Nineteen dubious ways to compute low-rank approximations in mixed precision

Theo Mary Sorbonne Université, CNRS, LIP6 theo.mary@lip6.fr https://perso.lip6.fr/Theo.Mary/

> Talk at LIP, ENS Lyon 18 November 2024

Challenges of computing at exascale

Exascale applications:

- Large scale computations and datasets
- Complex requirements (speed, storage, energy, and accuracy constraints)
- Numerically sensitive/difficult

Exascale computers:

- Huge amounts of parallelism/concurrency
- High heterogeneity in the computing units: CPUs, GPUs, other accelerators
- Large gap between speed of computations and communications
- $\circ~$ Expensive power consumption

Challenges of computing at exascale

Exascale applications:

- Large scale computations and datasets
- Complex requirements (speed, storage, energy, and accuracy constraints)
- Numerically sensitive/difficult

Exascale computers:

- Huge amounts of parallelism/concurrency
- High heterogeneity in the computing units: CPUs, GPUs, other accelerators
- Large gap between speed of computations and communications
- $\circ~$ Expensive power consumption

Approximate computing: introduce *controlled* inexactness to reduce the computational costs and to exploit more efficiently the computer

• Low-rank approximations: compress full $m \times n$ matrix A into rank-k product $XY^T \Rightarrow$ reduced storage and cost of operating on A

- Mixed precision arithmetic: Combine several precisions with the goal of
 - $\circ~$ Maximizing the use of low precisions to match their performance. . .
 - $\circ \ \ldots$ while strategically but parcimoniously using high precisions to preserve their accuracy

Mixed precision

Low-rank approximations

Mixed precision low-rank approximations

Mixed precision

Low-rank approximations

Mixed precision low-rank approximations

Lower precisions: an opportunity

number of bits					
	signif. (t)	exp.	range	$u = 2^{-t}$	
quadruple	113	15	$10^{\pm 4932}$	$1 imes 10^{-34}$	
double	53	11	$10^{\pm 308}$	$1 imes 10^{-16}$	
single	24	8	$10^{\pm 38}$	$6 imes 10^{-8}$	
holf	11	5	$10^{\pm 5}$	$5 imes 10^{-4}$	
nall	8	8	$10^{\pm 38}$	$4 imes 10^{-3}$	
au ant an	4	4	$10^{\pm 2}$	$6 imes 10^{-2}$	
quarter	3	5	$10^{\pm 5}$	$1 imes 10^{-1}$	
	quadruple double single half quarter	number of l signif.of l signif.quadruple1131double531single241half118quarter43	number of bits signif.of bits exp.quadruple11315double5311single248half115888quarter4435	number of bits signif. (t) exp. range quadruple 113 15 10 ^{±4932} double 53 11 10 ^{±308} single 24 8 10 ^{±308} half 11 5 10 ^{±51} quarter 4 4 10 ^{±21}	

• Great benefits:

- Reduced storage, data movement, and communications
- $\circ~$ Increased speed thanks to increasing hardware support
- Reduced energy consumption
- However, low precision \equiv low accuracy

	Pascal 2016	Volta 2018	Ampere 2020	Hopper 2022	Blackwell 2025	
fp64	5	8	20	67	40	
fp32	10	16	20	67	80	
tfloat32			160	495	2,200	
fp16/bfloat16	20	125	320	990	4,500	
fp8				2,000	9,000	
fp4					18,000	

Peak performance (TFLOPS)

NVIDIA Hopper (H100) GPU

fp64/fp16 speed ratio:

- Hopper (2022): 15×
- Blackwell (2025): $112 \times$

Survey

Acta Numerica (2022), pp. 347–414 doi:10.1017/S0962492922000022

Mixed precision algorithms in numerical linear algebra

Nicholas J. Higham Department of Mathematics, University of Manchester, Manchester, M13 9PL, UK E-mail: nick.higham@manchester.ac.uk

> Theo Mary Sorbonne Université, CNRS, LIP6, Paris, F-75005, France E-mail: theo.mary@lip6.fr

https://bit.ly/mixed-survey

CONTENTS

1	Introduction	2
2	Floating-point arithmetics	6
3	Rounding error analysis model	14
4	Matrix multiplication	15
5	Nonlinear equations	18
6	Iterative refinement for $Ax = b$	22
7	Direct methods for $Ax = b$	25
8	Iterative methods for $Ax = b$	35
9	Mixed precision orthogonalization and QR factoriza-	
	tion	39
10	Least squares problems	42
11	Eigenvalue decomposition	43
12	Singular value decomposition	46
13	Multiword arithmetic	47
14	Adaptive precision algorithms	50
15	Miscellany	52

• **Multiword arithmetic:** emulate high precision arithmetic using low precision computations

• Adaptive precision: dynamically adapt the precision at runtime based on the data at hand, switching to low precision only the part of the computations that can be

• **Iterative refinement:** perform the entire computation in low precision, then try to recover a high accuracy

NVIDIA GPU tensor cores

Tensor cores units available on NVIDIA GPUs carry out a mixed precision matrix multiply-accumulate ($u_{high} \equiv fp32$ and $u_{low} \equiv fp16/fp8/fp4$)

• Let C = AB, with $A \in \mathbb{R}^{m \times n}$, $B \in \mathbb{R}^{n \times p}$, the computed \widehat{C} satisfies

$$|\widehat{C} - C| \lesssim c_n |A| |B|, \quad c_n = \begin{cases} nu_{\text{low}} & \text{(uniform low precision)} \\ 2u_{\text{low}} + nu_{\text{high}} & \text{(tensor cores)} \\ nu_{\text{high}} & \text{(uniform high precision)} \end{cases}$$

Blanchard, Higham, Lopez, M., Pranesh (2020)

Multiword arithmetic

- Represent high precision number as the unevaluated sum of lower precision numbers
 - Double-double arithmetic: $x = \underbrace{x_1}_{fp64} + \underbrace{x_2}_{fp64} \rightarrow \approx$ quad precision accuracy

• Double-fp16 arithmetic: $x = \underbrace{x_1}_{\text{fp16}}^{\text{fp64}} + \underbrace{x_2}_{\text{fp16}}^{\text{fp64}} \rightarrow \approx \text{single precision accuracy}$

- Multiword matrix multiplication in mixed precision:
 - Decompose $A \approx \sum_{i=1}^{p} A_i$, $B \approx \sum_{j=1}^{p} B_j$ where each A_i and B_j is stored in precision u_{low}
 - Compute $C = \sum_{i+j < p}^{i-j} A_i B_j$ in precision $u_{\text{high}} (p(p+1)/2 \text{ products})$
 - $\circ |\widehat{C} C| \lesssim (u_{\text{low}}^p + nu_{\text{high}})|A||B| \quad \textcircled{B} \text{ Fasi, Higham, Lopez, M., Mikaitis (2023)}$
- Implementation on GPU tensor cores:
 - $\circ~$ Can benefit from fp32 accumulation to compute C
 - $\circ~$ Double-fp16 arithmetic \Rightarrow 3× more flops, but entirely in fp16 tensor core arithmetic

Double-fp16 arithmetic: $C \approx A_1B_1 + A_1B_2 + A_2B_1$ computed via 3 tensor core products

An algorithm to refine the solution: iterative refinement (IR)

```
Choose an initial x_0

while Not converged do

r_i = b - Ax_i

Solve Ad_i \approx r_i

x_{i+1} = x_i + d_i

end while
```

Many variants over the years, depending on choice of precisions and solver for $Ad_i = r_i$

Factorize A = LU at precision $u_f \gg u$ Solve $Ax_1 = b$ via $x_1 = U^{-1}(L^{-1}b)$ at precision $u_f \gg u$ repeat $r_i = b - Ax_i$ at precision $u_r \ll u$ Solve $Ad_i = r_i$ via $d_i = U^{-1}(L^{-1}r_i)$ at precision $u_f \gg u$ $x_{i+1} = x_i + d_i$ at precision u

until converged

• LU-based IR

- Exploit LU factorization in low precision. Can solve systems to full fp64 accuracy with only an fp32 factorization, as long as $\kappa(A) \le 10^7$ 🖹 Langou et al. (2006)
- Three-precision general analysis by 📄 Carson and Higham (2018)

Factorize A = LU at precision $\mathbf{u}_{\mathbf{f}} \gg \mathbf{u}$ Solve $Ax_1 = b$ via $x_1 = U^{-1}(L^{-1}b)$ at precision $\mathbf{u}_{\mathbf{f}} \gg \mathbf{u}$ repeat $r_i = b - Ax_i$ at precision $\mathbf{u}_{\mathbf{r}} \ll \mathbf{u}$ Solve $Ad_i = r_i$ with preconditioned GMRES at precision $\mathbf{u}_{\mathbf{g}} \leq \mathbf{u}$ except matvecs at precision $\mathbf{u}_{\mathbf{p}} \leq \mathbf{u}^2$ $x_{i+1} = x_i + d_i$ at precision \mathbf{u} until converged

• LU-based IR

- Exploit LU factorization in low precision. Can solve systems to full fp64 accuracy with only an fp32 factorization, as long as $\kappa(A) \le 10^7$ 🖹 Langou et al. (2006)
- Three-precision general analysis by 📑 Carson and Higham (2018)

GMRES-based IR

- Use GMRES to solve correction equation $Ad_i = r_i$, preconditioned by low-precision LU factors. Can handle up to $\kappa(A) \le 10^{16}$ (a) Carson and Higham (2017)
- Five-precision general analysis by Amestoy, Buttari, Higham, L'Excellent, M., Vieublé (2024)

Iterative refinement for Ax = b

- thmgaz matrix (n = 5M)
 - multi-physics (thermo-hydro-mechanics)
 - $\circ~$ 2 MPI \times 18 threads
 - MUMPS solver 📄 Amestoy, Buttari, L'Excellent, M. (2019)

(from code_aster)

	Facto. time (s)	Memory (GB)
Full-rank double	98	192
BLR ($arepsilon=10^{-8}$) double	81	131
Full-rank single + LU-IR	65	98
BLR ($arepsilon=10^{-8}$) single + LU-IR	59	67
BLR ($arepsilon=10^{-6}$) single + GMRES-IR	71	61

Amestoy, Buttari, Higham, L'Excellent, M., Vieublé (2023)

- Given an algorithm and a prescribed accuracy ϵ , adaptively select the minimal precision for each instruction depending on the data
- \Rightarrow First of all, why should the precisions vary?

- Given an algorithm and a prescribed accuracy ϵ , adaptively select the minimal precision for each instruction depending on the data
- \Rightarrow First of all, why should the precisions vary?
- Because not all computations are equally "important"! Example:

⇒ Opportunity for mixed precision: adapt the precisions to the data at hand by storing and computing "less important" (which usually means smaller) data in lower precision

- Goal: compute y = Ax, where A is a sparse matrix, with a prescribed accuracy ε
- Given p available precisions $u_1 < \varepsilon < u_2 < \ldots < u_p$, define partition $A = \sum_{k=1}^p A^{(k)}$ where

$$a_{ij}^{(k)} = \begin{cases} \mathsf{fl}_k(a_{ij}) & \text{if } |a_{ij}| \in (\varepsilon ||A|| / u_k, \varepsilon ||A|| / u_{k+1}] \\ 0 & \text{otherwise} \end{cases}$$

 \Rightarrow the precision of each element is chosen inversely proportional to its magnitude

$$\begin{pmatrix} \times & \times \\ \times & \times \\ & \times & \times \end{pmatrix} = \begin{pmatrix} d & & \\ & d \end{pmatrix} + \begin{pmatrix} & s \\ & s \end{pmatrix} + \begin{pmatrix} h & & \\ & h \end{pmatrix}$$

$$\widehat{y} = (A + \Delta A)x, \quad \|\Delta A\| \le c\varepsilon \|A\|.$$

- 7 precisions: fp64, fp32, and 5 emulated formats with 56, 48, 40, 24, and 16 bits
- Long_Coup_dt6 matrix ($n \approx 1.5$ M) 📑 Graillat, Jézéquel, M., Molina, Mukunoki (2024)

- 7 precisions: fp64, fp32, and 5 emulated formats with 56, 48, 40, 24, and 16 bits
- Long_Coup_dt6 matrix ($n \approx 1.5$ M) 📑 Graillat, Jézéquel, M., Molina, Mukunoki (2024)

- 7 precisions: fp64, fp32, and 5 emulated formats with 56, 48, 40, 24, and 16 bits
- Long_Coup_dt6 matrix ($n \approx 1.5$ M) 📑 Graillat, Jézéquel, M., Molina, Mukunoki (2024)

Mixed precision

Low-rank approximations

Mixed precision low-rank approximations

 $A = U_1 \Sigma_1 V_1^{\mathcal{T}} + U_2 \Sigma_2 V_2^{\mathcal{T}} \quad \text{with} \quad \Sigma_1(k,k) = \sigma_k > \varepsilon, \ \Sigma_2(1,1) = \sigma_{k+1} \leq \varepsilon$

 $A = U_1 \Sigma_1 V_1^T + U_2 \Sigma_2 V_2^T \quad \text{with} \quad \Sigma_1(k,k) = \sigma_k > \varepsilon, \ \Sigma_2(1,1) = \sigma_{k+1} \le \varepsilon$ If $\tilde{A} = U_1 \Sigma_1 V_1^T$ then $\|A - \tilde{A}\|_2 = \|U_2 \Sigma_2 V_2^T\|_2 = \sigma_{k+1} \le \varepsilon$

 $\begin{aligned} A &= U_1 \Sigma_1 V_1^T + U_2 \Sigma_2 V_2^T \quad \text{with} \quad \Sigma_1(k,k) = \sigma_k > \varepsilon, \ \Sigma_2(1,1) = \sigma_{k+1} \le \varepsilon \\ \text{If } \tilde{A} &= U_1 \Sigma_1 V_1^T \quad \text{then} \quad \|A - \tilde{A}\|_2 = \|U_2 \Sigma_2 V_2^T\|_2 = \sigma_{k+1} \le \varepsilon \end{aligned}$

If k < mn/(m+n), \tilde{A} requires less storage than $A \Rightarrow$ low-rank matrix.

 $\begin{aligned} A &= U_1 \Sigma_1 V_1^T + U_2 \Sigma_2 V_2^T \quad \text{with} \quad \Sigma_1(k,k) = \sigma_k > \varepsilon, \ \Sigma_2(1,1) = \sigma_{k+1} \le \varepsilon \\ \text{If } \tilde{A} &= U_1 \Sigma_1 V_1^T \quad \text{then} \quad \|A - \tilde{A}\|_2 = \|U_2 \Sigma_2 V_2^T\|_2 = \sigma_{k+1} \le \varepsilon \end{aligned}$

If k < mn/(m+n), \tilde{A} requires less storage than $A \Rightarrow \text{low-rank}$ matrix.

SVD cost: $O(mn\min(m, n))$ flops \Rightarrow too expensive for large matrices. Other (suboptimal) methods are used in practice.

QR factorization

• Low-rank approximations can be computed through a Householder QR factorization QR = A:

$$||A - Q_1 R_1|| \le ||R_2||$$

QR factorization

• Low-rank approximations can be computed through a Householder QR factorization QR = A:

• The QR factorization need not be computed entirely but can actually be truncated

$$Q^{k^T}A = H^k \dots H^1A = A^k$$

Because $||A^k||$ is monotonically decreasing for k = 1, ..., n, the factorization can be interrupted as soon as $||A^k|| \le \varepsilon$.

QR factorization

21/46

• Low-rank approximations can be computed through a Householder QR factorization QR = A:

• The QR factorization need not be computed entirely but can actually be truncated

$$Q^{k^T}A = H^k \dots H^1A =$$

Because $||A^k||$ is monotonically decreasing for k = 1, ..., n, the factorization can be interrupted as soon as $||A^k|| \le \varepsilon$.

• If column pivoting is used, the QR factorization is rank-revealing and $||A^k||$ decays faster

At step $k = 1, \ldots, n$

At step $k = 1, \ldots, n$

1. select column j of largest norm

- At step $k = 1, \ldots, n$
- 1. select column j of largest norm
- 2. permute columns k and j

At step $k = 1, \ldots, n$

- 1. select column j of largest norm
- 2. permute columns k and j
- 3. reduce column k via Householder transform
QR with column pivoting (QRCP)

At step $k = 1, \ldots, n$

- 1. select column j of largest norm
- 2. permute columns k and j
- 3. reduce column k via Householder transform
- 4. update trailing submatrix (at least row k)

QR with column pivoting (QRCP)

At step $k = 1, \ldots, n$

- 1. select column j of largest norm
- 2. permute columns k and j
- 3. reduce column k via Householder transform
- 4. update trailing submatrix (at least row k)
- 5. update column norms

QR with column pivoting (QRCP)

At step $k = 1, \ldots, n$

- 1. select column j of largest norm
- 2. permute columns k and j
- 3. reduce column k via Householder transform
- 4. update trailing submatrix (at least row k)
- 5. update column norms

- Norm of the trailing submatrix is readily available
- ▼ Partial block version exists but still poor computational efficiency and parallelization

Randomized LRA

- Let $B = A\Omega$, where $\Omega \in \mathbb{R}^{n \times \ell}$ is a random Gaussian matrix $(\omega_{ij} \sim \mathcal{N}(0, 1))$. Then $Q = \operatorname{qr}(B)$ provides a rank- ℓ approximation $A \approx Q(Q^T A)$ as good as the best rank-k approximation for $\ell = k + p$ and small p.
- A rank-k approximation can then be recovered with any deterministic LRA.
 Halko, Martinsson, Tropp (2011)

```
Input: A \in \mathbb{R}^{m \times n}, k, p

Output: X \in \mathbb{R}^{m \times k}, Y \in \mathbb{R}^{n \times k} such that A \approx XY^T

\Omega \leftarrow \operatorname{randn}(n, k + p)

B \leftarrow A\Omega

Q \leftarrow \operatorname{qr}(B)

C \leftarrow Q^T A

ZY^T \leftarrow \operatorname{LRA}(C, k)

X \leftarrow QZ
```

 $_{23/46}$ • Matrix products are the computational bottleneck \Rightarrow very efficient!

Duersch and Gu (2017) Martinsson et al. (2017) Compute a sample $S = \Omega A$ using a random matrix Ω . At step k = 1 : b : n

1. compute QR of *S* with B-G pivoting to select the "best" *b* columns

- 1. compute QR of *S* with B-G pivoting to select the "best" *b* columns
- 2. permute the selected columns upfront

- 1. compute QR of *S* with B-G pivoting to select the "best" *b* columns
- 2. permute the selected columns upfront
- 3. reduce *b* columns via Householder transform

- 1. compute QR of *S* with B-G pivoting to select the "best" *b* columns
- 2. permute the selected columns upfront
- 3. reduce *b* columns via Householder transform
- 4. update trailing submatrix

- 1. compute QR of *S* with B-G pivoting to select the "best" *b* columns
- 2. permute the selected columns upfront
- 3. reduce *b* columns via Householder transform
- 4. update trailing submatrix
- 5. update S

- 1. compute QR of *S* with B-G pivoting to select the "best" *b* columns
- 2. permute the selected columns upfront
- 3. reduce *b* columns via Householder transform
- 4. update trailing submatrix
- 5. update S

- High efficiency and parallelization
- ▲ Norm of the trailing submatrix is indirectly available through the sample: $||s_j|| = \sqrt{b}||a_j||$ works ok in practice

Mixed precision

Low-rank approximations

Mixed precision low-rank approximations

Three approaches to combine mixed precision and low-rank approximations:

• **Multiword arithmetic:** use multiword arithmetic to accelerate matrix products, by combining randomized methods with fast hardware such as NVIDIA tensor cores

• Adaptive precision: adapt the precision to the matrix at hand, taking advantage of the possibly rapid decay of singular values

• **Iterative refinement:** compute a low precision LRA and refine its accuracy iteratively, drawing inspiration from IR for Ax = b

```
Input: A \in \mathbb{R}^{m \times n}, k, p
Output: X \in \mathbb{R}^{m \times k}. Y \in \mathbb{R}^{n \times k} such that A \approx XY^T
   \Omega \leftarrow \operatorname{randn}(n, k + p)
   Compute the MW decomp. A \approx A_1 + A_2.
   Compute the MW decomp. \Omega \approx \Omega_1 + \Omega_2.
    B \leftarrow A_1 \Omega_1 + A_2 \Omega_1 + A_1 \Omega_2
    Q \leftarrow \operatorname{ar}(B)
   Compute the MW decomp. Q \approx Q_1 + Q_2.
   C \leftarrow A_1^T Q_1 + A_2^T Q_1 + A_1^T Q_2
   ZY^T \leftarrow \text{LRA}(C, k)
   X \leftarrow QZ
```

• If the speed ratio between fp16/fp32 is *s*, then for asymptotically large matrices this algorithm should be *s*/3 faster compared with the uniform fp32 algorithm.

LRA with multiword arithmetic

- The expectation of the approximation error remains unchanged if $\Omega \sim \mathcal{N}(0, \sigma)$ as long as $\sigma \approx 1$. \square Ootomo and Yokota (2023)
- Generating Ω in a *t*-bit arithmetic yields $\sigma \approx 1 + 2^{-t} \Rightarrow$ can store Ω in low precision and reduce the cost of the $A\Omega$ product!

```
Input: A \in \mathbb{R}^{m \times n}, k, p
Output: X \in \mathbb{R}^{m \times k}. Y \in \mathbb{R}^{n \times k} such that A \approx XY^T
   \Omega_1 \leftarrow \operatorname{randn}(n, k + p) in fp16.
   Compute the MW decomp. A \approx A_1 + A_2.
   B \leftarrow A_1 \Omega_1 + A_2 \Omega_1 + A_1 \Omega_2
   Q \leftarrow \operatorname{ar}(B)
   Compute the MW decomp. Q \approx Q_1 + Q_2.
   C \leftarrow A_1^T Q_1 + A_2^T Q_1 + A_1^T Q_2
   ZY^T \leftarrow \text{LRA}(C, k)
   X \leftarrow QZ
```

If the speed ratio between fp16/fp32 is s, then for asymptotically large matrices this algorithm should be 2s/5 faster compared with the uniform fp32 algorithm.

Discussion

• Randomized LRA with multiword arithmetic

- ▲ Conceptually very simple and transparent for the user
- ▲ Rigorous control of the accuracy via emulation
- ▼ Restricted to randomized methods and to fast "tensor core" hardware

 Adaptive precision compression: partition U and V into q groups of decreasing precisions u₁ ≤ ε < u₂ < ... < u_q

- Adaptive precision compression: partition U and V into q groups of decreasing precisions u₁ ≤ ε < u₂ < ... < u_q
- Why does it work? $B = B_1 + B_2 + B_3$ with $|B_i| \le O(||\Sigma_i||)$

- Adaptive precision compression: partition U and V into q groups of decreasing precisions u₁ ≤ ε < u₂ < ... < u_q
- Why does it work? $B = B_1 + B_2 + B_3$ with $|B_i| \le O(||\Sigma_i||)$
- With p precisions and a partitioning such that $\|\Sigma_k\| \le \epsilon \|B\|/u_k$, $\|B - \widehat{U}_{\epsilon} \Sigma_{\epsilon} \widehat{V}_{\epsilon}\| \le (2p-1)\epsilon \|B\|$ \implies Amestoy, Boiteau, Buttari, Gerest, Jézéquel, L'Excellent, M. (2022)

30/46

Performance illustration on Full-Waveform Inversion

- Adastra MUMPS4FWI project led by WIND team
- Application: Gorgon Model, reservoir 23km × 11km × 6.5km, grid size 15m, Helmholtz equation, 25-Hz
- Complex matrix, 531 Million dofs, storage(A)=220 GBytes;
- FR cost: flops for one *LU* factorization= 2.6 × 10¹⁸; Estimated storage for LU factors= 73 TBytes

(25-Hz Gorgon FWI velocity model)

Performance illustration on Full-Waveform Inversion

- Adastra MUMPS4FWI project led by WIND team
- Application: Gorgon Model, reservoir 23km × 11km × 6.5km, grid size 15m, Helmholtz equation, 25-Hz
- Complex matrix, 531 Million dofs, storage(A)=220 GBytes;
- FR cost: flops for one *LU* factorization= 2.6 × 10¹⁸; Estimated storage for LU factors= 73 TBytes

(25-Hz Gorgon FWI velocity model)

FR (Full-Rank); BLR with $arepsilon=10^{-5}$;					48 000 cores (500 MPI $ imes$ 96 threads/MPI)			
FR: fp32; Mixed precision BLR: 3 precisions (32bits, 24							its, 16bits	s) for storage
LU	J size (TBytes) Flops			Time BLR	+ Mixed	l (sec)	Scaled Resid.	
FR	BLR	+mixed	FR	BLR+mixed	Analysis	Facto	Solve	BLR+mixed
73	34	26	$2.6 imes10^{18}$	$0.5 imes10^{18}$	446	5500	27	$7 imes 10^{-4}$

in practice: hundreds to thousands of Solve steps (sparse right hand sides (sources))

- Can we compute an LRA directly in adaptive precision form?
- At step *i* of a the Householder QR factorization, for each column *b* we compute $\hat{b}^i = H^i(\hat{b}^{i-1} + \Delta b^{i-1})$ where $\|\Delta b^{i-1}\| \le mu\|\hat{b}^{i-1}\| = mu\|b\|$
- In the specific case of the QR factorization, the *H* transforms have a peculiar structure:

$$H^{i}\widehat{b}^{i-1} = \begin{bmatrix} I^{i-1} & \\ & \bar{H}^{i} \end{bmatrix} \begin{bmatrix} \widehat{b}^{i-1}_{1:i-1} \\ & \widehat{b}^{i-1}_{i:m} \end{bmatrix}$$

and, therefore,

$$\|\Delta b^{i-1}\| \leq (m-i)u\|\widehat{b}_{i:m}^{i-1}\|$$

- Can we compute an LRA directly in adaptive precision form?
- At step *i* of a the Householder QR factorization, for each column *b* we compute $\hat{b}^i = H^i(\hat{b}^{i-1} + \Delta b^{i-1})$ where $\|\Delta b^{i-1}\| \le mu\|\hat{b}^{i-1}\| = mu\|b\|$
- In the specific case of the QR factorization, the *H* transforms have a peculiar structure:

$$H^{i}\widehat{b}^{i-1} = \begin{bmatrix} I^{i-1} & \\ & \bar{H}^{i} \end{bmatrix} \begin{bmatrix} \widehat{b}_{1:i-1}^{i-1} \\ & \widehat{b}_{i:m}^{i-1} \end{bmatrix}$$

and, therefore,

$$\|\Delta b^{i-1}\| \leq (m-i)u\|\widehat{b}_{i:m}^{i-1}\|$$

• Introducing mixed precision: because all the H^i and \overline{H}^i are unitary transformations, $\|\widehat{b}_{i:m}^{i-1}\|$ will be monotonically decreasing for $i = 1, \ldots, k$ \longrightarrow starting at some *i*, *u* can be increased without increasing the error

Theorem

Assume that a truncated QR factorization is computed such that $k \leq n$ Householder transformations are computed and applied to a matrix $A \in \mathbb{R}^{m \times n}$ using p different precisions of increasing unit roundoff u^i . Let k^i be the number of transformations that are computed using precision i. The computed \widehat{R}_i and \widehat{Q}_i satisfy

$$\|A-\sum_{i=1}^{p}\widehat{Q}_{i}\widehat{R}_{i}\|\leq \|A^{p+1}\|+\sum_{i=1}^{p}c_{mk^{i}}u^{i}\|A^{i}\|.$$

where A^i is the trailing submatrix after $\sum_{i=1}^{i-1} k_i$ transformations.

Buttari, M., Pacteau (2024)

Using this result into an algorithm:

1. start the factorization with $u_1 \leq \varepsilon$

Using this result into an algorithm:

- 1. start the factorization with $u_1 \leq \varepsilon$
- 2. if after k_1 transformations $\|A^2\| \leq \varepsilon/u_2 \|A\|$, switch to prec. u_2

Using this result into an algorithm:

- 1. start the factorization with $u_1 \leq \varepsilon$
- 2. if after k_1 transformations $||A^2|| \le \varepsilon/u_2 ||A||$, switch to prec. u_2
- 3. same for precisions $2, \ldots, p$

Using this result into an algorithm:

- 1. start the factorization with $u_1 \leq \varepsilon$
- 2. if after k_1 transformations $||A^2|| \le \varepsilon/u_2 ||A||$, switch to prec. u_2
- 3. same for precisions $2, \ldots, p$
- 4. if after $k_1 + \cdots + k_p$ transformations $\|A^{p+1}\| \le \varepsilon \|A\|$, stop

Using this result into an algorithm:

- 1. start the factorization with $u_1 \leq \varepsilon$
- 2. if after k_1 transformations $||A^2|| \le \varepsilon/u_2 ||A||$, switch to prec. u_2
- 3. same for precisions $2, \ldots, p$

4. if after $k_1 + \cdots + k_p$ transformations $\|A^{p+1}\| \le \varepsilon \|A\|$, stop

Phillips, FP64+FP32+BFloat16, m = n = 2048

Phillips, FP64+FP32+BFloat16, m = n = 2048

Phillips, FP64+FP32+BFloat16, m = n = 2048

Phillips, FP64+FP32+BFloat16, m = n = 2048

Experiments: Julia, image compression

With ε = 0.04 the rank is 191 but only 13 steps are done in fp32 and the rest in bf16 $_{36/46}$ (original size is 1057 \times 1600)

Experiments: Fortran, performance

phillips, m = n = 8192
Discussion

• Randomized LRA with multiword arithmetic

- ▲ Conceptually very simple and transparent for the user
- Rigorous control of the accuracy via emulation
- **v** Restricted to randomized methods and to fast "tensor core" hardware

• Adaptive precision LRA

- ▲ Can be applied to a wide range of LRA methods
- Rigorous control of the accuracy via adaptive criterion
- Performance gains conditioned on rapid decay of singular values

- 1. Apply method to input in low precision
- 2. Compute residual error in high precision
- 3. Apply method to residual error in low precision
- 4. Combine result of (1) and (3) to obtain refined result in high precision

Can we refine a low precision LRA into a higher precision one?

Input: a matrix *A* **Output:** its low-rank factors $X_1 Y_1^T$ 1: Compute LRA $X_0 Y_0^T \approx A$ in precision u_{low} . 2: Compute $E = A - X_0 Y_0^T$ in precision u_{high} . 3: Compute LRA $X_E Y_E^T \approx E$ in precision u_{low} . 4: $X_1 = [X_0 X_E]$ and $Y_1 = [Y_0 Y_E]$.

Can we refine a low precision LRA into a higher precision one?

39/46

4:
$$X_1 = [X_0 \ X_E]$$
 and $Y_1 = [Y_0 \ Y_E]$.

Can we refine a low precision LRA into a higher precision one?

Input: a matrix A**Output:** its low-rank factors $X_1 Y_1^T$

- 1: Compute LRA $X_0 Y_0^T \approx A$ in precision u_{low} .
- 2: Compute $E = A X_0 Y_0^T$ in precision u_{high} .
- 3: Compute LRA $X_E Y_E^T \approx E$ in precision u_{low} .

4:
$$X_1 = [X_0 \ X_E]$$
 and $Y_1 = [Y_0 \ Y_E]$.

- Can recompress $X_1 Y_1^T$ from rank 3r to rank r
- Achieves $u_{
 m low}^2$ accuracy with most of the work done in precision $u_{
 m low}$
- Can repeat process: after *i* iterations, the computed $X_i Y_i^T$ satisfies

$$\|A - X_i Y_i^{\mathsf{T}}\| \leq (\phi^{i+1} + \xi + O(u_{\text{low}} u_{\text{high}}))\|A\|$$

 $\circ \phi = O(u_{
m low})$ is the convergence speed

- $\xi = O(u_{high})$ is the attainable accuracy
- 39/46 📑 Baboulin, Kaya, M., Robeyns (2023)

IR faster than standard high precision LRA in two scenarios:

- If the ranks r_i at the early iterations are much smaller than the final rank: $r_i \ll r \Rightarrow$ requires rapid decay of singular values
- If the low precision is much faster than high precision ⇒ requires specialized hardware (e.g., NVIDIA tensor cores)

LRA-IR therefore bridges the gap between adaptive precision LRA and multiword LRA!

- Large singular values are computed with low precision but high accuracy, à la multiword arithmetic
- Small singular values are computed with low precision and low accuracy

```
Input: a matrix A_{32} \in \mathbb{R}^{m \times n}, the target rank k

Output: X_{16} \in \mathbb{R}^{m \times k} and Y_{16} \in \mathbb{R}^{n \times k} such that A_{32} \approx X_{16} Y_{16}^{T}.

\Omega_{16} = \text{randn}(n, k)

A_{16} = \text{fp16}(A_{32})

B_{32} = \text{tcgemm}_{16|32}(A_{16}, \Omega_{16})

Q_{32} = \text{qr}(B_{32})

X_{16} = \text{fp16}(Q_{32})

Y_{16} = \text{tcgemm}_{16|32}(A_{16}^{T}, X_{16})
```

Input: a matrix $A_{32} \in \mathbb{R}^{m \times n}$, the target rank k **Output:** $X_{16} \in \mathbb{R}^{m \times k}$ and $Y_{16} \in \mathbb{R}^{n \times k}$ such that $A_{32} \approx X_{16} Y_{16}^{T}$. $[X_{16}, Y_{16}] = \text{RandLRA}(A_{32}, k)$ $E_{32} = A_{32} - \text{tcgemm}_{16|32}(X_{16}, Y_{16}^{T})$ $[X'_{16}, Y'_{16}] = \text{RandLRA}(E_{32}, 2k)$ $X_{16} = [X_{16}, X'_{16}]$ $Y_{16} = [Y_{16}, Y'_{16}]$

• Since input of tcgemm is already in fp16, can use tensor cores to compute E₃₂ with fp32 accuracy!

LRA-IR experiments (tensor cores)

Baboulin, Donfack, Kaya, M., Robeyns (2024)

LRA-IR experiments (tensor cores)

Baboulin, Donfack, Kaya, M., Robeyns (2024)

Discussion

• Randomized LRA with multiword arithmetic

- ▲ Conceptually very simple and transparent for the user
- Rigorous control of the accuracy via emulation
- **v** Restricted to randomized methods and to fast "tensor core" hardware

• Adaptive precision LRA

- ▲ Can be applied to a wide range of LRA methods
- Rigorous control of the accuracy via adaptive criterion
- Performance gains conditioned on rapid decay of singular values

• Iterative refinement for LRA

- ▲ Unifies both previous methods: can take advantage of *both* fast hardware and rapid decay of singular values
- ▲ Rigorous control of the accuracy via refinement
- Requires more flops than either of the two previous methods

Discussion

• Randomized LRA with multiword arithmetic

- ▲ Conceptually very simple and transparent for the user
- Rigorous control of the accuracy via emulation
- **v** Restricted to randomized methods and to fast "tensor core" hardware

• Adaptive precision LRA

- ▲ Can be applied to a wide range of LRA methods
- Rigorous control of the accuracy via adaptive criterion
- Performance gains conditioned on rapid decay of singular values

• Iterative refinement for LRA

- ▲ Unifies both previous methods: can take advantage of *both* fast hardware and rapid decay of singular values
- Rigorous control of the accuracy via refinement
- Requires more flops than either of the two previous methods

Take-away: mixed precision, low-rank approximations, and randomization synergize well together!

References

- Multiword matrix multiplication
 Fasi, Higham, Lopez, M., Mikaitis (2023)
 Blanchard, Higham, Lopez, M., Pranesh (2020)
- Iterative refinement for Ax = b
 Amestoy, Buttari, Higham, L'Excellent, M., Vieublé (2024)
 Amestoy, Buttari, Higham, L'Excellent, M., Vieublé (2023)
- Adaptive precision SpMV
 Graillat, Jézéquel, M., Molina (2024)
 Graillat, Jézéquel, M., Molina, Mukunoki (2024)
- Adaptive precision LRA
 Amestoy, Boiteau, Buttari, Gerest, Jézéquel, L'Excellent, M. (2022)
 Buttari, M., Pacteau (2024)
- Iterative refinement for LRA
 Baboulin, Kaya, M., Robeyns (2023)
 Baboulin, Donfack, Kaya, M., Robeyns (2024)

Thanks! Questions?