Block Low-Rank Matrices: Main Results and Recent Advances

Theo Mary University of Manchester, School of Mathematics Grenoble, 5 July 2018

Context

Linear system Ax = b

Often a keystone in scientific computing applications (discretization of PDEs, step of an optimization method, ...)

Matrix sparsity

A sparse matrix is "any matrix with enough zeros that it pays to take advantage of them" (Wilkinson)

Large-scale systems

Increasingly faster computers available, need to efficiently make use of them

Iterative methods

Build sequence x_k converging towards x

- ${}^{\odot}$ Computational cost: ${\cal O}\left(n
 ight)$ operations/iteration and memory
- Convergence is application-dependent

Direct methods

Factorize A = LU and solve LUx = b

- © Numerically reliable
- Computational cost: O (n²) operations, O (n^{4/3}) memory Practical example on a 1000³ 27-point Helmholtz problem: 15 ExaFlops and 209 TeraBytes for factors!

Iterative methods

Build sequence x_k converging towards x

- \odot Computational cost: $\mathcal{O}\left(n
 ight)$ operations/iteration and memory
- Convergence is application-dependent

Direct methods

Factorize A = LU and solve LUx = b

- © Numerically reliable
- © Computational cost: $\mathcal{O}(n^2)$ operations, $\mathcal{O}(n^{4/3})$ memory Practical example on a 1000³ 27-point Helmholtz problem: 15 ExaFlops and 209 TeraBytes for factors!

Our objective:

reduce the cost of sparse direct solverswhile maintaining their numerical reliability

Block Low-Rank Matrices

Take a dense matrix *B* of size $b \times b$ and compute its SVD B = XSY:

Take a dense matrix *B* of size $b \times b$ and compute its SVD B = XSY:

 $k = \min \{k \le b; \sigma_{k+1} \le \varepsilon\}$ is the numerical rank at accuracy ε

Take a dense matrix *B* of size $b \times b$ and compute its SVD B = XSY:

 $k = \min \{k \le b; \sigma_{k+1} \le \varepsilon\}$ is the numerical rank at accuracy ε $\tilde{B} = X_1 S_1 Y_1$ is a low-rank approximation to B: $||B - \tilde{B}||_2 \le \varepsilon$

Take a dense matrix *B* of size $b \times b$ and compute its SVD B = XSY:

 $k = \min \{k \le b; \sigma_{k+1} \le \varepsilon\}$ is the numerical rank at accuracy ε $\tilde{B} = X_1 S_1 Y_1$ is a low-rank approximation to B: $||B - \tilde{B}||_2 \le \varepsilon$ Storage savings: $b^2/2bk = b/2k$

Similar flops savings when used in most linear algebra kernels

Most matrices are not low-rank in general but in some applications they exhibit low-rank blocks

A block B represents the interaction between two subdomains σ and τ . Small diameter and far away \Rightarrow low numerical rank. Most matrices are not low-rank in general but in some applications they exhibit low-rank blocks

A block *B* represents the interaction between two subdomains σ and τ . Small diameter and far away \Rightarrow low numerical rank.

How to choose a good block partitioning of the matrix?

${\mathcal H}$ and BLR matrices

 $\mathcal H\text{-matrix}$

- Nearly linear complexity
- Complex, hierarchical structure

${\cal H}$ and BLR matrices

 $\mathcal H ext{-matrix}$

- Nearly linear complexity
- Complex, hierarchical structure

BLR matrix

- Superlinear complexity
- Simple, flat structure

${\cal H}$ and BLR matrices

 $\mathcal H ext{-matrix}$

- Nearly linear complexity
- Complex, hierarchical structure

BLR matrix

- Superlinear complexity
- Simple, flat structure

BLR is a comprise between complexity and performance:

- Small blocks \Rightarrow can fit on single shared-memory node
- No global order between blocks \Rightarrow flexible data distribution
- Easy to handle numerical pivoting

• FSCU

- FSCU (Factor,
- Easy to handle numerical pivoting, a critical feature often lacking in other low-rank solvers

- FSCU (Factor, Solve,
- Easy to handle numerical pivoting, a critical feature often lacking in other low-rank solvers

- FSCU (Factor, Solve, Compress,
- Easy to handle numerical pivoting, a critical feature often lacking in other low-rank solvers

- FSCU (Factor, Solve, Compress, Update)
- Easy to handle numerical pivoting, a critical feature often lacking in other low-rank solvers

- FSCU (Factor, Solve, Compress, Update)
- Easy to handle numerical pivoting, a critical feature often lacking in other low-rank solvers

- FSCU (Factor, Solve, Compress, Update)
- Easy to handle numerical pivoting, a critical feature often lacking in other low-rank solvers

- FSCU (Factor, Solve, Compress, Update)
- Easy to handle numerical pivoting, a critical feature often lacking in other low-rank solvers

- FSCU (Factor, Solve, Compress, Update)
- Easy to handle numerical pivoting, a critical feature often lacking in other low-rank solvers

- FSCU (Factor, Solve, Compress, Update)
- Easy to handle numerical pivoting, a critical feature often lacking in other low-rank solvers
- Potential of this variant was studied in
 - Amestoy, Ashcraft, Boiteau, Buttari, L'Excellent, and Weisbecker, Improving Multifrontal Methods by Means of Block Low-Rank Representations, SIAM J. Sci. Comput. (2015).

Outline

1. Complexity

 \Rightarrow Joint work with P. Amestoy, A. Buttari, J.-Y. L'Excellent

2. Parallelism

 \Rightarrow Joint work with PA, AB, JYL

3. Comparison with HSS

 \Rightarrow Joint work with PA, AB, JYL, P. Ghysels, X. S. Li, F.-H. Rouet

4. Multilevel BLR Matrices

 \Rightarrow Joint work with PA, AB, JYL

5. Error Analysis

 \Rightarrow Joint work with N. Higham

6. Fast BLR Matrix Arithmetic

 \Rightarrow Ongoing work

Complexity

Computing the BLR complexity

Assume all off-diagonal blocks are low-rank. Then:

Storage =
$$cost_{LR} * nb_{LR} + cost_{FR} * nb_{FR}$$

= $O(br) * O((\frac{m}{b})^2) + O(b^2) * O(\frac{m}{b})$
= $O(m^2 r/b + mb)$
= $O(m^{3/2}r^{1/2})$ for $b = (mr)^{1/2}$

Computing the BLR complexity

Assume all off-diagonal blocks are low-rank. Then:

 $FlopLU = \operatorname{cost_{getrf}} * \operatorname{nb_{getrf}} + \operatorname{cost_{trsm}} * \operatorname{nb_{trsm}} + \operatorname{cost_{gemm}} * \operatorname{nb_{gemm}}$ $= O(b^3) * O(\frac{m}{b}) + O(b^2r) * O((\frac{m}{b})^2) + O(br^2) * O((\frac{m}{b})^3)$ $= O(mb^2 + m^2r + m^3r^2/b^2)$ $= O(m^2r) \text{ for } b = (mr)^{1/2}$

Block Low-Rank Matrices

Computing the BLR complexity

Assume all off-diagonal blocks are low-rank. Then:

 $FlopLU = cost_{getrf} * nb_{getrf} + cost_{trsm} * nb_{trsm} + cost_{gemm} * nb_{gemm}$ $= O(b^3) * O(\frac{m}{b}) + O(b^2r) * O((\frac{m}{b})^2) + O(br^2) * O((\frac{m}{b})^3)$ $= O(mb^2 + m^2r + m^3r^2/b^2)$ $= O(m^2r) \text{ for } b = (mr)^{1/2}$

Result holds if a **constant** number of off-diag. blocks is full-rank. \Rightarrow how to ensure this condition holds?

BLR admissibility condition

BLR-admissibility condition of a partition ${\cal P}$

Non-Admissible

Admissible

Theo Mary

BLR admissibility condition

BLR-admissibility condition of a partition ${\cal P}$

Non-Admissible

Admissible

Main result

For any matrix, we can build an admissible \mathcal{P} for $q = \mathcal{O}(1)$, s.t. the maximal rank of the admissible blocks of A is $r = \mathcal{O}(r_{max}^{\mathcal{H}})$

Amestoy, Buttari, L'Excellent, and Mary, *On the Complexity of the Block Low-Rank Multifrontal Factorization*, SIAM J. Sci. Comput. (2017).

From dense to sparse: nested dissection

From dense to sparse: nested dissection

Proceed recursively to compute separator tree

Factorizing a sparse matrix amounts to factorizing a sequence of dense matrices ⇒ sparse complexity is directly derived from dense one

Nested dissection complexity formulas

2D:
$$C_{sparse} = \sum_{\ell=0}^{\log N} 4^{\ell} C_{dense}(\frac{N}{2^{\ell}})$$

Nested dissection complexity formulas

2D:
$$C_{sparse} = \sum_{\ell=0}^{\log N} 4^{\ell} C_{dense}(\frac{N}{2^{\ell}})$$

3D: $C_{sparse} = \sum_{\ell=0}^{\log N} 8^{\ell} C_{dense}(\frac{N^2}{4^{\ell}})$

Nested dissection complexity formulas

$$\begin{aligned} \textbf{2D:} \quad \mathcal{C}_{sparse} &= \sum_{\ell=0}^{\log N} 4^{\ell} \mathcal{C}_{dense}(\frac{N}{2^{\ell}}) \quad \rightarrow \text{ common ratio } 2^{2-\alpha} \\ \textbf{3D:} \quad \mathcal{C}_{sparse} &= \sum_{\ell=0}^{\log N} 8^{\ell} \mathcal{C}_{dense}(\frac{N^2}{4^{\ell}}) \quad \rightarrow \text{ common ratio } 2^{3-2\alpha} \\ & \frac{\text{Assume } \mathcal{C}_{dense} = O(m^{\alpha}). \text{ Then:}}{2D \qquad 3D} \\ \hline \frac{\mathcal{C}_{sparse}(n)}{\alpha > 2 \quad O(n^{\alpha/2})} & \alpha > 1.5 \quad O(n^{2\alpha/3}) \\ \alpha &= 1.5 \quad O(n \log n) \\ \alpha &< 2 \quad O(n) \qquad \alpha < 1.5 \quad O(n) \end{aligned}$$

		storage	flops			
dense	FR BLR	$O(m^2) O(m^{3/2})$	$O(m^3)$ $O(m^2)$			
sparse 2D	FR BLR	$\frac{O(n\log n)}{O(n)}$	$\frac{O(n^{3/2})}{O(n\log n)}$			
sparse 3D	FR BLR	$\frac{O(n^{4/3})}{O(n\log n)}$	$O(n^2) \\ O(n^{4/3})$			
(assuming $r = O(1)$)						

- Significant asymptotic complexity reduction compared to FR
- Almost optimal for sparse 2D problems!!
- Still superlinear in 3D
Experimental complexity fit: Poisson ($\varepsilon = 10^{-10}$)

• Good agreement with theoretical complexity:

- Storage: $O(n \log n) \rightarrow O(n^{1.1} \log n)$
- Flops: $O(n^{4/3}) \rightarrow O(n^{1.3})$

Parallelism

Shared-memory performance analysis

Matrix S3 Double complex (z) symmetric Electromagnetics application (CSEM) 3.3 millions unknowns Required accuracy: $\varepsilon = 10^{-7}$

	flops ($ imes 10^{12}$)	time (1 core)	time (24 cores)
FR	78.0	7390	509
BLR	10.2	2242	309
ratio	7.7	3.3	1.7

7.7 gain in flops only translated to a **1.7** gain in time: Can we do better?

Block Low-Rank Matrices

Node parallelism approach based on OpenMP loops

Node parallelism approach based on OpenMP loops

- Node parallelism approach based on OpenMP loops
- Node+tree parallelism approach based on Sid-Lakhdar's PhD

L'Excellent and Sid-Lakhdar, A study of shared-memory parallelism in a multifrontal solver, Parallel Computing (2014).

- Node parallelism approach based on OpenMP loops
- Node+tree parallelism approach based on Sid-Lakhdar's PhD
 L'Excellent and Sid-Lakhdar, A study of shared-memory parallelism in a multifrontal solver, Parallel Computing (2014).
- In FR, top of the tree is dominant \Rightarrow tree MT brings little gain

- Node parallelism approach based on OpenMP loops
- Node+tree parallelism approach based on Sid-Lakhdar's PhD
 L'Excellent and Sid-Lakhdar, A study of shared-memory parallelism in a multifrontal solver, Parallel Computing (2014).
- In FR, top of the tree is dominant \Rightarrow tree MT brings little gain
- In BLR, bottom of the tree compresses less, becomes important

- Node parallelism approach based on OpenMP loops
- Node+tree parallelism approach based on Sid-Lakhdar's PhD
 L'Excellent and Sid-Lakhdar, A study of shared-memory parallelism in a multifrontal solver, Parallel Computing (2014).
- In FR, top of the tree is dominant \Rightarrow tree MT brings little gain
- In BLR, bottom of the tree compresses less, becomes important
- \Rightarrow 1.7 gain becomes 1.9 thanks to tree-based multithreading

	FR time		BLR time	
	RL	LL	RL	LL
Update	338	336	110	67
Total	424	421	221	175

	FR time		BLR time	
	RL	LL	RL	LL
Update	338	336	110	67
Total	424	421	221	175

	FR time		BLR time	
	RL	LL	RL	LL
Update	338	336	110	67
Total	424	421	221	175

 \Rightarrow Lower volume of memory transfers in LL (more critical in MT)

Block Low-Rank Matrices

	FR 1	ime	BLR	time
	RL	LL	RL	LL
Update	338	336	110	67
Total	424	421	221	175

⇒ Lower volume of memory transfers in LL (more critical in MT) Update is now less memory-bound: **1.9** gain becomes **2.4** in LL Block Low-Rank Matrices Theo Mary

		FSCU	
flops ($ imes 10^{12}$)	Outer Product Total	3.8 10.2	
time (s)	Outer Product Total	21 175	

		FSCU	
flops ($ imes 10^{12}$)	Outer Product Total	3.8 10.2	
time (s)	Outer Product Total	21 175	

		FSCU	
flops ($ imes 10^{12}$)	Outer Product Total	3.8 10.2	
time (s)	Outer Product Total	21 175	

		FSCU	
flops ($ imes 10^{12}$)	Outer Product Total	3.8 10.2	
time (s)	Outer Product Total	21 175	

		FSCU	
flops ($ imes 10^{12}$)	Outer Product Total	3.8 10.2	
time (s)	Outer Product Total	21 175	

		FSCU	
flops ($ imes 10^{12}$)	Outer Product Total	3.8 10.2	
time (s)	Outer Product Total	21 175	

		FSCU	
flops ($ imes 10^{12}$)	Outer Product Total	3.8 10.2	
time (s)	Outer Product Total	21 175	

		FSCU	
flops ($ imes 10^{12}$)	Outer Product Total	3.8 10.2	
time (s)	Outer Product Total	21 175	

- FSCU (Factor, Solve, Compress, Update)
- FSCU+LUAR

		FSCU	
flops ($\times 10^{12}$)	Outer Product Total	3.8 10.2	
time (s)	Outer Product Total	21 175	

- FSCU (Factor, Solve, Compress, Update)
- FSCU+LUAR
 - Better granularity in Update operations

		FSCU	+LUA	
flops ($\times 10^{12}$)	Outer Product Total	3.8 10.2	3.8 10.2	
time (s)	Outer Product Total	21 175	14 167	

- FSCU (Factor, Solve, Compress, Update)
- FSCU+LUAR
 - Better granularity in Update operations
 - Potential recompression

		FSCU	+LUA	
flops ($\times 10^{12}$)	Outer Product Total	3.8 10.2	3.8 10.2	
time (s)	Outer Product Total	21 175	14 167	

- FSCU (Factor, Solve, Compress, Update)
- FSCU+LUAR
 - Better granularity in Update operations
 - Potential recompression

		FSCU	+LUA	+LUAR
flops ($\times 10^{12}$)	Outer Product	3.8	3.8	1.6
	Total	10.2	10.2	8.1
time (s)	Outer Product	21	14	6
	Total	175	167	160

- FSCU (Factor, Solve, Compress, Update)
- FSCU+LUAR
 - Better granularity in Update operations
 - Potential recompression

		FSCU	+LUA	+LUAR
flops ($ imes 10^{12}$)	Outer Product	3.8	3.8	1.6
	Total	10.2	10.2	8.1
time (s)	Outer Product	21	14	6
	Total	175	167	160

Theo Mary

- FSCU (Factor, Solve, Compress, Update)
- FSCU+LUAR
- FCSU(+LUAR)

- FSCU (Factor, Solve, Compress, Update)
- FSCU+LUAR
- FCSU(+LUAR)
 - Restricted pivoting

- FSCU (Factor, Solve, Compress, Update)
- FSCU+LUAR
- FCSU(+LUAR)
 - Restricted pivoting

- FSCU (Factor, Solve, Compress, Update)
- FSCU+LUAR
- FCSU(+LUAR)
 - Restricted pivoting
 - Low-rank Solve \Rightarrow flop reduction

- FSCU (Factor, Solve, Compress, Update)
- FSCU+LUAR
- FCSU(+LUAR)
 - Restricted pivoting
 - Low-rank Solve \Rightarrow flop reduction

		flops (TF)	time (s)	residual
2.6 gain becomes 3.7	FSCU FCSU	8.1 4.0	160 111	1.5e-09 2.7e-09

Block Low-Rank Matrices

Multicore performance results (24 threads)

- "BLR": FSCU, right-looking, node only multithreading
- "BLR+": FCSU+LUAR, left-looking, node+tree multithreading

 Amestoy, Buttari, L'Excellent, and Mary, Performance and Scalability of the Block Low-Rank Multifrontal Factorization on Multicore Architectures, ACM Trans. Math.
 Soft. (2018). Block Low-Rank Matrices Theo Mary

Comparison with HSS Matrices

Experimental Setting

- Experiments are done on the cori supercomputer of NERSC
- We compare
 - the MUMPS solver based on BLR
 - the STRUMPACK solver (LBNL) based on HSS
- Test problems come from several real-life applications: Seismic (5Hz), Electromagnetism (S3), Structural (perf008d, Geo_1438, Hook_1498, ML_Geer, Serena, Transport), CFD (atmosmodd, PFlow_742), MHD (A22, A30), Optimization (nlpkkt80), and Graph (cage13)
- We test 7 tolerance values (from 9e-1 to 1e-6) and FR, and compare the time for factorization + solve with:
 - 1 step of iterative refinement in FR
 - $\circ\,$ GMRES iterative solver in LR with required accuracy of 10^{-6} and restart of 30

\Rightarrow very similar FR performance

Block Low-Rank Matrices

Optimal tolerance choice

	BLR	HSS
A22	1e-5	FR
A30	1e-4	FR
atmosmodd	1e-4	9e-1
cage13	1e-1	9e-1
Geo_1438	1e-4	FR
Hook_1498	1e-5	FR
ML_Geer	1e-6	FR
nlpkkt80	1e-5	5e-1
PFlow_742	1e-6	FR
Serena	1e-4	1e-1
spe10-aniso	1e-5	FR
Transport	1e-5	FR
When high accuracy is needed...

spe10-aniso matrix

- No convergence except for low tolerances ⇒ direct solver mode is needed
- BLR is better suited as HSS rank is too high

When preconditioning works well...

cage13 matrix

- Fast convergence even for high tolerance ⇒ preconditioner mode is better suited
- As the size grows, HSS will gain the upper hand

The middle ground

atmosmodd matrix

- Find compromise between accuracy and compression
- In general, BLR favors direct solver while HSS favors preconditioner mode
- ⇒ Performance comparison will depend on numerical difficulty and size of the problem Block Low-Rank Matrices

Optimal tolerance choice

	BLR	HSS
A22	1e-5	FR
A30	1e-4	FR
atmosmodd	1e-4	9e-1
cage13	1e-1	9e-1
Geo_1438	1e-4	FR
Hook_1498	1e-5	FR
ML_Geer	1e-6	FR
nlpkkt80	1e-5	5e-1
PFlow_742	1e-6	FR
Serena	1e-4	1e-1
spe10-aniso	1e-5	FR
Transport	1e-5	FR

These results seem to suggest the following trend:

difficulty

Ongoing work on BLR preconditioners

N. J. Higham and T. Mary, A New Preconditioner that Exploits Low-Rank Approximations to Factorization Error, MIMS EPrint 2018.10.

BLR threshold = 10^{-2} , iterate until converged to accuracy 10^{-9} Recent work with N. Higham to improve factorization-based preconditioners

Matrix	n	Standard		Improved	
		lter.	Time	lter.	Time
audikw_1	1.0M	691	1163	331	625
Bump_2911	2.9M	-	-	284	1708
Emilia_923	0.9M	174	304	136	267
Fault_639	0.6M	-	-	294	345
Ga41As41H72	0.3M	_	_	135	143
Hook_1498	1.5M	417	902	356	808
Si87H76	0.2M	—	-	131	116

Good potential to improve low-precision, low-memory BLR solvers

The MBLR Format

parallelism

BLR is a compromise between complexity and performance

Block Low-Rank Matrices

BLR is a compromise between complexity and performance Can we find an even better compromise?

BLR is a compromise between complexity and performance Can we find an even better compromise?

Multilevel BLR (MBLR)

BLR is a compromise between complexity and performance Can we find an even better compromise?

Multilevel BLR (MBLR): one format to englobe them all?

Key motivation: $C_{dense} < O(m^2)$ (2D) or $O(m^{3/2})$ (3D) is enough to get O(n) sparse complexity!

- 2D flop and 3D storage complexity: just a little improvement needed
- 3D flop complexity: still a large gap between BLR and ${\cal H}$

We propose a multilevel BLR format to bridge the gap

Block Low-Rank Matrices

Complexity of the two-level BLR format

Assume all off-diagonal blocks are low-rank. Then:

Storage = $cost_{LR} * nb_{LR} + cost_{BLR} * nb_{BLR}$ = $O(br) * O((\frac{m}{b})^2) + O(b^{3/2}r^{1/2}) * O(\frac{m}{b})$ = $O(m^2r/b + m(br)^{1/2})$ = $O(m^{4/3}r^{2/3})$ for $b = (m^2r)^{1/3}$

Complexity of the two-level BLR format

Assume all off-diagonal blocks are low-rank. Then:

Storage = $cost_{LR} * nb_{LR} + cost_{BLR} * nb_{BLR}$ = $O(br) * O((\frac{m}{b})^2) + O(b^{3/2}r^{1/2}) * O(\frac{m}{b})$ = $O(m^2r/b + m(br)^{1/2})$ = $O(m^{4/3}r^{2/3})$ for $b = (m^2r)^{1/3}$

Similarly, we can prove: $FlopLU = \mathbf{O}(\mathbf{m}^{5/3}\mathbf{r}^{4/3})$ for $b = (m^2 r)^{1/3}$

Result holds if a constant number of off-diag. blocks is BLR.

Complexity of the two-level BLR format

Assume all off-diagonal blocks are low-rank. Then:

Storage = $cost_{LR} * nb_{LR} + cost_{BLR} * nb_{BLR}$ = $O(br) * O((\frac{m}{b})^2) + O(b^{3/2}r^{1/2}) * O(\frac{m}{b})$ = $O(m^2r/b + m(br)^{1/2})$ = $O(m^{4/3}r^{2/3})$ for $b = (m^2r)^{1/3}$

Similarly, we can prove: $FlopLU = \mathbf{O}(\mathbf{m}^{5/3}\mathbf{r}^{4/3})$ for $b = (m^2 r)^{1/3}$

Result holds if a constant number of off-diag. blocks is BLR.

Multilevel BLR complexity

Main result

For $b = m^{\ell/(\ell+1)} r^{1/(\ell+1)}$, the ℓ -level complexities are:

Storage = $O(m^{(\ell+2)/(\ell+1)}r^{\ell/(\ell+1)})$ FlopLU = $O(m^{(\ell+3)/(\ell+1)}r^{2\ell/(\ell+1)})$

Amestoy, Buttari, L'Excellent, and Mary, *Bridging the gap between flat and hierarchical low-rank matrix formats: the multilevel BLR format*, submitted (2018).

- Simple way to finely control the desired complexity
- Block size $b \propto O(m^{\ell/(\ell+1)}) \ll O(m)$ \Rightarrow may be efficiently processed in shared-memory
- Number of blocks per row/column $\propto O(m^{1/(\ell+1)}) \gg O(1)$ \Rightarrow flexibility to distribute data in parallel

Influence of the number of levels ℓ

• If r = O(1), can achieve O(n) storage complexity with only two levels and $O(n \log n)$ flop complexity with three levels

Influence of the number of levels ℓ

- If r = O(1), can achieve O(n) storage complexity with only two levels and $O(n \log n)$ flop complexity with three levels
- For higher ranks, optimal sparse complexity is not attainable with constant l but improvement rate is rapidly decreasing: the first few levels achieve most of the asymptotic gain

Numerical experiments (Poisson)

- Experimental complexity in relatively good agreement with theoretical one
- Asymptotic gain decreases with levels

Error analysis

Why we need an error analysis

BLR builds an approximate factorization $\mathbf{A}_{\varepsilon} = \mathbf{L}_{\varepsilon} \mathbf{U}_{\varepsilon}$ The BLR threshold ε is controlled by the user **BUT** the user does not know how to choose ε !

Each off-diagonal block *B* is approximated by a low-rank matrix \widetilde{B} such that $||B - \widetilde{B}|| \le \varepsilon$

 $||A - L_{\varepsilon}U_{\varepsilon}|| \neq \varepsilon$ because of error propagation \Rightarrow What is the overall accuracy $||A - L_{\varepsilon}U_{\varepsilon}||$?

- Can we prove that $||A L_{\varepsilon}U_{\varepsilon}|| = O(\varepsilon)$?
- What is the error growth, i.e., how does the error depend on the matrix size *m*?
- How do the different variants (FCSU, LUAR, etc.) compare?
- Should we use an absolute threshold $(||B \widetilde{B}|| \le \varepsilon)$ or a relative one $(||B \widetilde{B}|| \le \varepsilon ||B||)$? 1 Block Low-Rank Matrices Theo Mary

40/51

Theorem

The FSCU factorization of a matrix of order m with block size b and absolute threshold ε produces an error equal to

$$\|A - L_{\varepsilon}U_{\varepsilon}\| = \sqrt{\frac{m}{b}}\varepsilon\|L\|\|U\| + O(u\varepsilon).$$

- $||L|| ||U|| \le \rho_m ||A||$ where ρ_m is the growth factor; with partial pivoting, ρ_m is typically small \Rightarrow BLR factorization is stable!
- Error growth behaves as $\sqrt{m/b} = O(m^{1/4}) \Rightarrow$ very slow growth!
- Factorization variants only change the O(uε) term ⇒ no significant difference!
- $\sqrt{m/b}$ term can be dropped using relative threshold, but compression rate is also lower

Experimental results

matrix	$\varepsilon = 10^{-4}$		$\varepsilon = 10^{-8}$		$\varepsilon = 10^{-12}$	
	error	bound	error	bound	error	bound
pwtk	7.7e-05	$3.4e{-}04$	7.3e-09	$3.4e{-}08$	$5.1e{-13}$	$3.4e{-}12$
cfd2	2.3 e - 04	$2.7 e{-}04$	2.3e-08	$2.7 e{-}08$	1.9e-12	$2.7 e{-}12$
2cubes_sphere	$9.3 e{-}05$	$1.3 e{-}04$	9.9e-09	$1.3 e{-}08$	1.2e-12	$1.3 e{-}12$
af_shell3	$1.4 e{-}04$	$2.0 e{-}04$	1.7e-08	$2.0 e{-}08$	1.7e-12	$2.0 e{-}12$
audikw_1	$2.8e{-}04$	4.3 e - 04	1.6e-08	$4.3 e{-}08$	1.2e-12	$4.3 e{-}12$
cfd2	2.3 e - 04	$2.7 e{-}04$	2.3e-08	$2.7 e{-}08$	1.9e-12	$2.7 e{-}12$
Dubcova3	$2.0e{-}04$	$1.5 e{-}04$	2.3e-08	$1.5 e{-}08$	2.4e-12	$1.5 e{-}12$
Fault_639	$1.6e{-}05$	$2.4 e{-}03$	$3.3e{-}09$	$2.4 e{-}07$	6.6e-13	$2.4 \mathrm{e}{-11}$
hood	$1.6e{-}05$	$8.5 e{-}04$	1.7e-09	$8.5 e{-}08$	1.6e-13	$8.5 e{-}12$
nasasrb	8.7e - 05	$5.3 e{-}04$	5.4e-09	$5.3 e{-}08$	5.7e-13	$5.3 e{-}12$
nd24k	1.1e-04	$6.8e{-}04$	1.5e-08	$6.8e{-}08$	1.1e-12	$6.8e{-}12$
oilpan	5.7e - 06	$2.8e{-}03$	1.2e-09	$2.8e{-}07$	5.3e-14	$2.8 e{-11}$
pwtk	7.7e - 05	$3.4 e{-}04$	7.3e-09	$3.4 e{-}08$	5.1e-13	$3.4 e{-}12$
shallow_water1	9.3 e - 07	$1.1 e{-}04$	3.4e-09	$1.1e{-}08$	6.2e-14	$1.1e{-}12$
ship_003	$5.4 e{-}05$	$3.2 e{-}04$	6.0e-09	$3.2e{-}08$	6.1e-13	$3.2e{-}12$
thermomech_dM	5.5e-06	$1.1e{-}04$	1.6e-09	$1.1e{-}08$	3.7e-14	$1.1e{-}12$
x104	$2.0e{-}05$	$1.1 e{-}03$	2.6e-09	$1.1e{-}07$	2.1e-13	$1.1e{-11}$

Measured error matches bound

Block Low-Rank Matrices

Open questions

- Choice of scaling strategy
- Error analysis of BLR solution phase and its use in conjunction of iterative refinement
- Pivoting strategies for the BLR factorization
- Error analysis of multilevel BLR factorization
- Probabilistic error analysis: in the standard LU case, the deterministic bound

$$|A - LU| \le \gamma_n |L| |U| = O(nu) |L| |U|$$

is known to be pessimistic. In recent work, we have shown that

$$|A - LU| \le \widetilde{\gamma}_n |L| |U| = O(\sqrt{n}u) |L| |U|$$

holds with high probability assuming rounding errors are random. Can we apply this to BLR factorizations?

Fast BLR Matrix Arithmetic

• Standard $O(m^3)$ matrix multiplication algorithm is not optimal: $O(m^{\omega})$ can be achieved, with $2 \le \omega \le \omega_0 = \log_2 7 \approx 2.81$.

- Standard $O(m^3)$ matrix multiplication algorithm is not optimal: $O(m^{\omega})$ can be achieved, with $2 \le \omega \le \omega_0 = \log_2 7 \approx 2.81$.
- Reminder: given a $O(m^{\omega})$ matrix multiplication algorithm, the LU factorization has the same complexity

- Standard $O(m^3)$ matrix multiplication algorithm is not optimal: $O(m^{\omega})$ can be achieved, with $2 \le \omega \le \omega_0 = \log_2 7 \approx 2.81$.
- Reminder: given a $O(m^{\omega})$ matrix multiplication algorithm, the LU factorization has the same complexity
- Example: Strassen's algorithm achieves $O(m^{\omega_0})$ complexity

$$\begin{pmatrix} C_{11} & C_{12} \\ C_{21} & C_{22} \end{pmatrix} = \begin{pmatrix} A_{11} & A_{12} \\ A_{21} & A_{22} \end{pmatrix} \begin{pmatrix} B_{11} & B_{12} \\ B_{21} & B_{22} \end{pmatrix}$$

$$M_{1} = (A_{11} + A_{22})(B_{11} + B_{22}),$$

$$M_{2} = (A_{21} + A_{22})B_{11},$$

$$M_{3} = A_{11}(B_{12} - B_{22}),$$

$$M_{4} = A_{22}(B_{21} - B_{11}),$$

$$M_{5} = (A_{11} + A_{12})B_{22},$$

$$M_{6} = (A_{21} - A_{11})(B_{11} + B_{12}),$$

$$M_{7} = (A_{12} - A_{22})(B_{21} + B_{22}),$$

$$\begin{pmatrix} A_{11} & A_{12} \\ A_{21} & A_{22} \end{pmatrix} \begin{pmatrix} B_{11} & B_{12} \\ B_{21} & B_{22} \end{pmatrix}$$

$$C_{11} = M_{1} + M_{4} - M_{5} + M_{7},$$

$$C_{12} = M_{3} + M_{5},$$

$$C_{21} = M_{2} + M_{4},$$

$$C_{22} = M_{1} - M_{2} + M_{3} + M_{6}.$$

- Standard $O(m^3)$ matrix multiplication algorithm is not optimal: $O(m^{\omega})$ can be achieved, with $2 \le \omega \le \omega_0 = \log_2 7 \approx 2.81$.
- Reminder: given a $O(m^{\omega})$ matrix multiplication algorithm, the LU factorization has the same complexity
- Example: Strassen's algorithm achieves $O(m^{\omega_0})$ complexity

$$\begin{pmatrix} C_{11} & C_{12} \\ C_{21} & C_{22} \end{pmatrix} = \begin{pmatrix} A_{11} & A_{12} \\ A_{21} & A_{22} \end{pmatrix} \begin{pmatrix} B_{11} & B_{12} \\ B_{21} & B_{22} \end{pmatrix}$$

$$M_{1} = (A_{11} + A_{22})(B_{11} + B_{22}),$$

$$M_{2} = (A_{21} + A_{22})B_{11},$$

$$M_{3} = A_{11}(B_{12} - B_{22}),$$

$$M_{4} = A_{22}(B_{21} - B_{11}),$$

$$M_{5} = (A_{11} + A_{12})B_{22},$$

$$M_{6} = (A_{21} - A_{11})(B_{11} + B_{12}),$$

$$M_{7} = (A_{12} - A_{22})(B_{21} + B_{22}).$$

$$M_{6} = (A_{12} - A_{22})(B_{21} + B_{22}).$$

$$M_{7} = (A_{12} - A_{22})(B_{21} + B_{22}).$$

• Question: can we use fast matrix arithmetic to improve the $O(m^2 r)$ BLR complexity?

45/51

Formalism

- We model a BLR matrix A as $A = S_A + E_A$, where S_A consists of the FR blocks and E_A of the LR ones
- Then, $AB = (S_A + E_A)(S_B + E_B) = S_A S_B + S_A E_B + S_B E_A + E_A E_B$
- $S_A S_B$ product: O(p) FR-FR products

 $O(pb^3) \rightarrow O(pb^{\omega}) \Rightarrow$ good enough

• Not so straighforward for the other three products!

Block Low-Rank Matrices

First naive approach

 $S_A E_B$ product: $O(p^2)$ FR-LR products

Problem: fast matrix multiplication works on square matrices

 $O(p^2) \times O(b^2 r) \rightarrow O(p^2) \times O(b^2 r^{\omega-1}) = O(m^2 r^{\omega-1})$ \Rightarrow no asymptotic reduction in *m*, only in *r*

Since $m \gg r$, this is not a satisfying result \Rightarrow can we do better?

Second approach based on accumulation

$$\begin{split} O(p^2) \times O(b^2 r) &\to O(p) \times O(b^2 p r) \\ &\to O(p) \times O(\max((pr)^{\omega-2}b^2, prb^{\omega-1})) \end{split}$$

 \Rightarrow find new optimal *b* that equilibrates cost($S_A E_B$) and cost($E_A E_B$)

Theorem

With this approach, the complexity of the BLR factorization becomes $O(m^{(3\omega-1)/(\omega+1)}r^{(\omega-1)^2/(\omega+1)}).$

 $\Rightarrow \approx O(m^{1.95}r^{0.86})$ for $\omega = \omega_0$ and $O(m^{5/3}r^{1/3})$ for $\omega = 2$

 \Rightarrow asymptotic gain in *m*... but still not optimal (lower bound is given by size(*A*) = *O*($m^{3/2}r^{1/2}$))

Third approach based on Strassen's algorithm

Key idea: use Strassen's algorithm on the entire BLR matrix

$$\begin{pmatrix} C_{11} & C_{12} \\ C_{21} & C_{22} \end{pmatrix} = \begin{pmatrix} A_{11} & A_{12} \\ A_{21} & A_{22} \end{pmatrix} \begin{pmatrix} B_{11} & B_{12} \\ B_{21} & B_{22} \end{pmatrix}$$
$$M_1 = (A_{11} + A_{22})(B_{11} + B_{22}), \qquad C_{11} = M_1 + M_4 - M_5 + M_7,$$
$$\vdots \qquad \vdots \qquad \vdots$$
$$M_7 = (A_{12} - A_{22})(B_{21} + B_{22}), \qquad C_{22} = M_1 - M_2 + M_3 + M_6.$$

 \Rightarrow Requires the stronger assumption that each M_i is BLR

Theorem

With this approach, the complexity of the BLR factorization becomes

$$O(m^{(\omega\omega_0-1)/(\omega+\omega_0-2)}r^{(\omega-1)^2/(\omega+\omega_0-2)}).$$

$$\Rightarrow \approx O(\mathbf{m}^{1.90}r^{0.90})$$
 for $\omega = \omega_0$ and $\approx O(\mathbf{m}^{1.64}r^{0.36})$ for $\omega = 2$

Can we generalize this result to algorithms other than Strassen's? Replacing ω_0 by $\omega \to O(m^{(\omega+1)/2}r^{(\omega-1)/2})$ achieves lower bound for $\omega = 2$ Block Low-Rank Matrices
Conclusion

Summary

Main results

- BLR dense factorization achieves $O(m^2r)$ complexity
- We must rethink our algorithms to convert this theoretical reduction into actual time gains
- Good compromise between complexity and performance compared to hierarchical formats

Recent advances

- Multilevel extension can achieve an even better compromise
- Error analysis provides both theoretical guarantees and new insights
- Ongoing work on fast BLR matrix arithmetic

Slides and papers available here

http://personalpages.manchester.ac.uk/staff/theo.mary/