Improving multifrontal solvers by means of Block Low-Rank approximations

The MUMPS team
INP-IRIT, INRIA-LIP, Université de Bordeaux, CNRS-IRIT
LSTC Workshop, Livermore 20/03/2015

The Multifrontal method

MF (Duff'83) ND (George'73)

2D problem cost \propto
Flops: $\mathcal{O}\left(N^{6}\right)$, mem: $\mathcal{O}\left(N^{4}\right)$

MF (Duff'83) ND (George'73)

2D problem cost \propto
Flops: $\mathcal{O}\left(N^{6}\right)$, mem: $\mathcal{O}\left(N^{4}\right)$

MF (Duff'83) ND (George'73)

2D problem cost \propto
Flops: $\mathcal{O}\left(N^{6}\right)$, mem: $\mathcal{O}\left(N^{4}\right)$

MF (Duff'83) ND (George'73)

2D problem cost \propto
Flops: $\mathcal{O}\left(N^{6}\right)$, mem: $\mathcal{O}\left(N^{4}\right)$

MF (Duff'83) ND (George'73)

2D problem cost \propto
Flops: $\mathcal{O}\left(N^{6}\right)$, mem: $\mathcal{O}\left(N^{4}\right)$

MF (Duff'83) ND (George'73)

2D problem cost \propto
Flops: $\mathcal{O}\left(N^{6}\right)$, mem: $\mathcal{O}\left(N^{4}\right)$

MF (Duff'83) ND (George'73)

2D problem cost \propto
Flops: $\mathcal{O}\left(N^{6}\right)$, mem: $\mathcal{O}\left(N^{4}\right)$

MF（Duff＇83）ND（George＇73）

－•••••••••••••••• －•••••••••••••••・ロ $\bullet \bullet ~$ －・ー－ー・•••・ー－ー・ロ －••••••・ー・•••••••• －••••••・ー・••••••• －••••••••••••••••

2D problem cost \propto
Flops： $\mathcal{O}\left(N^{6}\right)$ ，mem： $\mathcal{O}\left(N^{4}\right)$
\rightarrow Flops： $\mathcal{O}\left(N^{6} / 8\right)$ ，mem： $\mathcal{O}\left(N^{4} / 2\right)$

MF (Duff'83) ND (George'73)

2D problem cost \propto
Flops: $\mathcal{O}\left(N^{6}\right)$, mem: $\mathcal{O}\left(N^{4}\right)$
\rightarrow Flops: $\mathcal{O}\left(N^{6} / 8\right)$, mem: $\mathcal{O}\left(N^{4} / 2\right)$
\rightarrow Flops: $\mathcal{O}\left(N^{3}\right)$, mem: $\mathcal{O}\left(N^{2} \log (N)\right)$
3D problem cost \propto
\rightarrow Flops: $\mathcal{O}\left(N^{6}\right)$, mem: $\mathcal{O}\left(N^{4}\right)$

The Multifrontal method

Important things to remember about MF:

- the elimination tree can be traversed in any topological order
- two sources of parallelism:

1. Tree: concurrent processing for nodes in different branches
2. Node: parallel processing for big nodes

- many small nodes at the bottom, few but large on top
- two types of variables in each front: Fully Summed (FS) and Non-FS
- delayed pivoting is a necessary evil.

The Multifrontal method

Important things to remember about MF:

- the elimination tree can be traversed in any topological order
- two sources of parallelism:

1. Tree: concurrent processing for nodes in different branches
2. Node: parallel processing for big nodes

- many small nodes at the bottom, few but large on top
- two types of variables in each front: Fully Summed (FS) and Non-FS
- delayed pivoting is a necessary evil.

The Multifrontal method

Important things to remember about MF:

- the elimination tree can be traversed in any topological order
- two sources of parallelism:

1. Tree: concurrent processing for nodes in different branches
2. Node: parallel processing for big nodes

- many small nodes at the bottom, few but large on top
- two types of variables in each front: Fully Summed (FS) and Non-FS
- delayed pivoting is a necessary evil. If a pivot does not match a stability criterion, its elimination is postponed to the parent front

The Multifrontal method

Advantages over iterative solvers:

- easy to use (push button \rightarrow get answer)
- numerically robust
- do one factorization and multiple bw/fw substitutions
- direct solvers are Swiss army knives:
- solve system
- compute Schur complement
- compute rank/null-space
- compute (selected entries of) the inverse matrix
- ...
- can be used to precondition iterative solvers

All these features come at the price of high memory and CPU consumption. Low-rank approximations can help.

Low-Rank property

Low-rank matrices

Take a dense matrix B of size $n \times n$ and compute its SVD $B=X S Y$:

Low-rank matrices

Take a dense matrix B of size $n \times n$ and compute its SVD $B=X S Y$:

$B=X_{1} S_{1} Y_{1}+X_{2} S_{2} Y_{2} \quad$ with $\quad S_{1}(k, k)=\sigma_{k}>\varepsilon, S_{2}(1,1)=\sigma_{k+1} \leq \varepsilon$

Low-rank matrices

Take a dense matrix B of size $n \times n$ and compute its SVD $B=X S Y$:

$B=X_{1} S_{1} Y_{1}+X_{2} S_{2} Y_{2} \quad$ with $\quad S_{1}(k, k)=\sigma_{k}>\varepsilon, S_{2}(1,1)=\sigma_{k+1} \leq \varepsilon$ If $\tilde{B}=X_{1} S_{1} Y_{1}$ then $\|B-\tilde{B}\|_{2}=\left\|X_{2} S_{2} Y_{2}\right\|_{2}=\sigma_{k+1} \leq \varepsilon$

Low-rank matrices

Take a dense matrix B of size $n \times n$ and compute its SVD $B=X S Y$:

S

$B=X_{1} S_{1} Y_{1}+X_{2} S_{2} Y_{2} \quad$ with $\quad S_{1}(k, k)=\sigma_{k}>\varepsilon, S_{2}(1,1)=\sigma_{k+1} \leq \varepsilon$ If $\tilde{B}=X_{1} S_{1} Y_{1}$ then $\|B-\tilde{B}\|_{2}=\left\|X_{2} S_{2} Y_{2}\right\|_{2}=\sigma_{k+1} \leq \varepsilon$

If the singular values of B decay very fast (e.g. exponentially) then $k \ll n$ even for very small ε (e.g. 10^{-14}) \Rightarrow memory and CPU consumption can be reduced considerably with a controlled loss of accuracy $(\leq \varepsilon)$ if \tilde{B} is used instead of B

Frontal matrices are usually not low-rank but in many applications they exhibit low-rank blocks.
A block represents the interaction between two subdomains σ and τ. If they have a small diameter and are far away the interaction is weak \Rightarrow rank is low

Can we exploit low-rankness in frontal matrices?

Frontal matrices are usually not low-rank but in many applications they exhibit low-rank blocks.
A block represents the interaction between two subdomains σ and τ. If they have a small diameter and are far away the interaction is weak \Rightarrow rank is low

Can we exploit low-rankness in frontal matrices?

Frontal matrices are usually not low-rank but in many applications they exhibit low-rank blocks.
A block represents the interaction between two subdomains σ and τ. If they have a small diameter and are far away the interaction is weak \Rightarrow rank is low

Can we exploit low-rankness in frontal matrices?

Frontal matrices are usually not low-rank but in many applications they exhibit low-rank blocks.
A block represents the interaction between two subdomains σ and τ. If they have a small diameter and are far away the interaction is weak \Rightarrow rank is low

Can we exploit low-rankness in frontal matrices?

Frontal matrices are usually not low-rank but in many applications they exhibit low-rank blocks.
A block represents the interaction between two subdomains σ and τ. If they have a small diameter and are far away the interaction is weak \Rightarrow rank is low

Can we exploit low-rankness in frontal matrices?

Frontal matrices are usually not low-rank but in many applications they exhibit low-rank blocks.
A block represents the interaction between two subdomains σ and τ. If they have a small diameter and are far away the interaction is weak \Rightarrow rank is low

Can we exploit low-rankness in frontal matrices?

Frontal matrices are usually not low-rank but in many applications they exhibit low-rank blocks.
A block represents the interaction between two subdomains σ and τ. If they have a small diameter and are far away the interaction is weak \Rightarrow rank is low

Can we exploit low-rankness in frontal matrices?

Frontal matrices are usually not low-rank but in many applications they exhibit low-rank blocks.
A block represents the interaction between two subdomains σ and τ. If they have a small diameter and are far away the interaction is weak \Rightarrow rank is low

1. compute a clustering of your domain (mesh)
2. permute the matrix accordingly
3. enjoy low-rankness

Low-rank formats

Low-rank approximations - representations

Once the blocking is defined, several low-rank formats are possible.

Low-rank approximations - representations

Once the blocking is defined, several low-rank formats are possible. One is Hierarchically Semi-Separable (HSS)

Low-rank approximations - representations

Once the blocking is defined, several low-rank formats are possible. One is Hierarchically Semi-Separable (HSS)

Low-rank approximations - representations

Once the blocking is defined, several low-rank formats are possible. One is Hierarchically Semi-Separable (HSS)

- Leads to very low complexity (fact. is $\sim O(n)$, with a big constant).
- Complex, hierarchical structure.
- Relatively inefficient and expensive SVD/RRQR...(very T\&S blocks), unless randomization is used.
- Parallelism is difficult to exploit.

Low-rank approximations - representations

Once the blocking is defined, several low-rank formats are possible. Another one (ours) is Block Low-Rank

- Very simple structure (very little logic to handle).
- Cheap SVD/RRQR.
- Completely parallel.
- Complexity is an open question under investigation.

Low-rank approximations - representations

Once the blocking is defined, several low-rank formats are possible. Another one (ours) is Block Low-Rank

- Very simple structure (very little logic to handle).
- Cheap SVD/RRQR.
- Completely parallel.
- Complexity is an open question under investigation.

We believe Block Low-Rank (BLR) aims at a good compromise between complexity and performance/usability.

Low-rank approximations - representations

Once the blocking is defined, several low-rank formats are possible. Another one (ours) is Block Low-Rank

- Very simple structure (very little logic to handle).
- Cheap SVD/RRQR.
- Completely parallel.
- Complexity is an open question under investigation.

We believe Block Low-Rank (BLR) aims at a good compromise between complexity and performance/usability. Visiting to start joint work on HSS vs BLR comparison.

Clustering

We aim at a clustering which is such that each frontal matrix has a maximum of low-rank blocks:

All the variables in a front belong to a separator

- FS: to the separator associated with the front
- NFS: to separator associated with ancestors

We aim at a clustering which is such that each frontal matrix has a maximum of low-rank blocks:

All the variables in a front belong to a separator

- FS: to the separator associated with the front
- NFS: to separator associated with ancestors
loop over the separators at the analysis phase and compute a clustering for the associated variable

If the geometry of the domain, and of the separators is known, the task would be relatively simple

large diameters small distances

small diameters large distances

- maximize the relative distance between clusters
- minimize their diameter...
- but not too much to achieve an acceptable BLAS efficiency

Algebraic clustering/blocking

In MUMPS we don't have the luxury of knowing the geometry because we only know the matrix, i.e., we are in a purely algebraic context.
\rightarrow use the adjacency graph instead of the domain geometry

For all the separators

- extract the adjacency graph
- extend it with halo
- pass it to a partitioning tool

End for

SCOTCH-partitioned SCOTCH separator on a cubic domain of size $N=128$

Factorization

BLR LU factorization

task	operation type	full-rank	low-rank
Factor (F)	$B=L U^{\top}$	$(2 / 3) b^{3}$	$(2 / 3) b^{3}$
Solve (S)	$B=X\left(Y L^{-1}\right)$	b^{3}	$r b^{2}$
Compress (C)	$B=X Y$	---	$r b^{2}$
Update (U)	$B=B-X_{1}\left(Y_{1} X_{2}\right) Y_{2}$	$2 b^{3}$	$r b^{2}$
$(b=$ block size, $r=r a n k)$			

> _GETRF
> _TRSM
> _GEQP3/_GESVD
> _GEMM

BLR LU factorization

task	operation type	full-rank	low-rank
Factor (F)	$B=L U^{\top}$	$(2 / 3) b^{3}$	$(2 / 3) b^{3}$
Solve (S)	$B=X\left(Y L^{-1}\right)$	b^{3}	$r b^{2}$
Compress (C)	$B=X Y$	---	$r b^{2}$
Update (U)	$B=B-X_{1}\left(Y_{1} X_{2}\right) Y_{2}$	$2 b^{3}$	$r b^{2}$
$(b=$ block size, $r=r a n k)$			

$L U$			
L			
L			
L			

-_GETRF
_TRSM
_GEQP3/_GESVD
_GEMM

BLR LU factorization

task	operation type	full-rank	low-rank
Factor (F)	$B=L U^{\top}$	$(2 / 3) b^{3}$	$(2 / 3) b^{3}$
Solve (S)	$B=X\left(Y L^{-1}\right)$	b^{3}	$r b^{2}$
Compress (C)	$B=X Y$	---	$r b^{2}$
Update (U)	$B=B-X_{1}\left(Y_{1} X_{2}\right) Y_{2}$	$2 b^{3}$	$r b^{2}$
$(b=$ block size, $r=r a n k)$			

$L U$	U	U	U
L			
L			
L			

_GETRF
-_TRSM
_GEQP3/_GESVD
_GEMM

BLR LU factorization

task	operation type	full-rank	low-rank
Factor (F)	$B=L U^{\top}$	$(2 / 3) b^{3}$	$(2 / 3) b^{3}$
Solve (S)	$B=X\left(Y L^{-1}\right)$	b^{3}	$r b^{2}$
Compress (C)	$B=X Y$	---	$r b^{2}$
Update (U)	$B=B-X_{1}\left(Y_{1} X_{2}\right) Y_{2}$	$2 b^{3}$	$r b^{2}$
$(b=$ block size, $r=r a n k)$			

_GETRF
_TRSM
-_GEQP3/_GESVD
_GEMM

task	operation type	full-rank	low-rank
Factor (F)	$B=L U^{\top}$	$(2 / 3) b^{3}$	$(2 / 3) b^{3}$
Solve (S)	$B=X\left(Y L^{-1}\right)$	b^{3}	$r b^{2}$
Compress (C)	$B=X Y$	---	$r b^{2}$
Update (U)	$B=B-X_{1}\left(Y_{1} X_{2}\right) Y_{2}$	$2 b^{3}$	$r b^{2}$
$(b=$ block size, $r=r a n k)$			

_GETRF
_TRSM
_GEQP3/_GESVD
-_GEMM

BLR LU factorization

task	operation type	full-rank	low-rank
Factor (F)	$B=L U^{\top}$	$(2 / 3) b^{3}$	$(2 / 3) b^{3}$
Solve (S)	$B=X\left(Y L^{-1}\right)$	b^{3}	$r b^{2}$
Compress (C)	$B=X Y$	---	$r b^{2}$
Update (U)	$B=B-X_{1}\left(Y_{1} X_{2}\right) Y_{2}$	$2 b^{3}$	$r b^{2}$
$(b=$ block size, $r=r a n k)$			

> _GETRF
> _TRSM
> _GEQP3/_GESVD
> _GEMM

BLR LU factorization

Depending on when and how the compression is done, different variants are possible with different theoretical complexity:

	operations		memory	
	2D	$3 D$	$2 D$	$3 D$
FR	$O\left(n^{\frac{3}{2}}\right)$	$O\left(n^{2}\right)$	$O(n \log n)$	$O\left(n^{\frac{4}{3}}\right)$
BLR FSCU	$O\left(n^{\frac{5}{4}}\right)$	$O\left(n^{\frac{5}{3}}\right)$	$O(n)$	$O(n \log n)$
BLR FCSU	$O\left(n^{\frac{7}{6}}\right)$	$O\left(n^{\frac{14}{9}}\right)$	$O(n)$	$O(n \log n)$
BLR FSCU+LUA	$O\left(n^{\frac{7}{6}}\right)$	$O\left(n^{\frac{14}{9}}\right)$	$O(n)$	$O(n \log n)$
BLR FCSU+LUA	$O(n \log n)$	$O\left(n^{\frac{4}{3}}\right)$	$O(n)$	$O(n \log n)$
HSS	$O(n \log n)$	$O\left(n^{\frac{4}{3}}\right)$	$O(n)$	$O(n)$

If updates are accumulated and applied at once (LUA), a further reduction can be achieved which leads to the same theoretical complexity as HSS.
This is work in progress and still not 100\% validated (neither theoretically nor experimentally)

Threshold partial pivoting with BLR

Pivots are delayed panelwise and eventually to the parent node

Threshold partial pivoting with BLR

Pivots are delayed panelwise and eventually to the parent node

Experimental results

Experimental MF complexity

Setting:

1. Poisson: N^{3} grid with a 7 -point stencil with $u=1$ on the boundary $\partial \Omega$

$$
\Delta u=f
$$

2. Helmholtz: N^{3} grid with a 27-point stencil, ω is the angular frequency, $v(x)$ is the seismic velocity field, and $u(x, \omega)$ is the time-harmonic wavefield solution to the forcing term $s(x, \omega)$.

$$
\left(-\Delta-\frac{\omega^{2}}{v(x)^{2}}\right) u(x, \omega)=s(x, \omega)
$$

Experimental MF complexity: entries in factor

- ε only plays a role in the constant factor
- good agreement with theory for Poisson but not with Helmholtz (under investigation)
- for Poisson a factor ~ 3 gain with almost no loss of accuracy

Experimental MF complexity: operations

- ε only plays a role in the constant factor
- good agreement with theory for Poisson but not with Helmholtz (under investigation)
- for Poisson a factor ~ 9 gain with almost no loss of accuracy

Application to frequency-domain seismic modeling

- Credits: SEISCOPE project
- Seismic modeling in the frequency domain through Full Waveform Inversion
- Helmholtz equation

Freq.	n	nnz	factors	flops	time	cores
5 Hz	3 M	70 M	2.5 GB	$6.5 \mathrm{E}+13$	80 s	240
7 Hz	7 M	177 M	6.4 GB	$4.1 \mathrm{E}+14$	323 s	320
10 Hz	17 M	446 M	10.5 GB	$2.6 \mathrm{E}+15$	1117 s	680

Full-rank statistics

Application to frequency-domain seismic modeling

7 Hz problem with single-precision on 320 cores:

- each row is a different section of the domain
- first column: initial model obtained with traveltime tomography
- second column: FWI solution computed with FR-MUMPS
- third column: FWI solution computed with BLR-MUMPS $\left(\varepsilon=10^{-5}\right)$

Application to frequency-domain seismic modeling

Gains in execution time do not match those in Flops because of the weaker efficiency of BLAS kernels due to the small granularity. Must tune the block size to achieve the best compromise between compression and efficiency of operations

Application to frequency-domain seismic modeling

Due to the small size of blocks, multithreaded BLAS is inefficient.

Application to frequency-domain seismic modeling

Due to the small size of blocks, multithreaded BLAS is inefficient. We have added OpenMP directives to exploit multicores on BLR computations

Application to Electromagnetism

Matrices from EMGS (Norway). All matrices are complex and solved in double-precision

Mat.	n	nnz	factors	flops
EMGS_E2	0.9 M	12 M	16 GB	$6.1 \mathrm{e}+12$
EMGS_E3	2.9 M	37 M	76 GB	$5.6 \mathrm{e}+13$
EMGS_S3	3.3 M	43 M	92 GB	$7.5 \mathrm{e}+13$
EMGS_E4	17.4 M	226 M	897 GB	$2.1 \mathrm{e}+15$
EMGS_S4	20.6 M	266 M	1122 GB	$3.0 \mathrm{e}+15$

Experiments are done on the EOS supercomputer at the CALMIP center of Toulouse (grant 2014-P0989):

- Two Intel(r) 10-cores Ivy Bridge 2,8 Ghz and 64 GB memory
- Peak per core is 22.4 GFlop/s
- Infiniband interconnect

Application to Electromagnetism

- Gains increase with the size of the problem
- Global memory is reduced more than just factors
- Compression overhead is included

Application to Electromagnetism

- compression improves, accuracy deteriorates as ε increases
- good agreement between ε and solution accuracy

Application to Electromagnetism

- smaller BLAS granularity (lower seq. and m.threaded speed)
- a factor ~ 2.5 out of ~ 10

Application to Electromagnetism

- smaller BLAS granularity (lower seq. and m.threaded speed)
- a factor ~ 4.2 out of ~ 10 thanks to OpenMP

Thanks! Questions?

