Block Low-Rank Matrices: Main Results and Recent Advances

Theo Mary
University of Manchester, School of Mathematics
Grenoble, 5 July 2018

Context

Linear system $A x=b$
Often a keystone in scientific computing applications (discretization of PDEs, step of an optimization method, ...)

Matrix sparsity
A sparse matrix is "any matrix with enough zeros that it pays to take advantage of them" (Wilkinson)

Large-scale systems
Increasingly faster computers available, need to efficiently make use of them

Iterative vs direct methods

Iterative methods

Build sequence x_{k} converging towards x
© Computational cost: $\mathcal{O}(n)$ operations/iteration and memory
(+) Convergence is application-dependent

Direct methods

Factorize $A=L U$ and solve $L U x=b$
(-) Numerically reliable
© Computational cost: $\mathcal{O}\left(n^{2}\right)$ operations, $\mathcal{O}\left(n^{4 / 3}\right)$ memory Practical example on a 1000^{3} 27-point Helmholtz problem: 15 ExaFlops and 209 TeraBytes for factors!

Iterative vs direct methods

\square
Build sequence x_{k} converging towards x
Computational cost: $O(n)$ operations/iteration and memory
Convergence is application-dependent

Direct methods

Factorize $A=L U$ and solve $L U x=b$
(3) Numerically reliable
() Computational cost: $\mathcal{O}\left(n^{2}\right)$ operations, $\mathcal{O}\left(n^{4 / 3}\right)$ memory Practical example on a 1000^{3} 27-point Helmholtz problem: 15 ExaFlops and 209 TeraBytes for factors!

Our objective:

reduce the cost of sparse direct solverswhile maintaining their numerical reliability

Low-rank matrices

Take a dense matrix B of size $b \times b$ and compute its SVD $B=X S Y$:

Low-rank matrices

Take a dense matrix B of size $b \times b$ and compute its SVD $B=X S Y$:

$k=\min \left\{k \leq b ; \sigma_{k+1} \leq \varepsilon\right\}$ is the numerical rank at accuracy ε

Low-rank matrices

Take a dense matrix B of size $b \times b$ and compute its SVD $B=X S Y$:

S

$k=\min \left\{k \leq b ; \sigma_{k+1} \leq \varepsilon\right\}$ is the numerical rank at accuracy ε $\tilde{B}=X_{1} S_{1} Y_{1}$ is a low-rank approximation to $B:\|B-\tilde{B}\|_{2} \leq \varepsilon$

Low-rank matrices

Take a dense matrix B of size $b \times b$ and compute its SVD $B=X S Y$:

$k=\min \left\{k \leq b ; \sigma_{k+1} \leq \varepsilon\right\}$ is the numerical rank at accuracy ε
$\tilde{B}=X_{1} S_{1} Y_{1}$ is a low-rank approximation to $B:\|B-\tilde{B}\|_{2} \leq \varepsilon$
Storage savings: $b^{2} / 2 b k=b / 2 k$
Similar flops savings when used in most linear algebra kernels

Low-rank blocks

Most matrices are not low-rank in general but in some applications they exhibit low-rank blocks

A block B represents the interaction between two subdomains σ and τ.
Small diameter and far away \Rightarrow low numerical rank.

Low-rank blocks

Most matrices are not low-rank in general but in some applications they exhibit low-rank blocks

A block B represents the interaction between two subdomains σ and τ. Small diameter and far away \Rightarrow low numerical rank.

How to choose a good block partitioning of the matrix?

\mathcal{H} and BLR matrices

\mathcal{H}-matrix

- Nearly linear complexity
- Complex, hierarchical structure

\mathcal{H} and BLR matrices

\mathcal{H}-matrix

- Nearly linear complexity
- Complex, hierarchical structure

BLR matrix

- Superlinear complexity
- Simple, flat structure

\mathcal{H} and BLR matrices

\mathcal{H}-matrix

- Nearly linear complexity
- Complex, hierarchical structure

BLR matrix

- Superlinear complexity
- Simple, flat structure

BLR is a comprise between complexity and performance:

- Small blocks \Rightarrow can fit on single shared-memory node
- No global order between blocks \Rightarrow flexible data distribution
- Easy to handle numerical pivoting

Standard BLR factorization: FSCU

- FSCU

Standard BLR factorization: FSCU

- FSCU (Factor,
- Easy to handle numerical pivoting, a critical feature often lacking in other low-rank solvers

Standard BLR factorization: FSCU

- FSCU (Factor, Solve,
- Easy to handle numerical pivoting, a critical feature often lacking in other low-rank solvers

Standard BLR factorization: FSCU

- FSCU (Factor, Solve, Compress,
- Easy to handle numerical pivoting, a critical feature often lacking in other low-rank solvers

Standard BLR factorization: FSCU

- FSCU (Factor, Solve, Compress, Update)
- Easy to handle numerical pivoting, a critical feature often lacking in other low-rank solvers

Standard BLR factorization: FSCU

- FSCU (Factor, Solve, Compress, Update)
- Easy to handle numerical pivoting, a critical feature often lacking in other low-rank solvers

Standard BLR factorization: FSCU

- FSCU (Factor, Solve, Compress, Update)
- Easy to handle numerical pivoting, a critical feature often lacking in other low-rank solvers

Standard BLR factorization: FSCU

- FSCU (Factor, Solve, Compress, Update)
- Easy to handle numerical pivoting, a critical feature often lacking in other low-rank solvers

Standard BLR factorization: FSCU

- FSCU (Factor, Solve, Compress, Update)
- Easy to handle numerical pivoting, a critical feature often lacking in other low-rank solvers

Standard BLR factorization: FSCU

- FSCU (Factor, Solve, Compress, Update)
- Easy to handle numerical pivoting, a critical feature often lacking in other low-rank solvers
- Potential of this variant was studied in
\square Amestoy, Ashcraft, Boiteau, Buttari, L'Excellent, and Weisbecker, Improving Multifrontal Methods by Means of Block Low-Rank Representations, SIAM J. Sci. Comput. (2015).

Outline

1. Complexity
\Rightarrow Joint work with P. Amestoy, A. Buttari, J.-Y. L'Excellent
2. Parallelism
\Rightarrow Joint work with PA, AB, JYL
3. Comparison with HSS
\Rightarrow Joint work with PA, AB, JYL, P. Ghysels, X. S. Li, F.-H. Rouet
4. Multilevel BLR Matrices
\Rightarrow Joint work with PA, AB, JYL
5. Error Analysis
\Rightarrow Joint work with N. Higham
6. Fast BLR Matrix Arithmetic
\Rightarrow Ongoing work

Complexity

Computing the BLR complexity

Assume all off-diagonal blocks are low-rank. Then:

$$
\left.\begin{array}{rl}
\text { Storage } & =\operatorname{cost}_{L R} * n b_{L R}+\operatorname{cost}_{F R} * n b_{F R} \\
& =O(b r) * O\left(\left(\frac{m}{b}\right)^{2}\right)+O\left(b^{2}\right) * O\left(\frac{m}{b}\right) \\
& =O\left(m^{2} r / b+m b\right) \\
& =O\left(m^{3 / 2} \mathbf{r}\right. \\
\mathbf{r}
\end{array}\right) \text { for } b=(m r)^{1 / 2} .
$$

Computing the BLR complexity

Assume all off-diagonal blocks are low-rank. Then:

$$
\begin{aligned}
\text { Storage } & =\operatorname{cost}_{L R} * n b_{L R}+\operatorname{cost}_{F R} * n b_{F R} \\
& =O(b r) * O\left(\left(\frac{m}{b}\right)^{2}\right)+O\left(b^{2}\right) * O\left(\frac{m}{b}\right) \\
& =O\left(m^{2} r / b+m b\right) \\
& =O\left(m^{3 / 2} \mathbf{r}^{1 / 2}\right) \text { for } b=(m r)^{1 / 2}
\end{aligned}
$$

FlopLU $=\operatorname{cost}_{\text {getrf }} * n b_{\text {getrf }}+$ cost trsm $* n b_{\text {trsm }}+\operatorname{costgemm} * n b_{\text {gemm }}$

$$
\begin{aligned}
& =O\left(b^{3}\right) * O\left(\frac{m}{b}\right)+O\left(b^{2} r\right) * O\left(\left(\frac{m}{b}\right)^{2}\right)+O\left(b r^{2}\right) * O\left(\left(\frac{m}{b}\right)^{3}\right) \\
& =O\left(m b^{2}+m^{2} r+m^{3} r^{2} / b^{2}\right) \\
& =O\left(m^{2} \mathbf{r}\right) \text { for } b=(m r)^{1 / 2}
\end{aligned}
$$

Computing the BLR complexity

Assume all off-diagonal blocks are low-rank. Then:

$$
\begin{aligned}
\text { Storage } & =\operatorname{cost}_{L R} * n b_{L R}+\operatorname{cost}_{F R} * n b_{F R} \\
& =O(b r) * O\left(\left(\frac{m}{b}\right)^{2}\right)+O\left(b^{2}\right) * O\left(\frac{m}{b}\right) \\
& =O\left(m^{2} r / b+m b\right) \\
& =O\left(m^{3 / 2} \mathbf{r}^{1 / 2}\right) \text { for } b=(m r)^{1 / 2}
\end{aligned}
$$

FlopLU $=$ cost $_{\text {getrf }} * n b_{\text {getrf }}+$ cost trsm $* n b_{\text {trsm }}+$ costgemm $* n b_{\text {gemm }}$

$$
\begin{aligned}
& =O\left(b^{3}\right) * O\left(\frac{m}{b}\right)+O\left(b^{2} r\right) * O\left(\left(\frac{m}{b}\right)^{2}\right)+O\left(b r^{2}\right) * O\left(\left(\frac{m}{b}\right)^{3}\right) \\
& =O\left(m b^{2}+m^{2} r+m^{3} r^{2} / b^{2}\right) \\
& =O\left(\mathbf{m}^{2} \mathbf{r}\right) \text { for } b=(m r)^{1 / 2}
\end{aligned}
$$

Result holds if a constant number of off-diag. blocks is full-rank.
\Rightarrow how to ensure this condition holds?

BLR admissibility condition

BLR-admissibility condition of a partition \mathcal{P}

$$
\mathcal{P} \text { is admissible } \Leftrightarrow \begin{cases}\#\{\sigma, & \sigma \times \tau \in \mathcal{P} \text { is full-rank }\} \leq q \\ \#\{\tau, & \sigma \times \tau \in \mathcal{P} \text { is full-rank }\} \leq q\end{cases}
$$

Non-Admissible

Admissible

BLR-admissibility condition of a partition \mathcal{P}

$$
\mathcal{P} \text { is admissible } \Leftrightarrow \begin{cases}\#\{\sigma, & \sigma \times \tau \in \mathcal{P} \text { is full-rank }\} \leq q \\ \#\{\tau, & \sigma \times \tau \in \mathcal{P} \text { is full-rank }\} \leq q\end{cases}
$$

Non-Admissible

Admissible

Main result

For any matrix, we can build an admissible \mathcal{P} for $q=\mathcal{O}(1)$, s.t. the maximal rank of the admissible blocks of A is $r=\mathcal{O}\left(r_{\max }^{\mathcal{H}}\right)$

Amestoy, Buttari, L'Excellent, and Mary, On the Complexity of the Block Low-Rank Multifrontal Factorization, SIAM J. Sci. Comput. (2017).

From dense to sparse: nested dissection

Proceed recursively to compute separator tree

Factorizing a sparse matrix amounts to factorizing a sequence of dense matrices

$$
\Rightarrow
$$

sparse complexity is directly derived from dense one

Nested dissection complexity formulas

$$
\text { 2D: } \quad \mathcal{C}_{\text {sparse }}=\sum_{\ell=0}^{\log N} 4^{\ell} \mathcal{C}_{\text {dense }}\left(\frac{N}{2^{\ell}}\right)
$$

Nested dissection complexity formulas

$\begin{aligned} \text { 2D: } & \mathcal{C}_{\text {sparse }}=\sum_{\ell=0}^{\log N} 4^{\ell} \mathcal{C}_{\text {dense }}\left(\frac{N}{2^{\ell}}\right) \\ \text { 3D: } & \mathcal{C}_{\text {sparse }}=\sum_{\ell=0}^{\log N} 8^{\ell} \mathcal{C}_{\text {dense }}\left(\frac{N^{2}}{4^{\ell}}\right)\end{aligned}$

Nested dissection complexity formulas

2D: $\quad \mathcal{C}_{\text {sparse }}=\sum_{\ell=0}^{\log N} 4^{\ell} \mathcal{C}_{\text {dense }}\left(\frac{N}{2^{\ell}}\right) \quad \rightarrow$ common ratio $2^{2-\alpha}$
3D: $\quad \mathcal{C}_{\text {sparse }}=\sum_{\ell=0}^{\log N} 8^{\ell} \mathcal{C}_{\text {dense }}\left(\frac{N^{2}}{4^{\ell}}\right) \quad \rightarrow$ common ratio $2^{3-2 \alpha}$

Assume $\mathcal{C}_{\text {dense }}=O\left(m^{\alpha}\right)$. Then:				
2D			3D	
$\mathcal{C}_{\text {sparse }}(n)$				
2	$O\left(n^{\alpha / 2}\right)$	$\alpha>1.5$	$O\left(n^{2 \alpha / 3}\right)$	
$\alpha=2$	$O(n \log n)$	$\alpha=1.5$	$O(n \log n)$	
$\alpha<2$	$O(n)$	$\alpha<1.5$	$O(n)$	

	storage		
flops			
dense	FR	$O\left(m^{2}\right)$	$O\left(m^{3}\right)$
	BLR	$O\left(m^{3 / 2}\right)$	$O\left(m^{2}\right)$
sparse 2D	FR	$O(n \log n)$	$O\left(n^{3 / 2}\right)$
	BLR	$O(n)$	$O(n \log n)$
sparse 3D	FR	$O\left(n^{4 / 3}\right)$	$O\left(n^{2}\right)$
	BLR	$O(n \log n)$	$O\left(n^{4 / 3}\right)$
(assuming $r=O(1))$			

- Significant asymptotic complexity reduction compared to FR
- Almost optimal for sparse 2D problems!!
- Still superlinear in 3D

Experimental complexity fit: Poisson $\left(\varepsilon=10^{-10}\right)$

Storage

Flops

- Good agreement with theoretical complexity:
- Storage: $O(n \log n) \rightarrow O\left(n^{1.1} \log n\right)$
- Flops: $O\left(n^{4 / 3}\right) \rightarrow O\left(n^{1.3}\right)$

Parallelism

Shared-memory performance analysis

Matrix S3

Double complex (z) symmetric Electromagnetics application (CSEM)
3.3 millions unknowns

Required accuracy: $\varepsilon=10^{-7}$

	flops $\left(\times 10^{12}\right)$	time (1 core)	time (24 cores)
FR	78.0	7390	509
BLR	10.2	2242	309
ratio	7.7	3.3	1.7

7.7 gain in flops only translated to a 1.7 gain in time: Can we do better?

Exploiting tree-based multithreading in MF solvers

- Node parallelism approach based on OpenMP loops

Exploiting tree-based multithreading in MF solvers

- Node parallelism approach based on OpenMP loops

Exploiting tree-based multithreading in MF solvers

- Node parallelism approach based on OpenMP loops
- Node+tree parallelism approach based on Sid-Lakhdar's PhD

L'Excellent and Sid-Lakhdar, A study of shared-memory parallelism in a multifrontal solver, Parallel Computing (2014).

Exploiting tree-based multithreading in MF solvers

- Node parallelism approach based on OpenMP loops
- Node+tree parallelism approach based on Sid-Lakhdar's PhD

L'Excellent and Sid-Lakhdar, A study of shared-memory parallelism in a multifrontal solver, Parallel Computing (2014).

- In FR, top of the tree is dominant \Rightarrow tree MT brings little gain

Exploiting tree-based multithreading in MF solvers

- Node parallelism approach based on OpenMP loops
- Node+tree parallelism approach based on Sid-Lakhdar's PhD

L'Excellent and Sid-Lakhdar, A study of shared-memory parallelism in a multifrontal solver, Parallel Computing (2014).

- In FR, top of the tree is dominant \Rightarrow tree MT brings little gain
- In BLR, bottom of the tree compresses less, becomes important

- Node parallelism approach based on OpenMP loops
- Node+tree parallelism approach based on Sid-Lakhdar's PhD
\square L'Excellent and Sid-Lakhdar, A study of shared-memory parallelism in a multifrontal solver, Parallel Computing (2014).
- In FR, top of the tree is dominant \Rightarrow tree MT brings little gain
- In BLR, bottom of the tree compresses less, becomes important
$\Rightarrow 1.7$ gain becomes 1.9 thanks to tree-based multithreading

Right-looking Vs. Left-looking analysis (24 threads)

	FR time		BLR time	
	$R L$	$L L$	$R L$	$L L$
Update	338	336	110	67
Total	424	421	221	175

Right-looking Vs. Left-looking analysis (24 threads)

	FR time		BLR time	
	RL	$L L$	$R L$	$L L$
Update	338	336	110	67
Total	424	421	221	175

RL factorization

LL factorization

Right-looking Vs. Left-looking analysis (24 threads)

	FR time		BLR time	
	RL	$L L$	$R L$	$L L$
Update	338	336	110	67
Total	424	421	221	175

RL factorization

LL factorization
\Rightarrow Lower volume of memory transfers in LL (more critical in MT)

Right-looking Vs. Left-looking analysis (24 threads)

	FR time		BLR time	
	RL	$L L$	$R L$	$L L$
Update	338	336	110	67
Total	424	421	221	175

RL factorization

LL factorization
\Rightarrow Lower volume of memory transfers in LL (more critical in MT) Update is now less memory-bound: 1.9 gain becomes 2.4 in LL

LUAR variant: accumulation and recompression

- FSCU (Factor, Solve, Compress, Update)

	FSCU	
flops $\left(\times 10^{12}\right)$	Outer Product Total	3.8
	Outer Product Total	21

LUAR variant: accumulation and recompression

- FSCU (Factor, Solve, Compress, Update)

	FSCU	
flops $\left(\times 10^{12}\right)$	Outer Product Total	3.8
	Outer Product Total	21

\square
\square

- FSCU (Factor, Solve, Compress, Update)

	FSCU	
flops $\left(\times 10^{12}\right)$	Outer Product	3.8
	Total	10.2
time (s)	Outer Product	21
	Total	175

LUAR variant: accumulation and recompression

- FSCU (Factor, Solve, Compress, Update)

	FSCU	
flops $\left(\times 10^{12}\right)$	Outer Product	3.8
	Total	10.2
time (s)	Outer Product	21
	Total	175

LUAR variant: accumulation and recompression

\square

- FSCU (Factor, Solve, Compress, Update)

	FSCU	
flops $\left(\times 10^{12}\right)$	Outer Product	3.8
	Total	10.2
time (s)	Outer Product	21
	Total	175

LUAR variant: accumulation and recompression

- FSCU (Factor, Solve, Compress, Update)

	FSCU	
flops $\left(\times 10^{12}\right)$	Outer Product	3.8
	Total	10.2
time (s)	Outer Product	21
	Total	175

LUAR variant: accumulation and recompression

- FSCU (Factor, Solve, Compress, Update)

	FSCU	
flops $\left(\times 10^{12}\right)$	Outer Product	3.8
	Total	10.2
time (s)	Outer Product	21
	Total	175

LUAR variant: accumulation and recompression

- FSCU (Factor, Solve, Compress, Update)

	FSCU	
flops $\left(\times 10^{12}\right)$	Outer Product Total	3.8
	Outer Product Total	21

LUAR variant: accumulation and recompression

- FSCU (Factor, Solve, Compress, Update)
- FSCU+LUAR

		FSCU
flops $\left(\times 10^{12}\right)$	Outer Product	3.8
	Total	10.2
time (s)	Outer Product	21
	Total	175

LUAR variant: accumulation and recompression

- FSCU (Factor, Solve, Compress, Update)
- FSCU+LUAR
- Better granularity in Update operations

		FSCU	+LUA
flops $\left(\times 10^{12}\right)$	Outer Product	3.8	3.8
	Total	10.2	10.2
time (s)	Outer Product	21	14
	Total	175	167

- FSCU (Factor, Solve, Compress, Update)
- FSCU+LUAR
- Better granularity in Update operations
- Potential recompression

		FSCU	+ LUA
flops $\left(\times 10^{12}\right)$	Outer Product	3.8	3.8
	Total	10.2	10.2
time (s)	Outer Product	21	14
	Total	175	167

- FSCU (Factor, Solve, Compress, Update)
- FSCU+LUAR
- Better granularity in Update operations
- Potential recompression

		FSCU	+LUA	+LUAR
flops $\left(\times 10^{12}\right)$	Outer Product	3.8	3.8	1.6
	Total	10.2	10.2	8.1
time (s)	Outer Product	21	14	6
	Total	175	167	160

- FSCU (Factor, Solve, Compress, Update)
- FSCU+LUAR
- Better granularity in Update operations
- Potential recompression

		FSCU	+LUA	+LUAR
flops ($\times 10^{12}$)	Outer Product	3.8	3.8	1.6
	Total	10.2	10.2	8.1
time (s)	Outer Product	21	14	6
	Total	175	167	160

FCSU variant: compress before solve

- FSCU (Factor, Solve, Compress, Update)
- FSCU+LUAR
- $\operatorname{FCSU}(+L \cup A R)$

FCSU variant: compress before solve

- FSCU (Factor, Solve, Compress, Update)
- FSCU+LUAR
- FCSU(+LUAR)
- Restricted pivoting

FCSU variant: compress before solve

- FSCU (Factor, Solve, Compress, Update)
- FSCU+LUAR
- $\operatorname{FCSU}(+L U A R)$
- Restricted pivoting

- FSCU (Factor, Solve, Compress, Update)
- FSCU+LUAR
- $\operatorname{FCSU}(+L \cup A R)$
- Restricted pivoting
- Low-rank Solve \Rightarrow flop reduction

- FSCU (Factor, Solve, Compress, Update)
- FSCU+LUAR
- $\operatorname{FCSU}(+L U A R)$
- Restricted pivoting
- Low-rank Solve \Rightarrow flop reduction
2.6 gain becomes 3.7

Multicore performance results (24 threads)

- "BLR": FSCU, right-looking, node only multithreading
- "BLR+": FCSU+LUAR, left-looking, node+tree multithreading

Amestoy, Buttari, L'Excellent, and Mary, Performance and Scalability of the Block Low-Rank Multifrontal Factorization on Multicore Architectures, ACM Trans. Math.

Comparison with HSS Matrices

Experimental Setting

- Experiments are done on the cori supercomputer of NERSC
- We compare
- the MUMPS solver based on BLR
- the STRUMPACK solver (LBNL) based on HSS
- Test problems come from several real-life applications: Seismic (5Hz), Electromagnetism (S3), Structural (perfOO8d, Geo_1438, Hook_1498, ML_Geer, Serena, Transport), CFD (atmosmodd, PFlow_742), MHD (A22, A3O), Optimization (nlpkkt80), and Graph (cage13)
- We test 7 tolerance values (from 9e-1 to 1e-6) and FR, and compare the time for factorization + solve with:
- 1 step of iterative refinement in FR
- GMRES iterative solver in LR with required accuracy of 10^{-6} and restart of 30

Full-Rank solvers comparison

Optimal tolerance choice

	BLR	HSS
A22	$1 e-5$	FR
A30	$1 e-4$	FR
atmosmodd	$1 e-4$	$9 e-1$
cage13	$1 e-1$	$9 e-1$
Geo_1438	$1 e-4$	FR
Hook_1498	$1 e-5$	FR
ML_Geer	$1 e-6$	FR
nlpkkt80	$1 e-5$	$5 e-1$
PFlow_742	$1 e-6$	FR
Serena	$1 e-4$	le-1
spe1O-aniso	$1 e-5$	FR
Transport	$1 e-5$	FR

When high accuracy is needed...

spe10-aniso matrix

- No convergence except for low tolerances \Rightarrow direct solver mode is needed
- BLR is better suited as HSS rank is too high

When preconditioning works well...

cage13 matrix

- Fast convergence even for high tolerance \Rightarrow preconditioner mode is better suited
- As the size grows, HSS will gain the upper hand

The middle ground

- Find compromise between accuracy and compression
- In general, BLR favors direct solver while HSS favors preconditioner mode
\Rightarrow Performance comparison will depend on numerical difficulty and size of the problem

Preconditioner vs direct solver mode

Optimal tolerance choice

	BLR	HSS
A22	$1 e-5$	FR
A30	$1 e-4$	FR
atmosmodd	$1 e-4$	$9 e-1$
cage13	$1 e-1$	$9 e-1$
Geo_1438	$1 e-4$	FR
Hook_1498	$1 e-5$	FR
ML_Geer	$1 e-6$	FR
nlpkkt80	$1 e-5$	$5 e-1$
PFlow_742	$1 e-6$	FR
Serena	$1 e-4$	$1 e-1$
spe1O-aniso	$1 e-5$	FR
Transport	$1 e-5$	FR

These results seem to suggest the following trend:
difficulty

Ongoing work on BLR preconditioners

R. N. J. Higham and T. Mary, A New Preconditioner that Exploits Low-Rank Approximations to Factorization Error, MIMS EPrint 2018.10.

BLR threshold $=10^{-2}$, iterate until converged to accuracy 10^{-9} Recent work with N. Higham to improve factorization-based preconditioners

Matrix	n	Standard		Improved	
		Iter.	Time	Iter.	Time
audikw_1	1.0 M	691	1163	331	625
Bump_2911	2.9 M	-	-	284	1708
Emilia_923	0.9 M	174	304	136	267
Fault_639	0.6 M	-	-	294	345
Ga41As41H72	0.3 M	-	-	135	143
Hook_1498	1.5 M	417	902	356	808
Si87H76	0.2 M	-	-	131	116

Good potential to improve low-precision, low-memory BLR solvers

The MBLR Format

Compromise between complexity and parallelism

parallelism

BLR is a compromise between complexity and performance

Compromise between complexity and parallelism

parallelism

parallelism

BLR is a compromise between complexity and performance Can we find an even better compromise?
parallelism

parallelism

BLR is a compromise between complexity and performance
Can we find an even better compromise?
Multilevel BLR (MBLR)
Fixed number of levels ℓ

$$
\begin{array}{ccccc}
\begin{array}{c}
\text { BLR } \\
(\ell=1)
\end{array} & \ell=2 & \ell=3 & \cdots & \begin{array}{c}
\text { Hier. } \\
\text { parallelism }
\end{array} \\
& & & \text { complexity }
\end{array}
$$

parallelism

parallelism

BLR is a compromise between complexity and performance
Can we find an even better compromise?
Multilevel BLR (MBLR): one format to englobe them all?
Fixed number of levels ℓ

$$
\begin{array}{ccccc}
\begin{array}{c}
\text { BLR } \\
(\ell=1)
\end{array} & \ell=2 & \ell=3 & \cdots & (\ell=\infty) \\
\text { parallelism } & & & & \text { complexit }
\end{array}
$$

Bridging the gap between flat and hierarchical formats

$$
\mathcal{C}_{\text {dense }}=O\left(m^{\alpha}\right) \Rightarrow \mathcal{C}_{\text {sparse }}=O\left(n^{\beta}\right)
$$

Storage

Flops

Bridging the gap between flat and hierarchical formats

$$
\mathcal{C}_{\text {dense }}=O\left(m^{\alpha}\right) \Rightarrow \mathcal{C}_{\text {sparse }}=O\left(n^{\beta}\right)
$$

Storage

Flops

Bridging the gap between flat and hierarchical formats

$$
\mathcal{C}_{\text {dense }}=O\left(m^{\alpha}\right) \Rightarrow \mathcal{C}_{\text {sparse }}=O\left(n^{\beta}\right)
$$

Storage

Flops

Bridging the gap between flat and hierarchical formats

$$
\mathcal{C}_{\text {dense }}=O\left(m^{\alpha}\right) \Rightarrow \mathcal{C}_{\text {sparse }}=O\left(n^{\beta}\right)
$$

Storage

Flops

$$
\mathcal{C}_{\text {dense }}=O\left(m^{\alpha}\right) \Rightarrow \mathcal{C}_{\text {sparse }}=O\left(n^{\beta}\right)
$$

Flops

Key motivation: $\mathcal{C}_{\text {dense }}<O\left(m^{2}\right)$ (2D) or $O\left(m^{3 / 2}\right)$ (3D) is enough to get $O(n)$ sparse complexity!

- 2D flop and 3D storage complexity: just a little improvement needed
- 3D flop complexity: still a large gap between BLR and \mathcal{H}

We propose a multilevel BLR format to bridge the gap

Assume all off-diagonal blocks are low-rank. Then:

$$
\begin{aligned}
\text { Storage } & =\operatorname{cost}_{L R} * n b_{L R}+\operatorname{cost}_{B L R} * n b_{B L R} \\
& =O(b r) * O\left(\left(\frac{m}{b}\right)^{2}\right)+O\left(b^{3 / 2} r r^{1 / 2}\right) * O\left(\frac{m}{b}\right) \\
& =O\left(m^{2} r / b+m(b r)^{1 / 2}\right) \\
& =O\left(m^{4 / 3} r^{2 / 3}\right) \text { for } b=\left(m^{2} r\right)^{1 / 3}
\end{aligned}
$$

Assume all off-diagonal blocks are low-rank. Then:

$$
\begin{aligned}
\text { Storage } & =\operatorname{cost} \\
& =O(b r) * O\left(\left(\frac{m}{b}\right)^{2}\right)+O\left(b^{3 / 2} r^{1 / 2}\right) * O\left(\frac{m}{b}\right) \\
& =O\left(m^{2} r / b+m(b r)^{1 / 2}\right) \\
& =O\left(m^{4 / 3} r^{2 / 3}\right) \text { for } b=\left(m^{2} r\right)^{1 / 3}
\end{aligned}
$$

Similarly, we can prove:
Flop $L U=\mathbf{O}\left(m^{5 / 3} r^{4 / 3}\right)$ for $b=\left(m^{2} r\right)^{1 / 3}$
Result holds if a constant number of off-diag. blocks is BLR.

Assume all off-diagonal blocks are low-rank. Then:

$$
\begin{aligned}
\text { Storage } & =\operatorname{cost}_{L R} * n b_{L R}+\operatorname{cost}_{B L R} * n b_{B L R} \\
& =O(b r) * O\left(\left(\frac{m}{b}\right)^{2}\right)+O\left(b^{3 / 2} r^{1 / 2}\right) * O\left(\frac{m}{b}\right) \\
& =O\left(m^{2} r / b+m(b r)^{1 / 2}\right) \\
& =O\left(m^{4 / 3} r^{2 / 3}\right) \text { for } b=\left(m^{2} r\right)^{1 / 3}
\end{aligned}
$$

Similarly, we can prove:

$$
\text { Flop } L U=\mathbf{O}\left(\mathbf{m}^{5 / 3} \mathbf{r}^{4 / 3}\right) \text { for } b=\left(m^{2} r\right)^{1 / 3}
$$

Result holds if a constant number of off-diag. blocks is BLR.

		FR	BLR	$2-B L R$	\ldots	\mathcal{H}
storage	dense	$O\left(m^{2}\right)$	$O\left(m^{1.5}\right)$	$O\left(m^{1.33}\right)$	\ldots	$O(m \log m)$
	sparse	$O\left(n^{1.33}\right)$	$O(n \log n)$	$O(n)$	\ldots	$O(n)$
flop LU	dense	$O\left(m^{3}\right)$	$O\left(m^{2}\right)$	$O\left(m^{1.66}\right)$	\ldots	$O\left(m \log ^{3} m\right)$
	sparse	$O\left(n^{2}\right)$	$O\left(n^{1.33}\right)$	$O\left(n^{1.11}\right)$	\ldots	$O(n)$

Multilevel BLR complexity

Main result

For $b=m^{\ell /(\ell+1)} r^{1 /(\ell+1)}$, the ℓ-level complexities are:

$$
\begin{aligned}
& \text { Storage }=\mathbf{O}\left(\mathbf{m}^{(\ell+2) /(\ell+1)} \mathbf{r}^{\ell /(\ell+1)}\right) \\
& \text { FlopLU }=\mathbf{O}\left(\mathbf{m}^{(\ell+3) /(\ell+1)} \mathbf{r}^{2 \ell /(\ell+1)}\right)
\end{aligned}
$$

Amestoy, Buttari, L'Excellent, and Mary, Bridging the gap between flat and hierarchical low-rank matrix formats: the multilevel BLR format, submitted (2018).

- Simple way to finely control the desired complexity
- Block size $b \propto O\left(m^{\ell /(\ell+1)}\right) \ll O(m)$
\Rightarrow may be efficiently processed in shared-memory
- Number of blocks per row/column $\propto O\left(m^{1 /(\ell+1)}\right) \gg O(1)$ \Rightarrow flexibility to distribute data in parallel

Influence of the number of levels ℓ

Flop LU

- If $r=O(1)$, can achieve $O(n)$ storage complexity with only two levels and $O(n \log n)$ flop complexity with three levels

Influence of the number of levels ℓ

- If $r=O(1)$, can achieve $O(n)$ storage complexity with only two levels and $O(n \log n)$ flop complexity with three levels
- For higher ranks, optimal sparse complexity is not attainable with constant ℓ but improvement rate is rapidly decreasing: the first few levels achieve most of the asymptotic gain

Numerical experiments (Poisson)

Storage

Flop LU

- Experimental complexity in relatively good agreement with theoretical one
- Asymptotic gain decreases with levels

Error analysis

Why we need an error analysis

BLR builds an approximate factorization $\mathbf{A}_{\varepsilon}=\mathbf{L}_{\varepsilon} \mathbf{U}_{\varepsilon}$ The BLR threshold ε is controlled by the user BUT the user does not know how to choose ε !

Each off-diagonal block B is approximated by a low-rank matrix \widetilde{B} such that $\|B-\widetilde{B}\| \leq \varepsilon$
$\left\|A-L_{\varepsilon} U_{\varepsilon}\right\| \neq \varepsilon$ because of error propagation \Rightarrow What is the overall accuracy $\left\|A-L_{\varepsilon} \cup_{\varepsilon}\right\|$?

- Can we prove that $\left\|A-L_{\varepsilon} U_{\varepsilon}\right\|=O(\varepsilon)$?
- What is the error growth, i.e., how does the error depend on the matrix size m ?
- How do the different variants (FCSU, LUAR, etc.) compare?
- Should we use an absolute threshold $(\|B-\widetilde{B}\| \leq \varepsilon)$ or a relative one $(\|B-\widetilde{B}\| \leq \varepsilon\|B\|)$?

Main result

Theorem

The FSCU factorization of a matrix of order m with block size b and absolute threshold ε produces an error equal to

$$
\left\|A-L_{\varepsilon} U_{\varepsilon}\right\|=\sqrt{\frac{m}{b}} \varepsilon\|L\|\|U\|+O(u \varepsilon)
$$

- $\|L\|\|U\| \leq \rho_{m}\|A\|$ where ρ_{m} is the growth factor; with partial pivoting, ρ_{m} is typically small \Rightarrow BLR factorization is stable!
- Error growth behaves as $\sqrt{m / b}=O\left(m^{1 / 4}\right) \Rightarrow$ very slow growth!
- Factorization variants only change the $O(u \varepsilon)$ term \Rightarrow no significant difference!
- $\sqrt{m / b}$ term can be dropped using relative threshold, but compression rate is also lower

Experimental results

matrix	$\varepsilon=10^{-4}$		$\varepsilon=10^{-8}$		$\varepsilon=10^{-12}$	
	error	bound	error	bound	error	bound
pwtk	$7.7 e-05$	$3.4 e-04$	$7.3 e-09$	$3.4 e-08$	$5.1 e-13$	$3.4 e-12$
cfd2	$2.3 e-04$	$2.7 e-04$	$2.3 e-08$	$2.7 e-08$	$1.9 e-12$	$2.7 e-12$
2cubes_sphere	$9.3 e-05$	$1.3 e-04$	$9.9 e-09$	$1.3 e-08$	$1.2 e-12$	$1.3 e-12$
af_shell3	$1.4 e-04$	$2.0 e-04$	$1.7 e-08$	$2.0 e-08$	$1.7 e-12$	$2.0 e-12$
audikw_1	$2.8 e-04$	$4.3 e-04$	$1.6 e-08$	$4.3 e-08$	$1.2 e-12$	$4.3 e-12$
cfd2	$2.3 e-04$	$2.7 e-04$	$2.3 e-08$	$2.7 e-08$	$1.9 e-12$	$2.7 e-12$
Dubcova3	$2.0 e-04$	$1.5 e-04$	$2.3 e-08$	$1.5 e-08$	$2.4 e-12$	$1.5 e-12$
Fault_639	$1.6 e-05$	$2.4 e-03$	$3.3 e-09$	$2.4 e-07$	$6.6 e-13$	$2.4 e-11$
hood	$1.6 e-05$	$8.5 e-04$	$1.7 e-09$	$8.5 e-08$	$1.6 e-13$	$8.5 e-12$
nasasrb	$8.7 e-05$	$5.3 e-04$	$5.4 e-09$	$5.3 e-08$	$5.7 e-13$	$5.3 e-12$
nd24k	$1.1 e-04$	$6.8 e-04$	$1.5 e-08$	$6.8 e-08$	$1.1 e-12$	$6.8 e-12$
oilpan	$5.7 e-06$	$2.8 e-03$	$1.2 e-09$	$2.8 e-07$	$5.3 e-14$	$2.8 e-11$
pwtk	$7.7 e-05$	$3.4 e-04$	$7.3 e-09$	$3.4 e-08$	$5.1 e-13$	$3.4 e-12$
shallow_water1	$9.3 e-07$	$1.1 e-04$	$3.4 e-09$	$1.1 e-08$	$6.2 e-14$	$1.1 e-12$
ship_003	$5.4 e-05$	$3.2 e-04$	$6.0 e-09$	$3.2 e-08$	$6.1 e-13$	$3.2 e-12$
thermomech_dM	$5.5 e-06$	$1.1 e-04$	$1.6 e-09$	$1.1 e-08$	$3.7 e-14$	$1.1 e-12$
x104	$2.0 e-05$	$1.1 e-03$	$2.6 e-09$	$1.1 e-07$	$2.1 e-13$	$1.1 e-11$

Measured error matches bound

Open questions

- Choice of scaling strategy
- Error analysis of BLR solution phase and its use in conjunction of iterative refinement
- Pivoting strategies for the BLR factorization
- Error analysis of multilevel BLR factorization
- Probabilistic error analysis: in the standard LU case, the deterministic bound

$$
|A-L U| \leq \gamma_{n}|L||U|=O(n u)|L \| U|
$$

is known to be pessimistic. In recent work, we have shown that

$$
|A-L U| \leq \widetilde{\gamma}_{n}|L||U|=O(\sqrt{n} u)|L||U|
$$

holds with high probability assuming rounding errors are random. Can we apply this to BLR factorizations?

Fast BLR Matrix Arithmetic

Context and objective

- Standard $O\left(m^{3}\right)$ matrix multiplication algorithm is not optimal: $O\left(m^{\omega}\right)$ can be achieved, with $2 \leq \omega \leq \omega_{0}=\log _{2} 7 \approx 2.81$.

Context and objective

- Standard $O\left(m^{3}\right)$ matrix multiplication algorithm is not optimal: $O\left(m^{\omega}\right)$ can be achieved, with $2 \leq \omega \leq \omega_{0}=\log _{2} 7 \approx 2.81$.
- Reminder: given a $O\left(m^{\omega}\right)$ matrix multiplication algorithm, the LU factorization has the same complexity

Context and objective

- Standard $O\left(m^{3}\right)$ matrix multiplication algorithm is not optimal: $O\left(m^{\omega}\right)$ can be achieved, with $2 \leq \omega \leq \omega_{0}=\log _{2} 7 \approx 2.81$.
- Reminder: given a $O\left(m^{\omega}\right)$ matrix multiplication algorithm, the LU factorization has the same complexity
- Example: Strassen's algorithm achieves $O\left(m^{\omega_{0}}\right)$ complexity

$$
\begin{array}{rlr}
& \quad\left(\begin{array}{ll}
C_{11} & C_{12} \\
C_{21} & C_{22}
\end{array}\right)=\left(\begin{array}{ll}
A_{11} & A_{12} \\
A_{21} & A_{22}
\end{array}\right)\left(\begin{array}{ll}
B_{11} & B_{12} \\
B_{21} & B_{22}
\end{array}\right) \\
M_{1} & =\left(A_{11}+A_{22}\right)\left(B_{11}+B_{22}\right), & \\
M_{2} & =\left(A_{21}+A_{22}\right) B_{11}, & \\
M_{3}=A_{11}\left(B_{12}-B_{22}\right), & & C_{11}=M_{1}+M_{4}-M_{5}+M_{7}, \\
M_{4} & =A_{22}\left(B_{21}-B_{11}\right), & \\
M_{5} & =\left(A_{11}+A_{12}\right) B_{22}, & C_{12}=M_{3}+M_{5}, \\
M_{6} & =\left(A_{21}-A_{11}\right)\left(B_{11}+B_{12}\right), & \\
M_{7}=\left(A_{12}-A_{22}\right)\left(B_{21}+B_{22}\right),
\end{array}
$$

Context and objective

- Standard $O\left(m^{3}\right)$ matrix multiplication algorithm is not optimal: $O\left(m^{\omega}\right)$ can be achieved, with $2 \leq \omega \leq \omega_{0}=\log _{2} 7 \approx 2.81$.
- Reminder: given a $O\left(m^{\omega}\right)$ matrix multiplication algorithm, the LU factorization has the same complexity
- Example: Strassen's algorithm achieves $O\left(m^{\omega_{0}}\right)$ complexity

$$
\begin{array}{rlr}
& \quad\left(\begin{array}{ll}
C_{11} & C_{12} \\
C_{21} & C_{22}
\end{array}\right)=\left(\begin{array}{ll}
A_{11} & A_{12} \\
A_{21} & A_{22}
\end{array}\right)\left(\begin{array}{ll}
B_{11} & B_{12} \\
B_{21} & B_{22}
\end{array}\right) \\
M_{1} & =\left(A_{11}+A_{22}\right)\left(B_{11}+B_{22}\right), & \\
M_{2} & =\left(A_{21}+A_{22}\right) B_{11}, & \\
M_{3} & =A_{11}\left(B_{12}-B_{22}\right), & C_{11}=M_{1}+M_{4}-M_{5}+M_{7}, \\
M_{4} & =A_{22}\left(B_{21}-B_{11}\right), & \\
M_{5} & =\left(A_{11}+A_{12}\right) B_{22}, & C_{12}=M_{3}+M_{5}, \\
M_{6} & =\left(A_{21}-A_{11}\right)\left(B_{11}+B_{12}\right), & \\
M_{7}=\left(A_{12}-A_{22}\right)\left(B_{21}+B_{22}\right),
\end{array}
$$

- Question: can we use fast matrix arithmetic to improve the $O\left(m^{2} r\right)$ BLR complexity?
- We model a BLR matrix A as $A=S_{A}+E_{A}$, where S_{A} consists of the FR blocks and E_{A} of the LR ones
- Then, $A B=\left(S_{A}+E_{A}\right)\left(S_{B}+E_{B}\right)=S_{A} S_{B}+S_{A} E_{B}+S_{B} E_{A}+E_{A} E_{B}$
- $S_{A} S_{B}$ product: $O(p)$ FR-FR products

$O\left(p b^{3}\right) \rightarrow O\left(p b^{\omega}\right) \Rightarrow$ good enough
- Not so straighforward for the other three products!
$S_{A} E_{B}$ product: $O\left(p^{2}\right)$ FR-LR products

Problem: fast matrix multiplication works on square matrices

$$
O\left(p^{2}\right) \times O\left(b^{2} r\right) \rightarrow O\left(p^{2}\right) \times O\left(b^{2} r^{\omega-1}\right)=O\left(m^{2} r^{\omega-1}\right)
$$ \Rightarrow no asymptotic reduction in m, only in r

Since $m \gg r$, this is not a satisfying result \Rightarrow can we do better?

Second approach based on accumulation

$$
\begin{aligned}
O\left(p^{2}\right) \times O\left(b^{2} r\right) & \rightarrow O(p) \times O\left(b^{2} p r\right) \\
& \rightarrow O(p) \times O\left(\max \left((p r)^{\omega-2} b^{2}, p r b^{\omega-1}\right)\right)
\end{aligned}
$$

\Rightarrow find new optimal b that equilibrates $\operatorname{cost}\left(S_{A} E_{B}\right)$ and $\operatorname{cost}\left(E_{A} E_{B}\right)$

Theorem

With this approach, the complexity of the BLR factorization becomes

$$
O\left(m^{(3 \omega-1) /(\omega+1)} r^{(\omega-1)^{2} /(\omega+1)}\right)
$$

$$
\Rightarrow \approx O\left(m^{1.95} r^{0.86}\right) \text { for } \omega=\omega_{0} \text { and } O\left(m^{5 / 3} r^{1 / 3}\right) \text { for } \omega=2
$$

\Rightarrow asymptotic gain in m... but still not optimal (lower bound is given by size $(A)=O\left(m^{3 / 2} r^{1 / 2}\right)$)

Third approach based on Strassen's algorithm

- Key idea: use Strassen's algorithm on the entire BLR matrix

$$
\begin{gathered}
\quad\left(\begin{array}{cc}
C_{11} & C_{12} \\
C_{21} & C_{22}
\end{array}\right)=\left(\begin{array}{cc}
A_{11} & A_{12} \\
A_{21} & A_{22}
\end{array}\right)\left(\begin{array}{cc}
B_{11} & B_{12} \\
B_{21} & B_{22}
\end{array}\right) \\
M_{1}=\left(A_{11}+A_{22}\right)\left(B_{11}+B_{22}\right), \\
\vdots \\
\Rightarrow \\
C_{11}=M_{1}+M_{4}-M_{5}+M_{7}, \\
M_{7}=\left(A_{12}-A_{22}\right)\left(B_{21}+B_{22}\right),
\end{gathered}
$$

\Rightarrow Requires the stronger assumption that each M_{i} is BLR

Theorem

With this approach, the complexity of the BLR factorization becomes

$$
O\left(m^{\left(\omega \omega_{0}-1\right) /\left(\omega+\omega_{0}-2\right)} r^{(\omega-1)^{2} /\left(\omega+\omega_{0}-2\right)}\right) .
$$

$\Rightarrow \approx O\left(m^{1.90} r^{0.90}\right)$ for $\omega=\omega_{0}$ and $\approx O\left(m^{1.64} r^{0.36}\right)$ for $\omega=2$
Can we generalize this result to algorithms other than Strassen's? Replacing ω_{0} by $\omega \rightarrow O\left(m^{(\omega+1) / 2} r^{(\omega-1) / 2}\right)$ achieves lower bound for $\omega=2$

Conclusion

Summary

Main results

- BLR dense factorization achieves $O\left(m^{2} r\right)$ complexity
- We must rethink our algorithms to convert this theoretical reduction into actual time gains
- Good compromise between complexity and performance compared to hierarchical formats

Recent advances

- Multilevel extension can achieve an even better compromise
- Error analysis provides both theoretical guarantees and new insights
- Ongoing work on fast BLR matrix arithmetic

Slides and papers available here

http://personalpages.manchester.ac.uk/staff/theo.mary/

