, only ΨT
j,: needs to be updated, as shown at line 2.

The BLR-LR-Solve kernel is illustrated in Figure 4.1.
It can easily be computed that the cost of applying the BLR-LR-Solve kernel once is equal to

the storage complexity times the rank bound r:

cost2
Solve =O(r)×S 1

ds(b, r). (4.6)

Injecting (2.10) into (4.6) leads to
cost2

Solve =O(b3/2r3/2). (4.7)

4.2. Two-level complexity analysis. We now compute the complexity of the two-level BLR
factorization of a dense matrix F of order m. We reuse the monolevel notations for the top level.
We denote by b the size of the first-level blocks and p = m/b the number of of block-rows and block-
columns. We assume that b is of the form b = mx, for x ∈ [0,1]. We also assume that the ranks of
the off-diagonal blocks are bounded by r =O(mα).
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Table 4.1: Two-level equivalent of Table 2.3. The legend of the table is the same. The differences
between the two tables are highlighted in gray.

Step Type cost2
Step numberStep F 2

Step(b, p, r) = F 2
Step(m, x,α)

Factor BLR O(b2r) O(p) O(pb2r) = O(m1+x+α)
Solve BLR-LR O(b3/2r3/2) O(p2) O(p2b3/2r3/2) = O(m2−x/2+3α/2)
Product LR-LR O(br2) O(p3) O(p3br2) = O(m3−2x+2α)
Recompress LR O(bpr2) O(p2) O(p3br2) = O(m3−2x+2α)

The size required to store the factors is again the sum of the storage for the diagonal and off-
diagonal blocks, as in (2.6). The difference is that the diagonal blocks are not full-rank but BLR
matrices. They are further refined into smaller blocks whose size should be chosen of order O(

p
br),

as determined by (2.9) in the BLR complexity analysis. Therefore, in the two-level case, (2.6)
becomes

S 2
ds(b, p, r)= p×S 1

ds(b, r)+O(p2br). (4.8)

By replacing S 1
ds(b, r) by its second expression computed in (2.10), we obtain

S 2
ds(b, p, r)=O(pb3/2r1/2)+O(p2br) (4.9)

Finally, we replace b, p, and r by their expression O(mx), O(m1−x), and O(mα), respectively, to
obtain

S 2
ds(m, x,α)=O(m1+(x+α)/2 +m2−x+α). (4.10)

This leads to
x∗ = (2+α)/3, (4.11)

where x∗ defines the optimal choice of the first-level block size b. We thus obtain a final two-level
storage complexity of

S 2
ds(m, r)=O(m4/3r2/3). (4.12)

We now compute the flop complexity F 2
ds(m, r) of the two-level BLR dense factorization. We

compute the cost of each step and report it in Table 4.1, which is the two-level equivalent of Ta-
ble 2.3; the differences between the two tables are highlighted in gray. The Product and Recom-
press steps have not changed and thus have the same cost. The Factor step consists in factorizing
the p diagonal blocks which are now represented by BLR matrices; thus its cost is directly derived
from the BLR complexity computed in (2.13):

F 2
Factor(b, p, r)= p×F 1

ds(b, r)=O(pb2r). (4.13)

It remains to compute the cost of the Solve step, which now takes the form of O(p2) calls to the
BLR-LR-Solve kernel whose cost is given by (4.7). Thus, the overall cost of the Solve step is

F 2
Solve(b, p, r)=O(p2b3/2r3/2). (4.14)

This concludes the computations for the third, fourth, and fifth columns of Table 4.1. Just as
in the monolevel case, the sixth column is obtained by replacing b, p, and r by their expression
O(mx), O(m1−x), and O(mα), respectively.

We can finally compute the total flop complexity as the sum of the costs of all steps

F 2
ds(m, x,α)=O(m1+x+α+m2−x/2+3α/2 +m3−2x+2α) (4.15)

We then compute x∗ which is again equal to the same value as the one that minimizes the storage
complexity, x∗ = (2+α)/3. Therefore, the final two-level dense flop complexity is

F 2
ds(m, r)=O(m5/3r4/3). (4.16)
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Table 4.2: Flop and storage complexities of the monolevel and two-level BLR factorizations of a
sparse system of n = N × N (2D case) or n = N × N × N (3D case) unknowns, derived from the
complexities of the factorization of a dense matrix of order m. We consider a constant rank bound
r =O(1). The BLR variant considered is CUFS.

Fds(m) Fsp(n) Sds(m) Ssp(n)
2D 3D 2D 3D

Monolevel BLR O(m2) O(n logn) O(n4/3) O(m1.5) O(n) O(n logn)
Two-level BLR O(m5/3) O(n) O(n10/9) O(m4/3) O(n) O(n)

The two-level BLR format therefore significantly improves the asymptotic storage and flop
complexity compared with the monolevel format. Our analysis shows that the top level block
size should be set to b∗ = O(mx∗ ) = O(m2/3r1/3). This is an asymptotically larger value than the
monolevel optimal block size computed in (2.9), which translates the fact that by refining the diag-
onal blocks, we can afford to take a larger block size to improve the overall asymptotic complexity.
However, contrarily to hierarchical matrices, b∗ remains asymptotically much lower than O(m);
this makes the format much more flexible for the reasons described in Section 2.5. In short, we
have traded off some of the flexibility of the monolevel format to improve the asymptotic complexity.

This improvement of the dense flop and storage complexities is translated into an improvement
of the sparse complexities. Assuming a rank bound in O(1), we quantify this improvement in
Table 4.2. Compared with the monolevel BLR format, the two-level BLR format drops the O(logn)
factor in the 2D flop and 3D storage complexities, which become linear and thus optimal. The two-
level BLR format can thus achieve, in these two cases, the same O(n) complexity as the hierarchical
formats while being almost as simple and flexible as flat formats.

Finally, the 3D flop complexity remains superlinear but is significantly reduced, from O(n4/3)
to O(n10/9). As the problem size gets larger and larger, even small asymptotic improvements can
make a big difference. Therefore, we now generalize the two-level analysis to the multilevel case
with an arbitrary number of levels.

5. Generalization to `-level BLR matrices. In this section, we generalize two-level proof
and computations of the previous section to an arbitrary number of levels ` by computing recursive
complexity formulas. We remind the reader that in this section, we are still considering the weakly-
admissible case only.

5.1. Recursive complexity analysis. Just as for the two-level case, one can compute the
three-level asymptotic complexities, and so on until the general formula becomes clear. We state
the result for an arbitrary number of levels ` in the following theorem. Note that it is important to
assume that the number of levels ` is constant (`= O(1)), since the constants hidden in the big O
depend on `.

THEOREM 5.1 (Storage and flop complexity of the `-level BLR factorization). Let us consider
a dense `-level BLR matrix of order m. We note b the size of the top level blocks, and p = m/b. Let
r = O(mα) be the bound on the maximal rank of any block on any level. Then, the optimal choice of
the top level block size is b = O(mx∗ ), with x∗ = (`+α)/(`+1), which leads to the following storage
and flop complexities:

S `
ds(m, r)=O(m(`+2)/(`+1)r`/(`+1)); (5.1)

F `
ds(m, r)=O(m(`+3)/(`+1)r2`/(`+1)). (5.2)

Proof. The proof is inductive. We carefully track the constants hidden in the big O so as to



THE MULTILEVEL BLR FORMAT 15

Table 5.1: `-level equivalent of Tables 2.3 and 4.1. The legend of the table is the same. The
differences between this table and the previous two are highlighted in gray.

Step Type cost`Step numberStep F`
Step(b, p, r) = F`

Step(m, x,α)

Factor BLR(`−1) O(b(`+2)/`r2(`−1)/`) O(p) O(pb(`+2)/`r2(`−1)/`) = O(m1+2x/`+2α(`−1)/`)
Solve BLR(`−1)-LR O(b(`+1)/`r(2`−1)/`) O(p2) O(p2b(`+1)/`r(2`−1)/`) = O(m2+(1−`)x/`+α(2`−1)/`)
Product LR-LR O(br2) O(p3) O(p3br2) = O(m3−2x+2α)
Recompress LR O(bpr2) O(p2) O(p3br2) = O(m3−2x+2α)

check their asymptotic dependence on `. We therefore seek to prove the recursive bounds

S `
ds(m, r)≤ C`m(`+2)/(`+1)r`/(`+1),

F `
ds(m, r)≤ C′

`m(`+3)/(`+1)r2`/(`+1),

where C` and C′
`

are constants independent of m. The formulas hold for ` = 1 with C1 = 2 and
C′

1 = 4. Let us assume that they are true for the (`−1)-level BLR factorization and prove that they
still hold for the `-level one.

S `
ds(m, r) can be computed as the storage cost for the off-diagonal low-rank blocks (whose num-

ber is less than p2) plus that of the p diagonal blocks, which are represented as (`−1)-level BLR
matrices. Therefore, by induction,

S `
ds(b, p, r)≤ p×S `−1

ds (b, r)+ p2br ≤ pC`−1b(`+1)/`r(`−1)/`+ p2br.

We replace b, p, and r by their expression mx, m1−x, and mα, respectively, to obtain

S `
ds(m, x,α)≤ C`−1m1−x+(`+1)x/`+α(`−1)/`+m2−x+α.

For x∗ = (`+α)/(`+1), we obtain

S `
ds(m,α)≤ C`−1m(`+2+α`)/(`+1) +m(`+2+α`)/(`+1)

and therefore
S `

ds(m, r)≤ C`m(`+2)/(`+1)r`/(`+1),

with C` = C`−1 +1 (and thus C` = `+1).
We now consider the flop complexity. F `

ds(m, r) can be computed as the sum of the costs of
the Factor, Solve, Product and Recompress steps. We provide the `-level equivalent of Tables 2.3
and 4.1 in Table 5.1. The Product and Recompress steps do not depend on ` and their cost is less
than p3br2 ≤ m3−2x+2α. The Solve step consists in applying less than p2 times the BLR(`−1)-LR-
Solve kernel, described in Algorithm 5.1, where BLR(`−1) denotes a (`−1)-level BLR matrix (with
the convention that BLR0 denotes a FR matrix). It can easily be proven by induction that the cost
of applying the BLR(`−1)-LR-Solve kernel is less than r×S `−1

ds (b, r). Therefore, it holds

F `
Solve(p,b, r)≤ p2r×S `−1

ds (b, r)≤ C`−1 p2b(`+1)/`r(2`−1)/`,

and thus
F `

Solve(m,α, x)≤ C`−1m2+(1−`)x/`+α(2`−1)/`.

The Factor step consists in factorizing p diagonal (`− 1)-level BLR matrices and therefore, by
induction,

F `
Factor(p,b, r)≤ pC′

`−1b(`+2)/`r2(`−1)/` ≤ C′
`−1m1+2x/`+2α(`−1)/`.

Summing the cost of all steps yields

F `
ds(m,α, x)≤ C′

`−1m1+2x/`+2α(`−1)/`+C`−1m2+(1−`)x/`+α(2`−1)/`+2m3−2x+2α.
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Fig. 5.1: Theoretical asymptotic exponent of the storage and flop complexity of the dense MBLR
factorization

Taking x∗ = (`+α)/(`+1), we obtain

F `
ds(m,α)≤ (C′

`−1 +C`−1 +2)m(`+3+2α`)/(`+1)

and thus
F `

ds(m, r)≤ C′
`m(`+3)/(`+1)r2`/(`+1),

with C′
`
= C′

`−1+C`−1+2 (and thus C′
`
= `(`+1)/2+`+2). Since the number of levels ` is assumed

to be constant, we have C` =O(C′
`
)=O(1) which concludes the proof.

Algorithm 5.1 BLR`-LR-Solve kernel, `> 1 (upper triangular case)

Input: a p×p block upper triangular BLR` matrix Ũ ; Ũ = [
Ũi j

]
i=1: j, j=1:p such that Ũi j =Yi j X T

i j for
i 6= j and Ũ j j is a BLR(`−1) matrix; a LR matrix B̃ =ΦΨT .
Output: overwritten Ψ (modified in-place) corresponding to the operation B̃ ← B̃Ũ−1.

1: for j = 1 to p do
2: ΨT

j,: ←ΨT
j,: −

∑ j−1
i=1Ψ

T
i,:Yi j X T

i j

3: BLR(`−1)-LR-Solve
(
Ũ j j,ΦΨT

j,:

)
4: end for

5.2. Influence of the number of levels `. With the formulas from Theorem 5.1 proven, we
now analyze their practical implications. It is clear that both the storage and flop asymptotic com-
plexities decrease monotonically with the number of levels, while the top level block size increases.

In Figure 5.1, we plot the value of the exponent of the asymptotic complexities as a function of
the number of levels, for different rank bounds r =O(mα).

Let us first consider the case of r =O(1) (i.e., α= 0). We have already shown that, in this case,
the two-level BLR factorization has O(m5/3) flop complexity, which leads to O(n10/9) 3D sparse
complexity. With a third level, the dense complexity decreases to O(m3/2), which is precisely the
3D sparse breaking point (see Table 2.1), and thus leads to O(n logn) complexity. The log factor can
be dropped by adding a fourth level. The dense complexity tends towards O(m) as the number of
levels increases, but the sparse complexity cannot be further improved after the optimal O(n) has
been reached. This illustrates that only a small number of levels is necessary to reach low sparse
complexity. In particular, with four levels, the number of blocks on the top level is p = O(m1/5),
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which is still a quite large number which, as previously described, provides more flexibility to
address issues such as data distribution, parallel implementation, numerical pivoting, etc.

The picture is different with higher rank bounds. Indeed, the higher the rank, the more diffi-
cult it is to reach a low complexity and thus more levels are required. For example, with r =O(

p
m)

(α= 1/2), it is actually not possible to reach a O(n) 3D flop complexity since the dense complexity is
at best O(mr2)=O(m2). This is the dense complexity achieved by the hierarchical formats, as well
as the MBLR format with an infinite number of levels, and leads to O(n4/3) sparse complexity. It is
therefore not possible to achieve this complexity with a constant number of levels. However, a cru-
cial observation is that the rate of improvement of the exponent, which follows (`+3+2α`)/(`+1),
is rapidly decreasing as ` increases. For example, with α = 1/2, one level decreases the full-rank
O(m3) complexity to the BLR O(m2.5) complexity; it would require an infinite number of levels to
achieve another O(m0.5) factor of gain. Similarly, adding two more levels leads to O(m2.25), achiev-
ing a O(m0.25) gain which can only be achieved again with infinitely more levels! This illustrates
the critical observation that the first few levels achieve most of the asymptotic gain. We therefore
believe that the MBLR factorization with only a small number of levels can be of practical interest,
even for problems with larger ranks.

5.3. Comparison with the BLR-H format. We conclude this section by comparing our
MBLR format to the related BLR-H format, sometimes also referred to as “Lattice-H ”. It consists
in representing the matrix using the BLR format, and then approximating its diagonal blocks with
H -matrices. The BLR-H format has been considered as a simple way to use hierarchical matrices
in a distributed-memory setting [23, 1] but has been little studied from a theoretical standpoint.
The question is whether refining the diagonal blocks with additional levels (as H rather than
MBLR matrices) improves the asymptotic complexity of the format. In the following, we prove that
this is not the case and therefore recommend the use of the MBLR format over that of the BLR-H
one.

The complexity of the BLR-H format is entirely determined by the block size b used for the
BLR partitioning. Indeed, the storage complexity can be computed as the sum of the storage for
the off-diagonal low-rank blocks and that of the diagonal H blocks:

S BLR−H
ds (p,b, r)=O(p2br)+O(pbr logb)=O(p2br),

where p = m/b. Thus, the term corresponding to the off-diagonal low-rank blocks is dominant and
we obtain

S BLR−H
ds (m,b, r)=O(

m2r
b

). (5.3)

Similarly, the flop complexity of the BLR-H factorization is dominated by the LR-LR-Product and
Recompress steps which cost

F BLR−H
ds (m,b, r)=O(p3br2)=O(

m3r2

b2 ). (5.4)

Applying (5.3) and (5.4) with the optimal choice of block size for the `-level BLR format, b =
O(m`/(`+1)r1/(`+1)), we obtain the same asymptotic complexity as that proved in Section 5 (Theo-
rem 5.1):

S BLR−H
ds (m, r)=S `

ds(m, r)=O(m(`+2)/(`+1)r`/(`+1));

F BLR−H
ds (m, r)=F `

ds(m, r)=O(m(`+3)/(`+1)r2`/(`+1)).

This result can be interpreted as follows: for any given block size b, there exists a constant number
of levels `b such that representing the diagonal blocks of the matrix as `b-level BLR matrices
suffices to achieve the lowest possible complexity. As far as asymptotic complexity is concerned, it
is thus not necessary to represent these diagonal blocks with the H format. Note that the value of
`b can easily be computed as

`b =min
{
` : m`/(`+1)r1/(`+1) ≥ b

}
−1.
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6. Numerical experiments. In this section we compare the experimental complexities of the
full-rank, BLR, and MBLR formats (with different numbers of levels) for the factorization of dense
matrices arising from Schur complements of sparse problems.

We have developed a MATLAB code to perform the BLR and MBLR factorization of a dense
matrix, which we use to run all experiments. The objective of this experimental section is purely to
validate the theoretical complexity bounds that we have computed in Theorem 5.1. Assessing the
practical performance of the MBLR factorization is complex, not our focus in this paper and will be
the objective of future work; numerical experiments with sparse matrix factorizations are also out
of the scope of this article.

6.1. Experimental setting. All the experiments were performed on the brunch computer
from the LIP laboratory (ENS Lyon), a shared-memory machine equipped with 24 Haswell proces-
sors and 1.5 TB of memory.

To validate our theoretical complexity results, we use a Poisson problem, which generates the
symmetric positive definite matrix A from a 7-point finite-difference discretization of equation

−∆u = f

on a 3D domain of size n = N ×N ×N with Dirichlet boundary conditions. We compute the dense
MBLR factorization of the matrices F corresponding to the root separator of the nested dissection
partitioning, which are of order m = N2.

To compute the low-rank form of the blocks, we perform a truncated QR factorization with
column pivoting (i.e., a truncated version of LAPACK’s [8] _geqp3 routine). We use a mix of fixed-
accuracy and fixed-rank truncation: we stop the factorization after either an accuracy of ε has been
achieved or at most rmax columns have been computed. In the following experiments, we have set
ε= 10−14 and we compare two choices of rmax, 10 and 40.

Note that in the weakly admissible context, fixing the rank to some constant yields a limited
accuracy, measured by either ‖F −LU‖ or ‖I −U−1L−1F‖: in our case, both quantities are of the
order of 10−1, both for rmax = 10 and rmax = 40. Indeed, increasing rmax barely improves the
accuracy because some off-diagonal blocks have almost full numerical rank. While an error of the
order of 10−1 could be enough to build a preconditioner, achieving a higher accuracy would require
a strongly admissible implementation. The generalization of the MBLR format to the strongly
admissible case is therefore of great importance and, while its practical implementation is outside
the scope of this article, we provide its algorithmic description in the appendix. We prove that
its theoretical complexity is identical to that of the weakly admissible case; we also include some
very preliminary experiments showing that its complexity is in agreement with the theory while
leading to a much higher accuracy.

6.2. Experimental estimates of the complexity. We first experimentally estimate the ex-
ponents in the asymptotic complexities of the dense MBLR factorization, using a number of levels
` varying from 1 to 4. To do so, we use the least-squares estimation of the coefficients β1, β2 of the
regression function

X f it = eβ
∗
1 Nβ∗2 with β∗

1 ,β∗
2 = argmin

β1,β2
‖ log Xobs −β1 −β2 log N‖2.

such that X f it fits the observed data Xobs.
We report in Figure 6.1 the measured storage and flops costs, along with the estimate of the

exponent (β1) obtained by the fitting. Figure 6.1 corresponds to rmax = 40; the results for rmax = 10
(not shown) are similar. In Table 6.1 we summarize these estimated exponents and compare them
to the theoretical ones. The estimated exponents slightly differ from their theoretical counterpart,
and may depend on various factors such as the choice of the block sizes, or the actual value of the
numerical ranks, but overall these results are in relatively good agreement with the theory. The
crucial observation is that, for both choices of rmax, an asymptotic gain is achieved by each addition
of a new level, at least up to `= 4.

We now analyze the sharpness of the constant prefactors in the theoretical bounds (5.1) and
(5.2) computed in Theorem 5.1. To do so, we report in Figure 6.2 the ratio between the measured
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(a) Storage. (b) Flops.

Fig. 6.1: Experimentally estimated exponents in the asymptotic complexities of the dense MBLR
factorization of the root separator (of order m = N2) of a 3D Poisson problem (of order n = N3).

Table 6.1: Comparison between theoretical and experimental complexities.

`= 1 `= 2 `= 3 `= 4

Storage complexity
Theoretical O(m1.50) O(m1.33) O(m1.25) O(m1.20)
Experimental (rmax = 10) O(m1.47) O(m1.36) O(m1.32) O(m1.27)
Experimental (rmax = 40) O(m1.37) O(m1.29) O(m1.25) O(m1.24)

Flop complexity
Theoretical O(m2.00) O(m1.67) O(m1.50) O(m1.40)
Experimental (rmax = 10) O(m1.97) O(m1.68) O(m1.62) O(m1.51)
Experimental (rmax = 40) O(m1.92) O(m1.63) O(m1.49) O(m1.41)

(a) Storage. (b) Flops.

Fig. 6.2: Ratio between the measured costs and their theoretical bound for the MBLR factorization
of the root separator (of order m = N2) of a 3D Poisson problem (of order n = N3), with rmax = 40.
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cost and these bounds in the case rmax = 40; the results for rmax = 10 are again similar. The figure
shows that the bounds are almost sharp: the actual constants are in all cases within an order
of magnitude of their bound. While their sharpness seems to decrease as the number of levels `
increases (this is especially the case for the storage cost), the important observation is that the
ratio remains more or less constant as n increases (flat curves), which means that the asymptotic
cost of the MBLR factorization behaves as expected. Note that for `= 1, the storage cost is actually
slightly over the bound: this may be explained by a suboptimal choice of block size.

Overall, these experimental results therefore support the capacity of the MBLR format to
significantly reduce the asymptotic complexity of the factorization, even when only a small number
of levels is used.

7. Conclusion. We have proposed a new multilevel BLR (MBLR) format to bridge the gap be-
tween flat and hierarchical low-rank matrix formats. Contrarily to hierarchical formats for which
the number of levels in the block hierarchy is logarithmically dependent on the size of the problem,
the MBLR format only uses a constant number of levels `.

We had previously explained why the H -matrix theory, while applicable to the BLR format,
leads to very pessimistic complexity bounds and is therefore not suitable. Here, we have shown
that this remains true for the MBLR format and we therefore extended the theory to compute bet-
ter bounds. We proved that both the storage and flop complexities of the factorization can be finely
controlled by `. We theoretically showed that the first few levels achieve most of the asymptotic
gain that can be expected. In particular, for a sparse 3D problem with constant ranks, two lev-
els suffice to achieve O(n) storage complexity and three levels achieve O(n logn) flop complexity,
suggesting that a small number of levels may be enough in practice. Our numerical experiments
confirm this trend.

Having a small number of levels leads to a greater freedom to distribute data in parallel;
in particular blocks are small enough for several of them to fit in shared-memory, allowing an
efficient parallelization. Finally, a small number of levels greatly simplifies the implementation
of the format, making it easy to handle important features such as dynamic data structures and
numerical pivoting. The related BLR-H (or Lattice-H ) format targets a similar objective; however,
our theoretical analysis shows that using more levels to refine the diagonal blocks actually does
not improve the asymptotic complexity with respect to the MBLR format.

In short, the MBLR format aims to strike a balance between asymptotic complexity and actual
performance on parallel computers by trading off the optimal hierarchical complexity to retrieve
some of the simplicity and flexibility of flat monolevel formats. We believe that this increased
simplicity and flexibility will prove to be useful in a parallel, algebraic, fully-featured, general
purpose sparse direct solver. The implementation of the MBLR format in such a solver will be the
object of future work.

Acknowledgements. We thank Cleve Ashcraft for useful discussions.
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Appendix A. Extension to the strongly-admissible case. In Sections 4 and 5, we were
considering the weakly-admissible case only. In this section, we extend the proofs and compu-
tations to the strongly-admissible case. This requires the introduction of new kernels involving
computations on off-diagonal non-admissible blocks that are represented as MBLR matrices. We
prove that the theoretical complexity results established in the weakly-admissible case still hold
in the strongly-admissible one. The proof involves two main ingredients. First, the fact that the
number of non-admissible blocks per row or column on any level of the block hierarchy can be
bounded by a constant. Second, the computation of the cost of the new kernels, which we show do
not asymptotically increase the overall cost of the factorization.
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A.1. New kernels description. In the strongly admissible case, some off-diagonal blocks
may be non-admissible and therefore represented as MBLR matrices. This introduces five new
kernels: the BLR`-LR and BLR`-BLR` additions, the BLR`-LR and BLR`-BLR` products, and the
BLR`-BLR` triangular solve. The practical implementation of these kernels is outside our scope,
but we describe them theoretically in Algorithms A.1 through A.5.

Note that the BLR`-LR (addition or product) algorithms can easily be adapted to define similar
LR-BLR` algorithms. The BLR`-BLR` triangular solve (Algorithm A.5) is described in its upper
triangular version; the lower triangular version is similar and is omitted for the sake of concise-
ness.

To avoid a profusion of different test cases, we use the compact notation Ã ⊗ B̃ and Ã ⊕ B̃ to
denote the product and addition of two matrices Ã and B̃ that may be either LR or MBLR. If at
least one of the two is MBLR, then ⊕ corresponds to a recursive call to Algorithms A.1 or A.2,
while ⊗ corresponds to a recursive call to Algorithms A.3 or A.4. If both Ã and B̃ are LR, then ⊗
simply corresponds to a regular LR-LR product, while ⊕ corresponds to accumulating the two LR
matrices together and recompressing the result. In particular, note that Algorithm A.1 requires
some recompression operations corresponding to line 4.

Algorithm A.1 BLR`-LR-Addition kernel

Input: a p× p BLR` matrix Ã and a LR matrix B̃ =ΦΨT .
Output: a BLR` matrix C̃ = Ã+ B̃

1: for i = 1 to p do
2: for j = 1 to p do
3: if Ã i j is LR then
4: C̃i j ←Recompress(Ã i j +ΦiΨ

T
j )

5: else
6: C̃i j ←BLR(`−1)-LR-Addition(Ã i j,ΦiΨ

T
j )

7: end if
8: end for
9: end for

Algorithm A.2 BLR`-BLR`-Addition kernel

Input: two p× p BLR` matrices Ã and B̃.
Output: a p× p BLR` matrix C̃ = Ã+ B̃.

1: for i = 1 to p do
2: for j = 1 to p do
3: C̃i j ← Ã i j ⊕ B̃i j
4: end for
5: end for

Algorithm A.3 BLR`-LR-Product kernel

Input: a p× p BLR` matrix Ã and a LR matrix C̃ =ΦΨT .
Output: a LR matrix C̃out =ΦoutΨT = ÃC̃

1: for i = 1 to p do
2: Φout

i,: Ψ
T ←BLR(`−1)-LR-Product

(
Ã ii,Φi,:Ψ

T)
3: Φout

i,: ←Φout
i,: +∑p

j=1; j 6=i X i jY T
i jΦ j,:

4: end for

To prove that the strong admissibility case does not increase the asymptotic complexity of the
`-level BLR factorization, we thus need to compute the cost of these new kernels. To do so, two
ingredients are necessary. First, we prove in Section A.2 that the number of non-admissible blocks
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Algorithm A.4 BLR`-BLR`-Product kernel

Input: two p× p BLR` matrices Ã and B̃.
Output: a p× p BLR` matrix C̃ = ÃB̃.

1: for i = 1 to p do
2: for j = 1 to p do
3: C̃i j ← [ ] (rank-0 matrix)
4: for k = 1 to p do
5: C̃i j ← C̃i j ⊕ Ã ik ⊗ B̃k j
6: end for
7: end for
8: end for

Algorithm A.5 BLR`-BLR`-Solve kernel (upper triangular case)

Input: two p× p BLR` matrices Ũ and Ã; Ũ is upper triangular.
Output: overwritten Ã (modified in-place) corresponding to the operation Ã ← ÃŨ−1.

1: for k = 1 to p do
2: for i = 1 to p do
3: if Ã ik is LR then
4: Ã ik ←BLR(`−1)-LR-Solve

(
Ũkk, Ã ik

)
5: else
6: Ã ik ←BLR(`−1)-BLR(`−1)-Solve

(
Ũkk, Ã ik

)
7: end if
8: for j = k+1 to p do
9: Ã i j ← Ã i j ⊕

(−Ã ik ⊗Ũk j
)

10: end for
11: end for
12: end for

at any level of the block hierarchy is bounded by a constant (Lemma A.1). Then, in Section A.3, we
compute their cost by induction (Lemma A.2).

A.2. Boundedness of the number of non-admissible blocks. In this section, we seek to
compute a bound on Nna, the maximal number of non-admissible blocks per row and column at any
level of the block-hierarchy.

The result is directly derived from Lemma 2 in [4], whose result on BLR matrices we reproduce
here.

LEMMA A.1. For any BLR matrix, it is possible to build a partition such that the number of
non-admissible blocks (as defined in [20]) per row and column is bounded by Nna =O(1).

Proof. See [4], Lemma 2.

Since this result holds for any BLR matrix, it can be recursively applied to the non-admissible
blocks of a `-level matrix, and therefore the result trivially holds at any level of the block hierarchy.

As a consequence, the `-level BLR factorization of a dense matrix clustered into p = m/b blocks
requires O(p2) BLR(`−1)-LR products and additions and O(p) BLR(`−1)-BLR(`−1) products, addi-
tions, and triangular solves to be performed.

Now that we have bounded the number of times these kernels are performed, let us bound the
cost of performing them once.

A.3. Recursive complexity analysis of the new kernels.

LEMMA A.2. The costs of Algorithms A.1 through A.5 are

F `
A.1(m, r)=F `

A.2(m, r)=F `
A.3(m, r)=O(r)×S `

ds(m, r), (A.1)

F `
A.4(m, r)=F `

A.5(m, r)=F `
ds(m, r), (A.2)
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where F `
ds(m, r) and S `

ds(m, r) are given by Theorem 5.1.

Proof. We proceed by induction. Let us note b = O(mx) the top level block size of the matrices
and p = m/b =O(m1−x). Let us also assume that r =O(mα).

We begin with the initial case ` = 1. Algorithm A.1 requires O(p2) LR-LR additions of cost
O(br2) and O(p) LR-FR additions of cost O(b2r). Algorithm A.2 requires the same operations,
plus O(p) FR-FR additions of cost O(b2). Algorithm A.3 requires O(p2) LR-LR products of cost
O(br2) and O(p) FR-LR products of cost O(b2r). Therefore, all three algorithms have a total cost of
O(p2br2 + pb2r) = r×S 1

ds(b, p, r). Algorithm A.4 requires O(p3) LR-LR additions and products of
cost O(br2), O(p2) LR-FR additions and products of cost O(b2r), and O(p) FR-FR products of cost
O(b3). Overall, the total cost of Algorithm A.4 is therefore O(p3br2 + p2b2r+ pb3) = F 1

ds(b, p, r).
Algorithm A.5 requires the same computations and therefore has the same asymptotic cost.

We now assume that the formulas hold for (`−1)-level BLR matrices and prove them for `-
level ones. The previous analysis in the case ` = 1 still holds by replacing every “FR” occurence
by “BLR(`−1)”. Thus, Algorithms A.1, A.2, and A.3 require O(p2) LR-LR additions and prod-
ucts, O(p) BLR(`−1)-LR additions and products, and O(p) BLR(`−1)-BLR(`−1) additions. By in-
duction, their cost is therefore O(p2br2)+O(pr)×S `−1

ds (b, r), which is equal to r ×S `
ds(m, r) for

x = x∗ = (`+α)/(`+1). Similary, Algorithm A.4 requires O(p3) LR-LR additions and products, O(p2)
BLR(`−1)-LR additions and products and O(p) BLR(`−1)-BLR(`−1) products. By induction, its cost is
therefore O(p3br2)+O(p2r)×S `−1

ds (b, r)+O(p)×F `−1
ds (b, r), which is equal to F `

ds(m, r) for x = x∗.
Algorithm A.5 requires the same computations and therefore has the same asymptotic cost.

THEOREM A.3. The complexity formulas of Theorem 5.1 established in the weakly-admissible
case also hold in the strongly-admissible case.

Proof. Lemma A.1 states that there are only O(1) non-admissible blocks per row and column
on any level of the block hierarchy. From this we can already deduce that the storage complexity
S `

ds is asymptotically the same in the weakly- and strongly-admissible cases. Moreover, using the
costs computed in Lemma A.2, we can compute the overall cost associated with the new kernels
required to be performed in the strongly-admissible case as

F `
New Kernels(b, p, r)=O(p)×F `−1

ds (b, r)+O(p2r)×S `−1
ds (b, r) (A.3)

=F `
Factor(b, p, r)+F `

Solve(b, p, r) (A.4)

which clearly does not asymptotically increase the total, thus proving that F `
ds is also unchanged

by the strong admissibility condition.

A.4. Preliminary storage complexity experiments. The practical implementation of the
kernels presented in this appendix are outside our scope and therefore, so is the experimental study
of the flop complexity of the strongly admissible MBLR factorization. However, we can easily esti-
mate its storage complexity by first factorizing the matrix with a weakly admissible partitioning,
and then compressing it with a strongly admissible partitioning. Preliminary results are reported
in Figure A.1, where the blocks are compressed at accuracy ε = 10−10 and with no limit on the
rank r. This leads to a backward error ‖F −LU‖ of the order of 10−9, regardless of the number of
levels `. Because this is a well conditioned problem, the quantity ‖I −U−1L−1F‖ is quite close to
the backward error, of the order of 10−8. As shown in the figure, the asymptotic storage complexity
results lead to the same conclusions as those with the weak admissibility.
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Fig. A.1: Storage complexity of the strongly admissible MBLR format, on the root separator of size
m = N2 of a Poisson problem of size N3, and with ε= 10−10.
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