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The Multifrontal method
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The Multifrontal method

Important things to remember about MF:
• the elimination tree can be traversed in any topological order
• two sources of parallelism:

1. Tree: concurrent processing for nodes in different branches
2. Node: parallel processing for big nodes

• many small nodes at the bottom, few but large on top
• two types of variables in each front: Fully Summed (FS) and
Non-FS

• delayed pivoting is a necessary evil.

If a pivot does not match a
stability criterion, its elimination is postponed to the parent front

..
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NFS
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The Multifrontal method

Advantages over iterative solvers:
• easy to use (push button → get answer)
• numerically robust
• do one factorization and multiple bw/fw substitutions
• direct solvers are Swiss army knives:

◦ solve system
◦ compute Schur complement
◦ compute rank/null-space
◦ compute (selected entries of) the inverse matrix
◦ ...

• can be used to precondition iterative solvers

All these features come at the price of high memory and CPU
consumption. Low-rank approximations can help.
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Low-Rank property



Low-rank matrices

Take a dense matrix B of size n×n and compute its SVD B = XSY:
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Low-rank matrices

Take a dense matrix B of size n×n and compute its SVD B = XSY:

B = X1S1Y1 + X2S2Y2 with S1(k, k) = σk > ε, S2(1, 1) = σk+1 ≤ ε

If B̃ = X1S1Y1 then ∥B− B̃∥2 = ∥X2S2Y2∥2 = σk+1 ≤ ε

If the singular values of B decay very fast (e.g. exponentially) then
k≪ n even for very small ε (e.g. 10−14) ⇒ memory and CPU
consumption can be reduced considerably with a controlled loss
of accuracy (≤ ε) if B̃ is used instead of B
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Can we exploit low-rankness in frontal matrices?

Frontal matrices are usually not low-rank but in many applications
they exhibit low-rank blocks.
A block represents the interaction between two subdomains σ
and τ . If they have a small diameter and are far away the
interaction is weak ⇒ rank is low

.

1. compute a clustering of your domain (mesh)

2. permute the matrix accordingly

3. enjoy low-rankness
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Low-rank formats



Low-rank approximations – representations

Once the blocking is defined, several low-rank formats are
possible.

We believe Block Low-Rank (BLR) aims at a good compromise
between complexity and performance/usability.
Visiting to start joint work on HSS vs BLR comparison.
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Low-rank approximations – representations

Once the blocking is defined, several low-rank formats are
possible. One is Hierarchically Semi-Separable (HSS)

• Leads to very low complexity
(fact. is ∼ O(n), with a big
constant).

• Complex, hierarchical structure.
• Relatively inefficient and
expensive SVD/RRQR…(very T&S
blocks), unless randomization is
used.

• Parallelism is difficult to exploit.

We believe Block Low-Rank (BLR) aims at a good compromise
between complexity and performance/usability.
Visiting to start joint work on HSS vs BLR comparison.
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Clustering



Principle

We aim at a clustering which is such that each frontal matrix has a
maximum of low-rank blocks:
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• FS: to the separator associated with
the front

• NFS: to separator associated with
ancestors

loop over the separators at the analysis phase and compute a
clustering for the associated variable
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Clustering

If the geometry of the domain, and of the separators is known, the
task would be relatively simple

.
large diameters
small distances

.
small diameters
large distances

• maximize the relative distance between clusters
• minimize their diameter...
• but not too much to achieve an acceptable BLAS efficiency
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Algebraic clustering/blocking

In MUMPS we don’t have the luxury of knowing the geometry
because we only know the matrix, i.e., we are in a purely algebraic
context.
→ use the adjacency graph instead of the domain geometry

For all the separators
- extract the adjacency graph
- extend it with halo
- pass it to a partitioning tool

End for

SCOTCH-partitioned SCOTCH
separator on a cubic domain of
size N = 128

→

14/31 LSTC Workshop, Livermore 20/03/2015



Factorization



BLR LU factorization

task operation type full-rank low-rank

Factor (F) B = LUT (2/3)b3 (2/3)b3

Solve (S) B = X(YL−1) b3 rb2

Compress (C) B = XY --- rb2

Update (U) B = B− X1(Y1X2)Y2 2b3 rb2

(b=block size, r=rank)

▶

_GETRF

▶

_TRSM

▶

_GEQP3/_GESVD

▶

_GEMM
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BLR LU factorization

Depending on when and how the compression is done, different
variants are possible with different theoretical complexity:

operations memory

2D 3D 2D 3D

FR O(n
3
2 ) O(n2) O(n log n) O(n

4
3 )

BLR FSCU O(n
5
4 ) O(n

5
3 ) O(n) O(n log n)

BLR FCSU O(n
7
6 ) O(n

14
9 ) O(n) O(n log n)

BLR FSCU+LUA O(n
7
6 ) O(n

14
9 ) O(n) O(n log n)

BLR FCSU+LUA O(n log n) O(n
4
3 ) O(n) O(n log n)

HSS O(n log n) O(n
4
3 ) O(n) O(n)

If updates are accumulated and applied at once (LUA), a further
reduction can be achieved which leads to the same theoretical
complexity as HSS.
This is work in progress and still not 100% validated (neither
theoretically nor experimentally)
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Threshold partial pivoting with BLR

CB

current BLR panel

non-eliminated variables

to be updated with
BLAS 3 BLR operations

eliminated variables

planned BLR panel

Pivots are delayed panelwise and eventually to the parent node
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Threshold partial pivoting with BLR

CB

non-eliminated variables

to be updated with
BLAS 3 BLR operations

eliminated variables

FR

FR

actual current BLR panel

actual next BLR panel
(size has increased)

Pivots are delayed panelwise and eventually to the parent node
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Experimental results



Experimental MF complexity

Setting:

1. Poisson: N3 grid with a 7-point stencil with u = 1 on the
boundary ∂Ω

∆u = f

2. Helmholtz: N3 grid with a 27-point stencil, ω is the angular
frequency, v(x) is the seismic velocity field, and u(x, ω) is the
time-harmonic wavefield solution to the forcing term s(x, ω).(

−∆− ω2

v(x)2

)
u(x, ω) = s(x, ω)
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Experimental MF complexity: entries in factor
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• ε only plays a role in the constant factor
• good agreement with theory for Poisson but not with Helmholtz
(under investigation)

• for Poisson a factor ∼ 3 gain with almost no loss of accuracy



Experimental MF complexity: operations
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Application to frequency-domain seismic modeling

• Credits: SEISCOPE project
• Seismic modeling in the frequency domain through Full
Waveform Inversion

• Helmholtz equation

Freq. n nnz factors flops time cores

5Hz 3M 70M 2.5GB 6.5E+13 80s 240
7Hz 7M 177M 6.4GB 4.1E+14 323s 320

10Hz 17M 446M 10.5GB 2.6E+15 1117s 680
Full-rank statistics
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Application to frequency-domain seismic modeling
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Initial model

Depth=175m

Depth=1km

X=6.5km

Depth=175m Depth=175m

Depth=1km Depth=1km

X=6.5km X=6.5km

7Hz problem with single-precision on 320 cores:
• each row is a different section of the domain
• first column: initial model obtained with traveltime tomography
• second column: FWI solution computed with FR-MUMPS
• third column: FWI solution computed with BLR-MUMPS
(ε = 10−5)

24/31 LSTC Workshop, Livermore 20/03/2015



Application to frequency-domain seismic modeling
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Gains in execution time do not match those in Flops because of
the weaker efficiency of BLAS kernels due to the small granularity.
Must tune the block size to achieve the best compromise
between compression and efficiency of operations
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Application to frequency-domain seismic modeling
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Due to the small size of blocks, multithreaded BLAS is inefficient.

We have added OpenMP directives to exploit multicores on BLR
computations
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Application to frequency-domain seismic modeling
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BLR (10-4)-- Scalability

17.0%

16.9%
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Full Rank (BLAS //)
Low  Rank (BLAS //)
Low  Rank (BLAS // + OpenMP)

Due to the small size of blocks, multithreaded BLAS is inefficient.
We have added OpenMP directives to exploit multicores on BLR
computations
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Application to Electromagnetism

Matrices from EMGS (Norway). All matrices are complex and
solved in double-precision

Mat. n nnz factors flops

EMGS_E2 0.9 M 12M 16GB 6.1e+12
EMGS_E3 2.9 M 37M 76GB 5.6e+13
EMGS_S3 3.3 M 43M 92GB 7.5e+13
EMGS_E4 17.4 M 226M 897GB 2.1e+15
EMGS_S4 20.6 M 266M 1122GB 3.0e+15

Experiments are done on the EOS supercomputer at the CALMIP
center of Toulouse (grant 2014-P0989):
• Two Intel(r) 10-cores Ivy Bridge 2,8 Ghz and 64 GB memory
• Peak per core is 22.4 GFlop/s
• Infiniband interconnect
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Application to Electromagnetism
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• Gains increase with the size of the problem
• Global memory is reduced more than just factors
• Compression overhead is included
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Application to Electromagnetism
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BLR -- Flops vs accuracy

Full-Rank (CSR=2e-14)

EMGS_E3
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• compression improves, accuracy deteriorates as ε increases
• good agreement between ε and solution accuracy
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Application to Electromagnetism
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• smaller BLAS granularity (lower seq. and m.threaded speed)
• a factor ∼ 2.5 out of ∼ 10
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Application to Electromagnetism
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EMGS_S4-LR OMP

EMGS_E4-FR
EMGS_E4-LR

EMGS_E4-LR OMP

• smaller BLAS granularity (lower seq. and m.threaded speed)
• a factor ∼ 4.2 out of ∼ 10 thanks to OpenMP
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? Thanks!
Questions?


	The Multifrontal method
	Low-Rank property
	Low-rank formats
	Clustering
	Factorization
	Experimental results

