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Abstract. We consider ill-conditioned linear systems Ax = b that are to be solved iteratively,
and assume that a low accuracy LU factorization A ≈ L̂Û is available for use in a preconditioner. We
have observed that for ill-conditioned matrices A arising in practice, A−1 tends to be numerically
low rank, that is, it has a small number of large singular values. Importantly, the error matrix
E = Û−1L̂−1A−I tends to have the same property. To understand this phenomenon we give bounds
for the distance from E to a low-rank matrix in terms of the corresponding distance for A−1. We
then design a novel preconditioner that exploits the low-rank property of the error to accelerate the
convergence of iterative methods. We apply this new preconditioner in three different contexts fitting
our general framework: low floating-point precision (e.g., half precision) LU factorization, incomplete
LU factorization, and block low-rank LU factorization. In numerical experiments with GMRES-based
iterative refinement we show that our preconditioner can achieve a significant reduction in the number
of iterations required to solve a variety of real-life problems.
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1. Introduction. We consider the iterative solution of a linear system Ax = b,
where A ∈ Rn×n is nonsingular. A widely used approach is to compute a low accuracy
LU factorization A = L̂Û + ∆A and use the approximate inverse factors Û−1L̂−1 as
a preconditioner. However, the rate of convergence of the iterative method strongly
depends on the matrix properties, such as the distribution of its singular values. If A
is ill conditioned the preconditioned iteration may converge slowly or not at all. In
such a situation, we may have no other choice than to compute a more accurate LU
factorization, which is likely to be too expensive for large-scale problems.

The objective of this article is to present a novel and yet general preconditioner
that builds on a given approximate LU factorization and can be effective even for ill-
conditioned systems. This preconditioner is based on the following key observation:
ill-conditioned matrices that arise in practice often have a small number of small
singular values. The inverse of such a matrix has a small number of large singular
values and so is numerically low rank. This observation suggests that the error matrix

E = Û−1L̂−1A− I = Û−1L̂−1∆A ≈ A−1∆A

is of interest, because we may expect E to retain the numerically low-rank property
of A−1. The main contributions of this article are to investigate theoretically and
experimentally whether E is indeed numerically low rank and to describe how to
exploit this property to accelerate the convergence of iterative methods by building a
preconditioner based on a low-rank approximation to E.

We begin, in section 2, by describing the general framework for our analysis and
providing three examples of algorithms that fit within the framework: low floating-
point precision (for example, half precision) LU factorization, incomplete LU fac-
torization, and block low-rank LU factorization. We also describe the experimental
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setting of the following sections. In section 3 we derive sufficient conditions for the
error matrix to be numerically low rank. In section 4 we propose a new preconditioner
based on a low-rank approximation to the error. In section 5 we analyze experimen-
tally how this preconditioner can accelerate the solution of linear systems in the three
contexts mentioned above. We use GMRES-based iterative refinement (GMRES-IR)
as our iterative method. Concluding remarks are given in section 6.

Throughout this article, the unsubscripted norm ‖ · ‖ denotes the 2-norm.

2. General framework and three applications. We first describe the general
framework to which the theory and algorithms developed in this article apply. We
then provide three examples of widely used algorithms that fit within the framework:
low floating-point precision LU factorization, incomplete LU factorization, and block
low-rank LU factorization. We finally describe the experimental setting used in the
following sections.

2.1. General framework description. We consider a linear system Ax = b,
where A ∈ Rn×n is nonsingular. We assume an approximate LU factorization

(2.1) A = L̂Û +∆A

can be computed, but we do not make any assumption on how it is computed, nor do
we assume ∆A to have any special structure. We define the error matrix as

E = Û−1L̂−1A− I = Û−1L̂−1∆A.

We will show theoretically and experimentally that E is likely to have low numerical
rank1 when A is ill conditioned (that is, κ(A) = ‖A‖‖A−1‖ � 1). Note that A
being ill conditioned is not a strict requirement of our framework, but the algorithms
we design can cope with such matrices; therefore, in this article, we mostly consider
ill-conditioned A.

2.2. Low floating-point precision LU factorization. The use of half or sin-
gle precision floating-point arithmetic in mixed-precision algorithms is becoming in-
creasingly common. In particular, half-precision arithmetic is attracting growing in-
terest now that it has started to become available in hardware [13], [14].

A natural way to exploit a low precision LU factorization is with iterative re-
finement. Carson and Higham [6] investigate iterative refinement in three precisions.
They show that if the working precision u is double precision, the LU factors are
computed in half precision, and residuals are computed in quadruple precision then
convergence of the refinement process is guaranteed if κ(A) ≤ 104 and backward er-
rors and forward errors of order u will be produced. They also show that, by using
GMRES preconditioned with the LU factors to solve for the correction term, the limit
on κ(A) can be relaxed to 1012 or 1016 in order to ensure a forward error or back-
ward error of order u, respectively. Algorithm 2.1 summarizes this GMRES-based
iterative refinement (GMRES-IR), which was originally proposed in a form using two
precisions [5].

While GMRES-IR requires only a small number of iterative refinement steps
(outer iterations) when κ(A) satisfies the required bounds, the number of iterations in
the GMRES solves (inner iterations) can be large. In this article, we will demonstrate
how the new preconditioner proposed in section 4 can help to reduce the number of
inner iterations and therefore widen the range of tractable problems.

1The term “numerical rank” will be defined in Definition 3.1.
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Algorithm 2.1 GMRES-based iterative refinement with precisions uf , u, and ur.

1 Compute LU factorization of A at precision uf .
2 Solve Ax1 = b at precision uf using the LU factors and store x1 at precision u.
3 while not converged do
4 Compute ri = b−Axi at precision ur and round ri to precision u.
5 Solve Ãdi ≡ Û−1L̂−1Adi = Û−1L̂−1ri at precision u using GMRES, with

matrix–vector products with Ã computed at precision ur.
6 xi+1 = xi + di at precision u.
7 end while

2.3. Incomplete LU factorization. The LU factors of a sparse matrix can be
much less sparse than the matrix, because of fill-in, potentially making the factoriza-
tion too expensive. This problem can be alleviated by using fill-reducing reorderings
of the matrix, such as minimum degree, minimum fill, and nested dissection. However,
the amount of fill-in can still be quite large in many practical applications.

A widely used alternative approach is to compute an incomplete LU (ILU) fac-
torization [27, sec. 10.3], in which the sparsity of the LU factors is kept under a given

threshold. For example, ILU(0) forces L̂Û to have the same sparsity pattern as A.
More generally, the sparsity of the computed factors can be controlled by a tolerance
τ , where filled entries of magnitude less than τ (relative to the norm of A) are dropped.
For large values of τ , ILU-based preconditioners may yield slow convergence of the
iterative method. We will show how our new preconditioner, used in conjunction with
an ILU preconditioner, can overcome this obstacle.

2.4. Block low-rank LU factorization. In numerous scientific applications,
such as the solution of partial differential equations, the matrices resulting from the
discretization of the physical problem have been shown to possess a low-rank prop-
erty [4]: suitably defined off-diagonal blocks of their Schur complements can be ap-
proximated by low-rank matrices. This property can be exploited to provide a sub-
stantial reduction of the complexity of matrix factorizations.

Several matrix representations—so-called low-rank formats—have been proposed
in the literature. Most of them fit within our general framework, but we will focus
on the block low-rank (BLR) format [1], [2], [3]. The BLR format is based on a flat
2D blocking of the matrix that is defined by conveniently clustering the associated
unknowns. A BLR representation Ã of a dense matrix A has the form

(2.2) Ã =


A11 Ã12 · · · Ã1p

Ã21 · · · · · ·
...

... · · ·
. . .

...

Ãp1 · · · · · · App

 ,

where each off-diagonal block Aij of size mi × nj and numerical rank kτij is approxi-

mated by a low-rank product Ãij = XijY
T
ij , where Xij is mi× kτij and Yij is nj × kτij .

The Ãij approximation of each block can be computed in different ways. We
have chosen to use a truncated QR factorization with column pivoting, which is a QR
factorization with column pivoting that is truncated as soon as a diagonal coefficient
of the R factor falls below a prescribed threshold τ , referred to as the BLR threshold.
The BLR threshold τ controls the accuracy of the factorization.
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In order to perform the LU factorization of a dense BLR matrix, the standard
LU factorization has to be modified so that the low-rank blocks can be exploited to
reduce the number of operations. Many such algorithms can be defined, depending
on where the compression step (the introduction of the low-rank approximations) is
performed. In this article, we will consider the CUFS variant, introduced in [2]. As
described in [2], the CUFS variant achieves the lowest complexity of all BLR variants
by performing the compression as early as possible.

Using the BLR factorization as an approximate LU factorization has been shown
to make an efficient preconditioner for iterative methods such as GMRES, outperform-
ing both traditional iterative and direct methods for many applications of practical
interest [22]. We will show that our low-rank approximation to the factorization error
can improve the performance of the BLR preconditioner.

2.5. Experimental setting. The numerical results have been obtained in MAT-
LAB R2017b on a laptop computer equipped with 8 GB of memory and a four-core
Intel i5-6300U running at 2.40GHz.

Our experiments use four different precisions of IEEE standard arithmetic: half-
precision, with unit roundoff u = 4.9 × 10−4, for which we used the MATLAB fp16
class from the Cleve Laboratory toolbox [25]; single precision (u = 6.0 × 10−8) and
double precision (u = 1.1 × 10−16); and quadruple precision (u = 9.6 × 10−35), for
which we use the Advanpix Multiprecision Computing Toolbox [26].

We will consider a large set of both random dense and real-life sparse matrices
coming from a variety of applications. The randsvd matrices were generated with
the MATLAB gallery function, using rng(1) to seed the random number generator.
All the other matrices come from the SuiteSparse Matrix Collection (previously called
the University of Florida Sparse Matrix Collection) [9]. The full list is provided in
Table 2.1.

The matrices are of relatively small size. We are mainly interested in the theoreti-
cal and numerical behavior of the algorithms; their high performance implementation
is not our focus here. We will, however, explain why the proposed algorithms are
expected to perform well on large-scale problems and in parallel computing environ-
ments.

Throughout the rest of this article, we will specify between parentheses after
each matrix name which type of approximate LU factorization was performed: half
precision LU factorization (fp16), incomplete LU factorization (ILU), or block low-
rank LU factorization (BLR). For ILU, we used the MATLAB ilu function with
threshold partial pivoting, with setup.type = ‘ilutp’ and drop tolerance τ .

Table 2.1 indicates which type of factorization was tested on which matrices. The
fp16 factorization was tested on the full set; the ILU and BLR factorizations were
tested on a subset of matrices with values of τ varying between 10−1 and 10−5 for
ILU and between 0.99 and 10−5 for BLR. This leads to a total of 163 tests on 40
matrices.

3. Bounds for the numerical rank of the error matrix. In this section, we
investigate theoretically and experimentally the numerical rank of the error matrix
E = M−1A − I, where M−1 is some preconditioner that approximates A−1. In our
LU-based preconditioner context, M = L̂Û , but the analysis presented in this section
does not use the fact that the preconditioner M is based on an approximate LU
factorization, so we write M to keep the analysis general.

We begin with some definitions.
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Table 2.1: The test matrices, indicating for each one which of ILU and BLR was
tested and the corresponding values of the drop tolerance or the BLR threshold τ .

Matrix n κ(A) Values of τ tested Application
ILU BLR

randsvd(1e4,2) 100 1.0e+04 — — Random dense
randsvd(1e7,2) 100 1.0e+07 — — Random dense
randsvd(1e10,2) 100 1.0e+10 — — Random dense
randsvd(1e7,1) 100 1.0e+07 — — Random dense
randsvd(1e7,3) 100 1.0e+07 — — Random dense

d dyn1 87 7.4e+06 10−{1,3,5} — Chemical Process Simulation

d ss 53 6.1e+08 10−{1,3,5} — Chemical Process Simulation

west0132 132 4.2e+11 10−{1,3,5} 10−2 Chemical Process Simulation
west0167 167 4.8e+10 10−1 10−5 Chemical Process Simulation

impcol a 207 1.4e+08 10−{1,3,5} — Chemical Process Simulation

impcol e 225 1.4e+08 10−{1,3} — Chemical Process Simulation

rajat11 135 9.2e+05 10−{1,3,5} 10−1 Circuit Simulation

rajat14 180 3.2e+08 10−{1,3,5} 10−1 Circuit Simulation

494 bus 494 2.4e+06 10−{1,3,5} 0.9, 10−1 Power Network

bfwa398 398 3.0e+03 10−{1,3} 0.9 Electromagnetics

utm300 300 8.5e+05 10−{3,5} 10−{1,2,3} Electromagnetics

arc130 130 6.1e+10 10−{1,3,5} — Materials

robot 120 4.3e+08 10−{1,3} — Robotics

rotor1 100 2.4e+12 10−{1,3} — Structural

lund a 147 2.8e+06 10−{1,3,5} 0.9 Structural

nos1 237 2.0e+07 10−{1,3} 0.99 Structural

nos5 468 1.1e+04 10−{1,3} 0.99,0.9 Structural
lshp 406 406 1.1e+03 10−1 10−1 Thermal

ex1 216 3.3e+04 10−{2,3,5} 10−{3,4,5} Computational Fluid Dynamics

saylr1 238 7.8e+08 10−{1,3,5} 0.9, 10−{3,4,5} Computational Fluid Dynamics

steam1 240 2.8e+07 10−{1,3,5} 10−1 Computational Fluid Dynamics

steam3 80 5.0e+10 10−{1,3,5} — Computational Fluid Dynamics

cavity01 317 3.5e+04 10−{1,3} 10−{1,2,3} Computational Fluid Dynamics

fs 183 1 183 2.2e+13 10−{1,3,5} — 2D/3D Problem
plskz362 362 4.7e+05 10−3 10−3 2D/3D Problem

cz308 308 1.4e+04 10−{1,3} 0.99, 0.9 2D/3D Problem

cz400 400 2.6e+05 10−{1,3} 10−3 2D/3D Problem

tumor 1 205 2.6e+05 10−{1,3,5} 10−1 Optimal Control

hangGlider 1 360 1.1e+10 10−{3,5} 10−1 Optimal Control

orbitRaising 1 442 1.1e+08 10−{3,5} 10−3 Optimal Control

str 600 363 1.9e+05 10−{1,3,5} 10−{1,2} Optimization

ww 36 pmec 36 66 3.0e+11 10−{1,3,5} — Eigenvalue/Model Reduction

lop163 163 2.8e+07 10−{1,3,5} 10−3 Statistical/Mathematical

rw136 136 2.5e+05 10−{1,3,5} 10−1 Statistical/Mathematical
CAG mat364 364 1.4e+05 10−3 10−1 Combinatorial

Definition 3.1. Let A ∈ Rn×n be nonzero. For k ≤ n, the rank-k accuracy of A
is

(3.1) εk(A) = min
Wk

{
‖A−Wk‖
‖A‖

: rankWk ≤ k
}
.

We call Wk of rank k an optimal rank-k approximation to A if Wk achieves the
minimum in (3.1). The numerical rank of A at accuracy ε, denoted by kε(A), is

kε(A) = min {k : εk(A) ≤ ε} .
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The matrix A is of low numerical rank if εk(A)� 1 for some k � n.

Let XΣY T denote the singular value decomposition (SVD) of A, and let σi(A)
be the ith largest singular value. By the Eckart–Young–Mirsky theorem [11], [20,
p. 468], [24], ‖A−Wk‖ is minimized2 for Wk = X:,1:kΣ1:k,1:kY

T
:,1:k, which yields

(3.2) εk(A) =
σk+1(A)

σ1(A)
.

As stated in the introduction, we have observed that ill-conditioned matrices often
have a numerically low-rank inverse. We now assume that A−1 is numerically low
rank and seek conditions under which the error E = M−1∆A retains this low-rank
property. To that end, we have to answer two questions: is M−1 numerically low rank
if A−1 is numerically low rank? And is E numerically low rank if M−1 is numerically
low rank?

To answer the first question, we consider M as an additive perturbation of A. We
need the following lemma.

Lemma 3.2. Let X ∈ Rn×n and X +∆X ∈ Rn×n be nonsingular. Then

(3.3) σi(X +∆X) ≤ σi(X)
(
1 + ‖X−1∆X‖

)
, 1 ≤ i ≤ n.

Proof. Apply inequality (3.3.26) from [19] to X and X(I +X−1∆X).

We apply the lemma twice. First, recalling A = M +∆A and taking X = M and
∆X = ∆A in (3.3) yields (for all i ≤ n)

(3.4) σi(A) ≤ σi(M)
(
1 + ‖M−1∆A‖

)
.

Second, taking X = A and ∆X = −∆A in (3.3) yields

(3.5) σi(M) ≤ σi(A)
(
1 + ‖A−1∆A‖

)
.

We can now answer the first question with the following theorem.

Theorem 3.3. Let A = M + ∆A ∈ Rn×n be nonsingular. The rank-k accuracy
of M−1 satisfies

(3.6) εk(M−1) ≤ βgβsεk(A−1), 1 ≤ k ≤ n,

with βg = 1 + ‖A−1∆A‖ and βs = 1 + ‖M−1∆A‖.
Proof. For all k ≤ n− 1, by (3.2) we have

εk(M−1)

εk(A−1)
=
σk+1(M−1)σ1(A−1)

σ1(M−1)σk+1(A−1)
=
σn(M)σn−k(A)

σn−k(M)σn(A)
.

Bounding the numerator with (3.4) and (3.5) yields the result.

Theorem 3.3 states that if ‖A−1∆A‖ and ‖M−1∆A‖ are not too large then M−1

will retain the low-rank property of A−1. The quantity βg = 1 + ‖A−1∆A‖ bounds
how much the “perturbed” singular values of M can grow with respect to those of A
by (3.5). Conversely, βs = 1+‖M−1∆A‖ bounds how much they can shrink by (3.4).
The inequality (3.6) is sharp in a scenario where σn(A) = σ1(A−1)−1 grows by a

2This result is usually stated for the Frobenius norm, but actually holds for any unitarily invariant
norm.
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Table 3.1: Ratios and corresponding bounding quantities for a selection of matrices,
where the LU factorization is computed in half precision or as an incomplete LU
factorization or BLR factorization.

Matrix max
k

σk(M)

σk(A)
βg max

k

σk(A)

σk(M)
βs max

k

εk(M−1)

εk(A−1)
βgβs

rotor1 (fp16) 1.9e+00 3.7e+04 1.0e+00 3.6e+04 9.7e−01 1.3e+09
robot (fp16) 1.0e+00 7.4e+02 1.0e+00 7.1e+02 1.0e+00 5.3e+05
rajat14 (fp16) 2.2e+00 4.6e+02 8.3e+00 4.6e+02 7.7e+00 2.1e+05
tumor 1 (fp16) 4.2e+00 3.5e+02 1.2e+00 4.1e+02 5.1e+00 1.4e+05
west0132 (fp16) 1.1e+00 4.4e+03 1.0e+00 4.6e+03 1.1e+00 2.0e+07
west0167 (fp16) 1.1e+00 1.6e+02 1.0e+00 1.5e+02 1.1e+00 2.5e+04
ww 36 pmec 36 (fp16) 2.1e+04 3.4e+06 1.2e+00 2.0e+02 2.5e+04 6.9e+08
impcol a (fp16) 1.0e+00 6.5e+02 1.0e+00 6.4e+02 1.0e+00 4.1e+05
impcol e (fp16) 1.0e+00 4.8e+00 1.0e+00 4.8e+00 1.0e+00 2.3e+01
nos1 (fp16) 2.9e+00 8.7e+03 1.0e+00 6.5e+00 1.2e+00 5.7e+04
steam1 (fp16) 1.7e+00 2.2e+05 1.4e+00 2.9e+05 1.4e+00 6.3e+10
steam3 (fp16) 1.0e+00 1.2e+04 1.0e+00 1.2e+04 1.0e+00 1.4e+08
randsvd(1e4,2) (fp16) 2.1e+02 1.0e+04 1.5e+00 4.8e+01 3.3e+02 4.9e+05
randsvd(1e7,2) (fp16) 7.1e+03 1.0e+07 1.4e+00 1.4e+03 1.0e+04 1.4e+10
randsvd(1e10,2) (fp16) 1.4e+07 9.9e+09 1.4e+00 7.2e+02 1.9e+07 7.1e+12
lund a (fp16) 2.2e+00 1.1e+04 1.7e+00 1.1e+04 6.0e−01 1.2e+08
lund a (ILU, τ = 10−1) 1.1e+00 3.7e+04 2.8e+05 5.7e+08 1.9e+01 2.1e+13
lund a (ILU, τ = 10−3) 4.7e+00 2.2e+03 1.6e+00 4.8e+02 7.5e+00 1.0e+06
lund a (ILU, τ = 10−5) 1.0e+00 5.4e+00 1.0e+00 5.4e+00 1.0e+00 2.9e+01
cavity01 (fp16) 4.9e+00 3.6e+03 3.2e+01 5.3e+03 1.4e+00 1.9e+07
cavity01 (ILU, τ = 10−3) 1.2e+00 3.5e+01 1.0e+00 2.9e+01 1.3e+00 1.0e+03
cavity01 (BLR, τ = 10−2) 1.2e+00 6.5e+01 5.2e+00 4.0e+01 6.3e+00 2.6e+03
cavity01 (BLR, τ = 10−3) 1.0e+00 1.1e+00 1.0e+00 1.2e+00 1.0e+00 1.3e+00

factor βg and σn−k(A) = σk+1(A−1)−1 shrinks by a factor βs. It is not clear whether
this scenario is attainable. In any case the bound (3.6) is very pessimistic in practice.

Numerical experiments are reported in Table 3.1 for a subset of the matrices,
with the LU factors computed either in half precision or in double precision as an
incomplete LU factorization or BLR factorization. For all these matrices, A−1 has
low numerical rank. We see that the singular values of M are usually of the same
order of magnitude as those of A, so that M−1 remains of low numerical rank. The
bound (3.6) is usually weak by three orders of magnitude or more, but depending
on the matrix, it can still imply a low numerical rank. A possible explanation for
the bound (3.6) being weak is that βgβs is the same for all k, whereas the value
εk(M−1)/εk(A−1) itself depends on k. It may thus not matter if εk(M−1)/εk(A−1)
is large for a large value of k, since we are only interested in small k.

We now turn to our second question: assuming M−1 is numerically low rank,
when can we expect E = M−1∆A also to be numerically low rank? We answer this
question with the following theorem.

Theorem 3.4. Let A = M+∆A ∈ Rn×n be nonsingular. The error E = M−1∆A
satisfies

(3.7) εk(E) ≤ µεk(M−1), 1 ≤ k ≤ n,

with

(3.8) µ =
‖M−1‖ ‖∆A‖
‖M−1∆A‖

.
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Proof. Let Wk be an optimal rank-k approximation of M−1, so that ‖M−1 −
Wk‖ = εk(M−1)‖M−1‖. Then Ek = Wk∆A has rank at most k and therefore

εk(E) ≤ ‖E − Ek‖
‖E‖

=
‖(M−1 −Wk)∆A‖

‖E‖
≤ εk(M−1)

‖M−1‖ ‖∆A‖
‖E‖

,

as required.

Explaining the role of µ is less straightforward than for βg and βs. To clarify the
role of µ, we compute an upper bound µ̄ = mink µ̄k whose mathematical meaning is
easier to grasp. The following theorem states that unless ∆A is very special, µ should
be of moderate size.

Theorem 3.5. The quantity µF = ‖M−1‖‖∆A‖/‖E‖F , which differs from µ only
in that the Frobenius norm of E is taken rather than the 2-norm, is bounded by

(3.9) µF ≤ µ̄k =
σn+1−k(M)

σn(M)

‖∆A‖
‖Pk∆A‖

, 1 ≤ k ≤ n,

where Pk = XkX
T
k , Xk = [xn+1−k, . . . , xn], and xj is the left singular vector corre-

sponding to the jth largest singular value of M .

Proof. The proof draws its inspiration from [7]. Let XΣY T be an SVD of M ,
with σ1 ≥ · · · ≥ σn. Then, with xj and yj denoting the jth columns of X and Y ,
respectively,

E = Y Σ−1XT∆A =

n∑
i=1

1

σi
yi
(
xTi ∆A

)
.

Thus, for all k ≤ n,

‖E‖2F ≥
n∑

i=n+1−k

1

σ2
i

‖yi‖2‖xTi ∆A‖2 ≥
1

σ2
n+1−k

n∑
i=n+1−k

‖xTi ∆A‖2 =
1

σ2
n+1−k

‖Pk∆A‖2.

We can therefore bound µF for all k ≤ n by

µF =
‖∆A‖
σn‖E‖F

≤ σn+1−k

σn

‖∆A‖
‖Pk∆A‖

,

as required.

Theorem 3.5 tells us that µF will be small when ∆A is a “typical” matrix:
one having a significant component in the subspace span(Xk) for some k such that
σn+1−k(M) ≈ σn(M). Note that the proof requires us to take the Frobenius norm
of E, which is in general greater than its 2-norm (and thus µF ≤ µ). However, since
E is expected to be numerically low rank, ‖E‖ ≈ ‖E‖F should hold. Thus, we can
also expect µ ≈ µF to be small. Figure 3.1 plots the values of ‖∆A‖/‖Pk∆A‖,
σn+1−k(N)/σn(M), and µ̄k as a function of k for four example matrices, where

M = L̂Û is from an fp16 LU factorization. In the first two cases (matrices lund a and

steam1), ∆A = A − L̂Û is a typical matrix and thus µ is small. However, for some
matrices (e.g., rajat14 and nos1 in Figure 3.1), ∆A turns out to be special and leads
to a large µ. Nevertheless, for all the matrices studied, the bound (3.7) is never sharp
when µ is large (see the second column of Table 3.2).

We now build a matrix for which the µ bound (3.7) is both large and sharp, to
prove that it cannot be improved without further assumptions on the matrix. Gener-
ating a matrix A for which the bound is sharp is difficult, because we do not control



EXPLOITING LOW-RANK FACTORIZATION ERROR 9

2 4 6 8 10
10 0

10 1

10 2

10 3

10 4

(a) Matrix lund a (fp16).

2 4 6 8 10
10 0

10 1

10 2

10 3

(b) Matrix steam1 (fp16).

10 20 30 40
10 0

10 2

10 4

10 6

(c) Matrix rajat14 (fp16).

10 20 30 40
10 0

10 5

10 10

(d) Matrix nos1 (fp16).

Fig. 3.1: Quantities µ (defined in (3.8)) and µ̄k (defined in (3.9)), and factors in upper

bound (3.9), for M = L̂Û and ∆A = A − L̂Û . µ is small if ∆A is typical (top two
matrices) but can be large for special ∆A (bottom two matrices).

the matrix ∆A of rounding errors. To build such a matrix, we adopt the approach
of Higham [18] and use a direct search optimization procedure to maximize the ratio

maxk εk(E)/εk(A−1), where the L̂Û factors are computed with a half-precision LU
factorization. We obtained the 5× 5 matrix

(3.10) A =


0.70262059 0.10163234 −0.42912567 −0.09693864 0.25863816

−0.56142448 0.09716073 −0.79799236 0.15351272 0.14026396
−0.07776207 −0.25317885 0.27700267 0.60226171 0.68688885

0.23039340 0.44918023 −0.07276241 −0.05928910 0.43898931
0.31561248 −0.71961953 −0.31980583 0.21672135 −0.19520101

,
for which the bound is almost sharp: maxk(εk(E)/εk(Û−1L̂−1)/) ≈ 9.6e+03 and

µ ≈ 1.0e+04 (for k = 1). As shown in Figure 3.2, A−1 and M−1 = Û−1L̂−1 are
indeed numerically low rank, but the error E is not.

Combining Theorems 3.4 and 3.5 we obtain the following corollary.
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1 2 3 4 5
10 -10

10 -5

10 0

10 5

Fig. 3.2: Singular value distributions of A−1, Û−1L̂−1, and E corresponding to exam-
ple matrix A defined in (3.10) for which the bound of Theorem 3.4 is almost sharp.

A−1 and Û−1L̂−1 are numerically low rank but the error E is not.

Corollary 3.6. Let A = M + ∆A ∈ Rn×n be nonsingular. The error E =
M−1∆A satisfies

(3.11) εk(E) ≤ µβgβsεk(A−1), k ≤ n.

Corollary 3.6 tells us that the error E retains the low-rank property of M−1 as
long as µ is not too large, that is, ‖M−1‖‖∆A‖ is not too much larger than ‖M−1∆A‖,
and βg and βs are not too large. Here again, inequalities (3.7) and thus (3.11) are
pessimistic in practice: experiments reported in Table 3.2 show that E remains in
most cases numerically low rank. These bounds should therefore not be used as a
prediction of the numerical rank of E. But they do provide sufficient conditions for
E to retain low numerical rank that in some cases (e.g., the last line in Table 3.2) are
satisfied.

4. A novel preconditioner based on the low-rank error. Now we consider
the solution of the linear system Ax = b by means of an iterative method. A clas-
sical approach to accelerate the convergence of the iterative method is to use the
preconditioner based on the computed LU factors

(4.1) ΠLU = Û−1L̂−1

to solve the preconditioned system ΠLUAx = ΠLUb. However, when the LU factors
have been computed at low accuracy, and when the matrix A is ill conditioned, conver-
gence may still be slow. To overcome this obstacle, we propose a novel preconditioner

(4.2) ΠEk
= (I + Ek)−1Û−1L̂−1,

which is based on a rank-k approximation Ek to the error E = Û−1L̂−1A − I. We
expect the factor (I + Ek)−1 to improve the quality of the preconditioner. In the
extreme case where Ek = E, ΠE is exactly equal to A−1 and thus yields a perfect
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Table 3.2: The bounds from Theorem 3.4 and Corollary 3.6 compared with the quan-
tities they are bounding, using the same matrices and factorizations as in Table 3.1.

matrix max
k

εk(E)

εk(M−1)
µ max

k

εk(E)

εk(A−1)
βgβsµ

rotor1 (fp16) 7.6e+00 8.5e+03 7.3e+00 1.1e+13
robot (fp16) 2.1e+00 1.3e+02 2.1e+00 7.0e+07
rajat14 (fp16) 7.9e−01 2.8e+03 2.4e+00 6.0e+08
tumor 1 (fp16) 4.3e−01 4.9e+00 1.8e+00 6.9e+05
west0132 (fp16) 4.4e+00 1.6e+04 4.7e+00 3.3e+11
west0167 (fp16) 5.1e+00 6.3e+04 5.4e+00 1.6e+09
ww 36 pmec 36 (fp16) 2.0e+00 5.7e+01 4.3e+04 3.9e+10
impcol a (fp16) 2.7e−01 2.6e+01 2.7e−01 1.1e+07
impcol e (fp16) 1.4e+00 1.4e+02 1.4e+00 3.2e+03
nos1 (fp16) 5.0e+01 5.0e+05 5.9e+01 2.8e+10
steam1 (fp16) 6.1e−01 8.8e+00 6.1e−01 5.6e+11
steam3 (fp16) 4.9e−01 1.1e+03 5.1e−01 1.5e+11
randsvd(1e4,2) (fp16) 1.8e+00 2.2e+00 4.7e+02 1.1e+06
randsvd(1e7,2) (fp16) 1.8e+00 2.2e+00 1.5e+04 3.0e+10
randsvd(1e10,2) (fp16) 1.6e+00 2.1e+00 3.0e+07 1.5e+13
lund a (fp16) 2.6e+00 6.5e+00 1.2e+00 7.8e+08
lund a (ILU, τ = 10−1) 5.6e+00 1.8e+01 1.9e+01 3.7e+14
lund a (ILU, τ = 10−3) 1.1e+00 2.9e+00 6.7e+00 3.0e+06
lund a (ILU, τ = 10−5) 1.3e+00 5.4e+00 1.3e+00 1.6e+02
cavity01 (fp16) 2.3e+00 7.2e+01 2.1e+00 1.4e+09
cavity01 (ILU, τ = 10−3) 1.8e+00 4.0e+00 2.2e+00 4.1e+03
cavity01 (BLR, τ = 10−2) 5.2e−01 1.3e+02 3.2e+00 3.3e+05
cavity01 (BLR, τ = 10−3) 7.1e+00 1.3e+01 7.1e+00 1.7e+01

preconditioner, but this is obviously too expensive. However, if k � n then the solve
with I+Ek can be cheaply done with the Sherman–Morrison–Woodbury formula [16].
Since we have shown that E is often numerically low rank, we may expect ΠEk

, with
some suitable small k, to be almost as good a preconditioner as ΠE . We note that
the idea behind the ΠEk

preconditioner shares some similarities with deflation-type
preconditioners [28], though there are fundamental differences between the two types.

4.1. Computing Ek, a low-rank approximation to E. It would be too
expensive to compute Ek explicitly, so we develop a matrix-free approach to its use,
in which we only need to perform matrix-vector products with Ek.

Although other methods could be considered, we use the randomized sampling
algorithm [15], [21] which has been shown to be efficient for computing low-rank
approximations to dense matrices [23]. We build Ek as a truncated SVD of E. We
consider two versions of the randomized SVD algorithm, described in Algorithms 4.1
and 4.2.

Both algorithms begin by sampling the columns of E with a random matrix Ω
of size n× (k + p), where p is a small integer parameter that provides oversampling.
A small amount of oversampling is usually enough to ensure a good accuracy of the
low-rank approximation [15]. We then build an orthonormal basis V of S; note that
V captures the range of E: E ≈ V V TE. In Algorithm 4.1, based on this observation,
we compute a rank-k approximation of V TE by means of a deterministic truncated
SVD XkΣkY

T
k , which then yields the truncated SVD of the original matrix E as

Ek = (V Xk)ΣkY
T
k . This however requires us to form the product V TE which, as

analyzed in the next section, can be expensive. To overcome this issue, Algorithm 4.2
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Algorithm 4.1 Randomized SVD algorithm from [15, Alg. 5.1] via direct SVD of
V TE.

Input: matrix A, its computed LU factors L̂Û , and an n× (k+ p) random matrix Ω.

1 Sample E: S = EΩ = Û−1
(
L̂−1(AΩ)

)
−Ω.

2 Orthonormalize S: V = qr(S).

3 Form V TE =
(
(V T Û−1)L̂−1

)
A− V T and compute an SVD V TE = XΣY T .

4 Truncate X, Σ, Y into Xk, Σk, Yk to keep only k singular vectors/values.
5 An SVD of Ek is given by (V Xk)ΣkY

T
k .

Algorithm 4.2 Randomized SVD algorithm from [15, Alg. 5.2] via row extraction.

Input: matrix A, its computed LU factors L̂Û , and an n× (k+ p) random matrix Ω.

1 Sample E: S = EΩ = Û−1
(
L̂−1(AΩ)

)
−Ω.

2 Orthonormalize S: V = qr(S).
3 Compute the interpolative decomposition V = (I` W )TV(L,:).
4 Extract E(L,:) and compute a QR factorization ET(L,:) = QR.

5 Form (I` W )TRT and compute an SVD (I` W )TRT = XΣY T .
6 Truncate X, Σ, Y into Xk, Σk, Yk to keep only k singular vectors/values.
7 An SVD of Ek is given by XkΣk(QYk)T .

builds instead an interpolative decomposition (ID) [8] of V :

V = (I` W )TV(L,:),

where I` denotes the identity matrix of order ` = k+p and V(L,:) is a subset of ` rows
of V . Such a decomposition can be computed by means of a pivoted QR factorization
V TP = QR and by defining W = R−1

1:`,1:`R:,`+1:n and V(L,:) = PT:,1:`V [15]. We then

have, defining Ê = V V TE,

(4.3) E ≈ Ê = V V TE = (I` W )TV(L,:)V
TE = (I` W )T Ê(L,:) ≈ (I` W )TE(L,:).

Therefore, we can build the truncated SVD of E based on that of (I` W )TE(L,:). The
second approximation in (4.3) makes Algorithm 4.2 less accurate than Algorithm 4.1
by a factor up to 1 +

√
1 + 4k(n− k) [15, Lem. 5.1]. To maintain a unified presenta-

tion, we have formulated Algorithm 4.2 working on the orthonormal basis V . However,
as explained in [15], for this second algorithm it is not necessary to orthonormalize
the sample, i.e., we can work on S rather than V . This is what we will do in practice.

4.2. The four variants of the ΠEk
preconditioner. In the rest of this article,

we will analyze four distinct variants of ΠEk
, which differ in how Ek is computed:

• Π(1)
Ek

: compute Ek with Algorithm 4.1 and with Ω a random Gaussian matrix;

• Π(2)
Ek

: compute Ek with Algorithm 4.1 and with Ω an SRFT matrix;

• Π(3)
Ek

: compute Ek with Algorithm 4.2 and with Ω a random Gaussian matrix;

• Π(4)
Ek

: compute Ek with Algorithm 4.2 and with Ω an SRFT matrix.
An SRFT matrix is a subsampled random Fourier transform matrix, defined as

Ω = FR,
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where F ∈ Cn×n is the discrete Fourier transform (DFT) matrix and R ∈ Rn×` is
a matrix that randomly selects ` distinct columns of F , i.e., it consists of ` random
distinct columns of the n× n identity matrix.

The cost of the ΠEk
preconditioner strongly depends on which variant is used.

Indeed, Π
(1)
Ek

requires us to perform the products EΩ and V TE. Π
(2)
Ek

reduces the

cost of the EΩ product by using a SRFT matrix Ω instead. On the other hand, Π
(3)
Ek

avoids forming V TE explicitly as explained in the previous section. Finally, Π
(4)
Ek

combines both cost reductions.
The four variants of the ΠEk

preconditioner are thus decreasingly expensive.
However, they are also decreasingly accurate. Indeed, the theoretical properties of
SRFT sampling are less well understood (e.g., how to choose the amount of oversam-
pling). Perhaps of more concern, the row extraction SVD (Algorithm 4.2) leads to an
error that is up to a factor 1 +

√
1 + 4k(n− k) larger than that of Algorithm 4.1 [15,

Lem. 5.1]. Since we are only building a preconditioner, this might not be too prob-
lematic if it does not significantly increase the number of iterations. In the following
section, we will therefore compare all four variants of ΠEk

.
Regardless of the variant of ΠEk

used, the new preconditioner might in some
cases perform more flops than the original ΠLU preconditioner if k is large or if the
number of iterations is only reduced by a small quantity. Nevertheless, we still expect
it to perform better for the following three reasons.

• The solve phase achieves in general a low execution rate because it uses
BLAS 2 kernels (in the case of a single right-hand side). On the contrary, for
the setup phase, the LU factorization is a BLAS 3 kernel, while computing
Ek may also be achieved with BLAS 3 kernels (or “BLAS 2.5” if k is very
small).

• The solve phase is performed at working precision, while the setup phase may
be performed at lower precision. This includes the LU factorization but also
the computation of Ek. The influence of uEk

, the precision at which Ek is
computed, will be analyzed in the next section.

• Several applications require the solution for multiple right-hand sides. In this
case, the setup overhead cost of the ΠEk

preconditioner is amortized by the
necessity of performing more solves.

5. Numerical experiments with GMRES-IR. In this section, we analyze
how our new ΠEk

preconditioner can improve the convergence of GMRES-IR (Al-
gorithm 2.1) [5], which uses iterative refinement with the solves for the correction
carried out by preconditioned GMRES. We use three precisions, as proposed in [6].

• The LU factorization of A is computed at precision uf , which is half precision
for a full factorization or double precision when ILU and BLR are used.

• The working precision is double precision for all experiments.
• The residual is computed in quadruple precision for all experiments. Com-

puting the residuals in extended precision improves the forward error for ill-
conditioned problems, though it has no effect on the convergence of iterative
refinement [6].

We set the maximum number of iterative refinement steps to 10 and the maximum
number of GMRES iterations per step of iterative refinement to 100 (hence a maxi-
mum of 1000 total GMRES iterations is permitted). The GMRES stopping criterion
is set to a relative tolerance of 10−8.

For each matrix, the rank k controls the accuracy at which Ek approximates
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Table 5.1: Five matrices representative of typical scenarios. We used a half precision
LU factorization for matrices randsvd(1e7,3) and lund a, ILU factorization with τ =
10−1 for matrices west0167 and rajat14, and BLR factorization with τ = 10−2 for
matrix utm300. The seventh and eighth columns of the table show the number of
GMRES iterations, with the number of iterative refinement steps in parentheses.

ΠLU ΠEk
ΠEk

/ΠLU

Matrix ε k κ(A) κ(ΠLUA) κ(ΠEk
A) Iterations Flops Time

randsvd(1e7,3) 10−2 53 1.0e+07 3.3e+06 5.2e+05 200 (2) 99 (2) 161% 84%
lund a 10−3 6 2.8e+06 1.2e+08 1.7e+04 37 (3) 18 (2) 106% 55%
west0167 10−2 1 4.8e+10 1.3e+18 1.8e+14 403 (7) 300 (5) 88% 76%
utm300 10−3 10 8.5e+05 1.9e+06 5.3e+03 52 (3) 35 (3) 124% 76%
rajat14 10−2 44 3.2e+08 9.3e+04 1.2e+03 47 (2) 26 (2) 280% 95%

E. In our experiments, rather than setting k to a fixed value, we choose a given
target accuracy ε, and compute k as the numerical rank kε of E at accuracy ε (see
Definition 3.1).

To assess the effectiveness of each preconditioner we will measure both the number
of iterations performed and the associated flops. Since our new ΠEk

preconditioner
can and often does perform more flops that the traditional ΠLU preconditioner, we
also estimate their run time. Since a high-performance implementation and analysis
is not our focus, we use a simple model, assuming BLAS 3 computations are 10 times
faster than their BLAS 2 counterparts. We also assume that computations in single
and half precision are twice and four times faster than in double precision, respectively.

Note that we only seek to assess the relative performance of ΠEk
compared to

traditional LU-based preconditioners ΠLU . Comparing the ΠEk
preconditioner to

other approaches, such as different preconditioners or direct methods, is out of the
scope of this article.

5.1. Analysis of typical scenarios. In this section, we focus on the first vari-

ant Π
(1)
Ek

and refer to it simply as ΠEk
. In Table 5.1, we consider five matrices that are

representative of five typical scenarios. We report the condition numbers of A, ΠLUA,
and ΠEk

A. For both preconditioners, we compare the total number of GMRES iter-
ations (the number in parentheses corresponds to the number of iterative refinement
steps), and the associated flops and estimated time. Note that for matrices lund a,
west0167, and utm300, κ(ΠLUA) is actually higher than κ(A); nevertheless, experi-
ments (not shown here) show that even on these matrices, unpreconditioned GMRES
converges much slower than its ΠLU - and ΠEk

-preconditioned counterparts. We also
indicate the low-rank threshold ε that we used to compute Ek, and its corresponding
rank k. In Figure 5.1, we plot the singular value distribution of A−1, Û−1L̂−1, and
E for each of these five matrices.

We recall that our preconditioner targets ill-conditioned matrices that have a small
number of small singular values and therefore a numerically low-rank inverse. Clearly,
A being ill-conditioned is only a necessary condition for A−1 to be numerically low-
rank, not a sufficient one. However, we have observed that all ill-conditioned matrices
that we have tested from the SuiteSparse Matrix Collection fulfill that requirement.
The only matrices in our set that do not are the mode 1 and 3 randsvd matrices, which
are artificially created problems. They constitute what we will call Scenario 1. In this
scenario, A−1 is not numerically low rank and therefore we can expect E to have
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(a) Matrix randsvd(1e7,3) (fp16).

0 100 200 300 400

10 -5

10 0

(b) Matrix cz308 (fp16).
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(c) Matrix west0167 (ILU, τ = 10−1).
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(d) Matrix utm300 (BLR, τ = 10−2).
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(e) Matrix rajat14 (ILU, τ = 10−1).

Fig. 5.1: Singular value distribution of the five matrices in Table 5.1.
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high numerical rank and our preconditioner not to be effective. Mode 3 randsvd is
analyzed in Figure 5.1a. Interestingly, the SVD of the inverse factors shows a slightly
faster singular value decay and therefore, even though A−1 has high numerical rank,
some improvement is observed with ΠEk

over ΠLU . However, the rank k is about
n/2, leading to a significant flop overhead and thus only a modest time gain.

We emphasize that we selected the matrices based on their condition number
only; we did not specifically select matrices for which A−1 is numerically low rank.
While one can surely find an ill-conditioned matrix from the SuiteSparse collection
that does not fulfill this requirement, we believe that the fact that one does not easily
come upon one of them demonstrates that our preconditioner’s scope is very general.

While A−1 is thus numerically low rank for nearly all matrices in the test set,
the performance of our ΠEk

preconditioner is heavily dependent on the extent to
which the error E is numerically low rank. In the following Scenarios 2, 3, and 4,
E is numerically low rank and thus ΠEk

performs well. We distinguish three cases
depending on the reason for E to have low numerical rank. In Scenario 2, the SVD of
E closely follows that of A−1 (Figure 5.1b); in other cases, the SVD of E shows an even

faster decay than that of A−1, either because Û−1L̂−1 has lower numerical rank than
A−1 (Scenario 3, Figure 5.1c), or because E has lower numerical rank than Û−1L̂−1

(Scenario 4, Figure 5.1d). Scenario 3 generally happens when the approximate L̂Û
factors are nearly singular, thus leading to a very ill-conditioned ΠLUA matrix. By
using ΠEk

, we can reduce the ill conditioning of ΠLUA. We conjecture that Scenario 4
is due to a ∆A that possesses some kind of structure, and we have in fact observed it
to be especially frequent for the test cases with BLR factorization.

Finally, Scenario 5 contains the unfortunate cases for which E loses the low-rank
property of A−1 (Figure 5.1e). In our set of matrices, this is always due to Û−1L̂−1

not being numerically low rank (i.e., the bound from Theorem 3.3 is sharp and βg
or βs is large). We recall that in section 3 we built a matrix for which E loses the
low-rank property due to a special ∆A (see (3.10)), but this did not occur on any of
the matrices of our set.

The numerical rank kε of E at accuracy ε can be quite large for matrices falling
into Scenarios 1 and 5. While the preconditioner ΠEk

is not designed with these
matrices in mind, it is nevertheless desirable that, when used on such matrices, the
overhead cost due to the use of ΠEk

remain limited. To do so, we limit k to be no
larger than a given kmax . For example, for rajat14, using kmax = n/10, the flop
overhead cost of ΠEk

is reduced from 280% to 170% of that of ΠLU , and the time
gain is increased from 95% to 92%.

This diversity of scenarios shows that the optimal choice of the preconditioner pa-
rameters will be heavily matrix dependent. However, we would like to design a “black
box” version of the preconditioner that has default settings for which it performs well
on a wide range of problems. This is the aim of the next section.

5.2. Finding a black box setting. Three main parameters influence the cost
and accuracy of the preconditioner ΠEk

: the precision uEk
at which Ek is computed,

the low-rank threshold ε, and the amount of oversampling p. In this section, we
analyze how to set these parameters to produce good performance on a wide range of
problems. In order to do that we seek the best value for each parameter separately,
using performance profiles [10], [17, sec. 26.4]. Each performance profile corresponds
to a preconditioner, a selection of three or four parameters, and a chosen performance
measure for which smaller is better. Each curve on a performance profile shows,
for a range of values of α ≥ 1, the proportion of problems p ∈ [0, 1] for which the
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performance measure for a particular parameter was within a factor α of the smallest
performance measure over all the parameter values. The performance measures are
the number of iterations, the number of flops, and the time predicted by our model.

Note that if the iteration fails to converge for some problems for a given parameter
then the corresponding curve in the performance profile never reaches p = 1; thus the
value of p at which a curve levels off is a measure of robustness.

Naturally, the parameters are interdependent: for example, a high oversampling
parameter will increase the weight of the sampling operation, which is performed at
precision uEk

, thus increasing the importance of the latter parameter. While the
approach of studying each parameter independently is thus possibly not optimal, it
allows us to find a suitable setting without getting lost into the combinatorics of the
parameters.

We first analyze the influence of the oversampling parameter p. From Figure 5.2,
it is clear that a larger oversampling leads to a greater reduction of the number of
iterations, but also to a greater flop overhead due to the larger subspace size ` = k+p.
We must therefore find a compromise aiming at minimizing the time estimated by our
model. Interestingly, the time performance profiles suggest that the value for p should

be set differently depending on which ΠEk
variant is considered. Indeed, Π

(1)
Ek

and

Π
(2)
Ek

require us to form the product V TE and their cost is thus very sensitive to

the choice of p; setting it to a small value works best. Conversely, Π
(3)
Ek

and Π
(4)
Ek

avoid forming V TE, and we can thus afford to take much higher values of p, since
building the preconditioner is much cheaper. This is visible from the time plots (right
column) in Figure 5.2, where the curves corresponding to small p tend to be above

those corresponding to large p for Π
(1)
Ek

(top row), while the opposite is true for Π
(4)
Ek

(bottom row). Results for Π
(2)
Ek

and Π
(3)
Ek

variants (not shown in Figure 5.2), lie in

the middle ground. In the following, we will therefore use p = 0 for Π
(1)
Ek

and Π
(2)
Ek

,

and p = 10 for Π
(3)
Ek

and Π
(4)
Ek

.
We now turn to the low-rank threshold parameter ε, whose effect is plotted in

Figure 5.3. The trend is again clear: a smaller value of ε makes the preconditioner
more robust but more costly. The role of ε is also strongly dependent on which variant
of ΠEk

is considered, for the same reasons than the oversampling parameter. In the

following, we will use ε = 10−3 for Π
(1)
Ek

and Π
(2)
Ek

, and ε = 10−5 for Π
(3)
Ek

and Π
(4)
Ek

.
Finally, in Figure 5.4 we study the role of the uEk

precision parameter on the
subset of tests performed with half precision LU factorization (fp16). Computing Ek in
half precision leads to a preconditioner that is less accurate than when Ek is computed
in higher precision: in particular, in about 8% of the cases the preconditioner fails
when Ek is built in half precision, whereas it succeeds with a higher precision uEk

. On
the other hand, computing Ek in single or double precision makes little difference on
this set of problems, and since single precision is twice as fast as double precision, the
time performance profile shows that setting uEk

to single is the best strategy overall,
for all four variants of ΠEk

.

5.3. Results on the full set of problems with the black box setting. In
this section we report numerical experiments on the full set of problems using the
black box settings chosen in the previous section, which we summarize in Table 5.2.

We emphasize that the results were obtained without tuning the preconditioner
parameters on a case-by-case basis, thereby demonstrating the generality and versa-
tility of the preconditioner.
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Fig. 5.2: Performance profile of the ΠEk
preconditioner for different oversampling

parameters p. The other parameters were set to ε = 10−5 and uEk
= single.

Table 5.2: Black box settings devised in section 5.2.

ε p uEk

Π
(1)
Ek

10−3 0 single

Π
(2)
Ek

10−3 0 single

Π
(3)
Ek

10−5 10 single

Π
(4)
Ek

10−5 10 single

We first compare the four variants of theΠEk
preconditioner. Figure 5.5 shows the

time performance profile of each variant. Note that we do not provide the iterations
and flop profiles, since comparing the four variants in terms of iterations or flops is
not meaningful, because they are used with different values of ε and/or p. We must
compare their time performance to assess which variant finds the best cost/accuracy

compromise. The preconditioner Π
(4)
Ek

ranks first on the largest number of problems
(about 50% of them); it is, however, less robust than the other variants, failing to
converge in three cases where the other variants converged. We therefore choose

to reject it. While Π
(1)
Ek

and Π
(2)
Ek

are significantly slower, Π
(3)
Ek

achieves a good

performance overall, very close to that of Π
(4)
Ek

. Interestingly, it is also the most

robust variant; recalling that it is less accurate than Π
(1)
Ek

by a factor up to 1 +√
1 + 4k(n− k), this means that it compensates its lesser accuracy by being able to

afford a much smaller threshold (ε = 10−5 instead of 10−3). We conclude that Π
(3)
Ek
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Fig. 5.3: Performance profile of the ΠEk
preconditioner for different low-rank thresh-

old ε parameters. The other parameters were fixed to p = 10 and uEk
= single.
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Fig. 5.4: Performance profile of the Π
(1)
Ek

preconditioner for an LU factorization com-

puted in half precision for different uEk
precision parameters, with ε = 10−5 and

p = 10. Results with Π
(2,3,4)
Ek

are similar.

is the choice that leads to the best performance overall on this set of problems.

We now compare Π
(3)
Ek

with the classical ΠLU preconditioner. In Figure 5.6, we

plot the relative performance of Π
(3)
Ek

with respect to ΠLU . Each bar corresponds to
a different test case, its color indicating which type of approximate factorization is
considered (fp16, ILU, or BLR). The colors are evenly distributed, which means that

the numerical behavior of Π
(3)
Ek

is comparable for all three types of factorization. The

preconditioner Π
(3)
Ek

leads to a lower number of iterations than ΠLU in about 80% of
the test cases. Moreover, this reduction of the number of iterations is often significant:
ΠLU performs more than 50% more iterations on 30% of the test cases. Interestingly,
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Fig. 5.5: Time performance profile of the four variants of the ΠEk
preconditioner,

obtained with the black box settings described in Table 5.2.

in about 5% of the cases, ΠLU fails to converge whereas Π
(3)
Ek

successfully solves the
problem (indicated by the white gap on the left side of the plots). Therefore, even

though Π
(3)
Ek

leads to a flop overhead compared with ΠLU in about 90% of the cases,
that overhead is often limited (less than 50% overhead in half the cases) and using
our simple performance model, the estimated time results suggest significant gains
can be expected.

5.4. Results on larger matrices. In this section we complement the previous
results with some experiments on larger matrices. These experiments include only
the ILU and BLR preconditioners because the fp16 arithmetic we are using is too
slow on matrices of size larger than 1000. An important question is whether these
larger matrices still possess an inverse that is numerically low rank, and whether the
numerical rank kε of A−1 remains small or increases with n.

Table 5.3 shows results for some matrices of size around 5000 from the SuiteSparse
collection. We see that the ΠEk

preconditioner significantly improves the number of
iterations for both the ILU and BLR preconditioners. Importantly, this improve-
ment is achieved for very small ranks (kε remains smaller than 100 for all matrices)
compared with the matrix sizes n.

In Figure 5.7 we compare kε for different matrix sizes for two families of matrices
(also from the SuiteSparse Matrix Collection) that contain cz308 and utm300 in Ta-
ble 2.1. The plots show that the numerical rank remains almost constant with respect
to n when the required ε is not too small. While there may of course be some other
matrices for which this property is not true, the figure suggests that, at least for some
problem classes, our preconditioner should perform well, or even better, on large-scale
problems.

6. Conclusion. We have presented a new and very general preconditioner for
iterative methods for solving ill-conditioned linear systems Ax = b.

The key idea is to exploit the low numerical rank structure that is typically present
in the error arising in approximate matrix factorizations. We have defined a general
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Fig. 5.6: Performance comparison between the ΠLU preconditioner and the best vari-

ant of the ΠEk
preconditioner (Π

(3)
Ek

). Each bar corresponds to one of the 163 test
cases, its color indicating which type of approximate factorization is considered (fp16,
ILU, or BLR). The y-axis corresponds to the normalized performance of ΠEk

with
respect to that of ΠLU : thus, ΠEk

performs better than ΠLU when the bar is under
the black line. These results were obtained with the black box settings described in
Table 5.2. The white gap on the left side of the plots corresponds to the test cases
for which ΠLU did not converge whereas ΠEk

did.

Table 5.3: Results on larger matrices. The last two columns of the table show the
number of GMRES iterations, with the number of iterative refinement steps in paren-
theses.

Iterations
Matrix Application n κ(A) Fact. type ε kε ΠLU ΠEk

msc04515 Structural 4515 2.3e+06
ILU (τ = 10−4) 10−1 17 41 (2) 31 (2)
BLR (τ = 10−2) 10−3 7 30 (2) 24 (2)

gemat12 Power Network 4929 1.0e+08
ILU (τ = 10−5) 10−3 42 16 (2) 9 (2)
BLR (τ = 10−3) 10−3 59 24 (2) 14 (2)

c-24 Optimization 4119 2.2e+08
BLR (τ = 10−4) 10−2 56 9 (2) 7 (2)
BLR (τ = 10−3) 10−3 98 29 (3) 15 (3)

lhr04c Chemical 4101 3.8e+12
ILU (τ = 10−7) 10−5 16 30 (3) 12 (3)
BLR (τ = 10−5) 10−4 14 40 (3) 24 (3)
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Fig. 5.7: Numerical rank kε of A−1 at accuracy ε for different matrix sizes. The
matrices are from the SuiteSparse Matrix Collection and the digits in the name denote
the matrix size.

framework in which a low accuracy LU factorization A = L̂Û+∆A is computed. This
allows for many different types of approximate LU factorizations, among which in our
experiments we have used half precision LU, incomplete LU, and block low-rank LU.

We have used theoretical results from singular value perturbation analysis to
bound the distance from E = Û−1L̂−1A− I = Û−1L̂−1∆A to a numerically low-rank
matrix by a multiple of the distance from A−1 to a numerically low-rank matrix.
These bounds give sufficient conditions for the error matrix to be numerically low
rank. In practice, the bounds are generally pessimistic and we have found E to be
almost always numerically low rank in practice when A is ill conditioned.

Our novel preconditioner improves the traditional preconditioner Û−1 L̂−1 based
on the approximate LU factors by premultiplying it by a correction term (I +Ek)−1,
exploiting the numerical low rank of E. Because building E explicitly is too expen-
sive, our algorithm uses a matrix-free approach based on randomized sampling to
compute a rank-k matrix Ek as a truncated SVD of E. We have compared four vari-
ants of the algorithm theoretically, by performing a computational cost analysis, and
experimentally.

After experimenting with the internal parameters of the preconditioner, in or-
der to better understand its practical behavior, we chose a set of parameters that
we applied in a black box manner to a large set of real-life problems coming from a
variety of applications. Our numerical results show the capacity of the new precondi-
tioner to accelerate the solution of a wide range of ill-conditioned problems, thereby
demonstrating its generality and versatility.

We conclude by mentioning some possible directions for future work. Our pre-
conditioner could be coupled with other iterative methods than GMRES-IR, such as
GMRES. The LU framework that we have described could also be naturally adapted
to symmetric problems. We believe our work could even be extended to precondi-
tioners that are not based on matrix factorizations, such as Jacobi, Gauss-Seidel,
approximate inverse, or multigrid approaches.

Most importantly, while out of the scope of this article, a high-performance im-
plementation of the proposed preconditioner will be of interest both to assess the
performance gains that can be achieved and to study its numerical behavior on large-
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scale problems.
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[10] E. D. Dolan and J. J. Moré, Benchmarking optimization software with performance profiles,
Math. Programming, 91 (2002), pp. 201–213, https://doi.org/10.1007/s101070100263.

[11] C. Eckart and G. Young, The approximation of one matrix by another of lower rank, Psy-
chometrika, 1 (1936), pp. 211–218, https://doi.org/https://doi.org/10.1007/BF02288367.

[12] J. A. George, Nested dissection of a regular finite-element mesh, SIAM J. Numer. Anal., 10
(1973), pp. 345–363, https://doi.org/10.1137/0710032.

[13] A. Haidar, S. Tomov, J. Dongarra, and N. J. Higham, Harnessing GPU tensor cores
for fast FP16 arithmetic to speed up mixed-precision iterative refinement solvers, 2018.
Submitted to Supercomputing 2018.

[14] A. Haidar, P. Wu, S. Tomov, and J. Dongarra, Investigating half precision arithmetic
to accelerate dense linear system solvers, in Proceedings of the 8th Workshop on Latest
Advances in Scalable Algorithms for Large-Scale Systems, ScalA ’17, Nov. 2017, pp. 10:1–
10:8, https://doi.org/10.1145/3148226.3148237.

[15] N. Halko, P. G. Martinsson, and J. A. Tropp, Finding structure with randomness: Prob-
abilistic algorithms for constructing approximate matrix decompositions, SIAM Rev., 53
(2011), pp. 217–288, https://doi.org/10.1137/090771806.

[16] H. V. Henderson and S. R. Searle, On deriving the inverse of a sum of matrices, SIAM
Rev., 23 (1981), pp. 53–60, https://doi.org/10.1137/1023004.

[17] D. J. Higham and N. J. Higham, MATLAB Guide, Society for Industrial and Applied Math-
ematics, Philadelphia, PA, USA, third ed., 2017.

[18] N. J. Higham, Optimization by direct search in matrix computations, SIAM J. Matrix Anal.
Appl., 14 (1993), pp. 317–333, https://doi.org/10.1137/0614023.

[19] R. A. Horn and C. R. Johnson, Topics in Matrix Analysis, Cambridge University Press,
Cambridge, UK, 1991, https://doi.org/https://doi.org/10.1137/1035037.

[20] R. A. Horn and C. R. Johnson, Matrix Analysis, Cambridge University Press, Cambridge,
UK, second ed., 2013, https://doi.org/https://doi.org/10.1137/1030034.

[21] E. Liberty, F. Woolfe, P.-G. Martinsson, V. Rokhlin, and M. Tygert, Randomized algo-
rithms for the low-rank approximation of matrices, Proceedings of the National Academy
of Sciences, 104 (2007), pp. 20167–20172, https://doi.org/10.1073/pnas.0709640104.

https://doi.org/10.1137/120903476
https://doi.org/10.1137/16M1077192
https://doi.org/10.1007/978-3-540-77147-0
https://doi.org/10.1137/17M1122918
https://doi.org/10.1137/17M1140819
https://doi.org/10.1137/17M1140819
https://doi.org/10.1137/0909067
https://doi.org/10.1137/030602678
https://doi.org/10.1137/030602678
https://doi.org/10.1145/2049662.2049663
https://doi.org/10.1007/s101070100263
https://doi.org/https://doi.org/10.1007/BF02288367
https://doi.org/10.1137/0710032
https://doi.org/10.1145/3148226.3148237
https://doi.org/10.1137/090771806
https://doi.org/10.1137/1023004
https://doi.org/10.1137/0614023
https://doi.org/https://doi.org/10.1137/1035037
https://doi.org/https://doi.org/10.1137/1030034
https://doi.org/10.1073/pnas.0709640104


24 N. J. HIGHAM AND T. MARY

[22] T. Mary, Block Low-Rank Multifrontal Solvers: Complexity, Performance, and Scalability,
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