
Nineteen dubious ways to compute
low-rank approximations in mixed precision

Theo Mary
Sorbonne Université, CNRS, LIP6

theo.mary@lip6.fr

https://perso.lip6.fr/Theo.Mary/

Talk at LIP, ENS Lyon
18 November 2024

n

n

→ n

k n

fp32

fp16

fp8

theo.mary@lip6.fr
https://perso.lip6.fr/Theo.Mary/

Challenges of computing at exascale

Exascale applications:
◦ Large scale computations and datasets
◦ Complex requirements (speed, storage, energy, and

accuracy constraints)
◦ Numerically sensitive/difficult

Exascale computers:
◦ Huge amounts of parallelism/concurrency
◦ High heterogeneity in the computing units: CPUs, GPUs,

other accelerators
◦ Large gap between speed of computations and

communications
◦ Expensive power consumption

2/46

Challenges of computing at exascale

Exascale applications:
◦ Large scale computations and datasets
◦ Complex requirements (speed, storage, energy, and

accuracy constraints)
◦ Numerically sensitive/difficult

Exascale computers:
◦ Huge amounts of parallelism/concurrency
◦ High heterogeneity in the computing units: CPUs, GPUs,

other accelerators
◦ Large gap between speed of computations and

communications
◦ Expensive power consumption

Exascale methods

and software??

2/46

Approximate computing

Approximate computing: introduce controlled inexactness to reduce the
computational costs and to exploit more efficiently the computer

• Low-rank approximations: compress full m × n matrix A into rank-k product
XY T ⇒ reduced storage and cost of operating on A

m

n

→ m

k n

• Mixed precision arithmetic: Combine several precisions with the goal of
◦ Maximizing the use of low precisions to match their performance. . .
◦ . . . while strategically but parcimoniously using high precisions to preserve their accuracy

fp32

fp16

fp8
3/46

Mixed precision

Low-rank approximations

Mixed precision low-rank approximations

4/46

Mixed precision

Low-rank approximations

Mixed precision low-rank approximations

5/46

Lower precisions: an opportunity

number of bits

signif. (t) exp. range u = 2−t

fp128 quadruple 113 15 10±4932 1× 10−34

fp64 double 53 11 10±308 1× 10−16

fp32 single 24 8 10±38 6× 10−8

fp16 11 5 10±5 5× 10−4

bfloat16
half

8 8 10±38 4× 10−3

fp8 (e4m3) 4 4 10±2 6× 10−2

fp8 (e5m2)
quarter

3 5 10±5 1× 10−1

• Great benefits:
◦ Reduced storage, data movement, and communications
◦ Increased speed thanks to increasing hardware support
◦ Reduced energy consumption

• However, low precision ≡ low accuracy

6/46

Lower precisions: a necessity?

Peak performance (TFLOPS)

Pascal Volta Ampere Hopper Blackwell

2016 2018 2020 2022 2025

fp64 5 8 20 67 40

fp32 10 16 20 67 80

tfloat32 -- -- 160 495 2,200

fp16/bfloat16 20 125 320 990 4,500

fp8 -- -- -- 2,000 9,000

fp4 -- -- -- -- 18,000

NVIDIA Hopper (H100) GPU

fp64/fp16 speed ratio:

• Hopper (2022): 15×
• Blackwell (2025): 112×

7/46

Survey

https://bit.ly/mixed-survey

8/46

https://bit.ly/mixed-survey

Three approaches to mixed precision

• Multiword arithmetic: emulate high precision arithmetic using low precision
computations

• Adaptive precision: dynamically adapt the precision at runtime based on the data
at hand, switching to low precision only the part of the computations that can be

• Iterative refinement: perform the entire computation in low precision, then try to
recover a high accuracy

9/46

NVIDIA GPU tensor cores

Tensor cores units available on NVIDIA GPUs carry out a mixed precision matrix
multiply–accumulate (uhigh ≡ fp32 and ulow ≡ fp16/fp8/fp4)

D = A B + C
× × × ×
× × × ×
× × × ×
× × × ×

︸ ︷︷ ︸

uhigh

=

× × × ×
× × × ×
× × × ×
× × × ×

︸ ︷︷ ︸

ulow

× × × ×
× × × ×
× × × ×
× × × ×

︸ ︷︷ ︸

ulow

+

× × × ×
× × × ×
× × × ×
× × × ×

︸ ︷︷ ︸

uhigh

• Let C = AB, with A ∈ Rm×n, B ∈ Rn×p, the computed Ĉ satisfies

|Ĉ − C | ≲ cn|A||B|, cn =

nulow (uniform low precision)

2ulow + nuhigh (tensor cores)

nuhigh (uniform high precision)

 Blanchard, Higham, Lopez, M., Pranesh (2020)
10/46

https://epubs.siam.org/doi/10.1137/19M1289546

Multiword arithmetic

• Represent high precision number as the unevaluated sum of lower precision numbers
◦ Double-double arithmetic: x = x1︸︷︷︸

fp64

+ x2︸︷︷︸
fp64

→ ≈ quad precision accuracy

◦ Double-fp16 arithmetic: x = x1︸︷︷︸
fp16

+ x2︸︷︷︸
fp16

→ ≈ single precision accuracy

• Multiword matrix multiplication in mixed precision:
◦ Decompose A ≈

∑p
i=1 Ai , B ≈

∑p
j=1 Bj where each Ai and Bj is stored in precision ulow

◦ Compute C =
∑

i+j<p AiBj in precision uhigh (p(p + 1)/2 products)

◦ |Ĉ − C | ≲ (uplow + nuhigh)|A||B| Fasi, Higham, Lopez, M., Mikaitis (2023)

• Implementation on GPU tensor cores:
◦ Can benefit from fp32 accumulation to compute C
◦ Double-fp16 arithmetic ⇒ 3× more flops, but entirely in fp16 tensor core arithmetic

11/46

https://doi.org/10.1137/21M1465032

Multiword arithmetic

Double-fp16 arithmetic: C ≈ A1B1 + A1B2 + A2B1 computed via 3 tensor core
products

Performance (Tflops/s) Accuracy

12/46

Iterative refinement for Ax = b

An algorithm to refine the solution: iterative refinement (IR)

Choose an initial x0
while Not converged do

ri = b − Axi
Solve Adi ≈ ri
xi+1 = xi + di

end while

Many variants over the years, depending on choice of precisions and solver for Adi = ri

13/46

Iterative refinement for Ax = b

Factorize A = LU at precision uf ≫ u
Solve Ax1 = b via x1 = U−1(L−1b) at precision uf ≫ u
repeat

ri = b − Axi at precision ur ≪ u
Solve Adi = ri via di = U−1(L−1ri) at precision uf ≫ u

xi+1 = xi + di at precision u
until converged

• LU-based IR
◦ Exploit LU factorization in low precision. Can solve systems to full fp64 accuracy with

only an fp32 factorization, as long as κ(A) ≤ 107 Langou et al. (2006)

◦ Three-precision general analysis by Carson and Higham (2018)

• GMRES-based IR
◦ Use GMRES to solve correction equation Adi = ri , preconditioned by low-precision LU

factors. Can handle up to κ(A) ≤ 1016 Carson and Higham (2017)

◦ Five-precision general analysis by Amestoy, Buttari, Higham, L’Excellent, M., Vieublé (2024)

14/46

https://ieeexplore.ieee.org/abstract/document/4090224
https://epubs.siam.org/doi/abs/10.1137/17M1140819
https://doi.org/10.1137/17M1122918
https://doi.org/10.1137/23M1549079

Iterative refinement for Ax = b

Factorize A = LU at precision uf ≫ u
Solve Ax1 = b via x1 = U−1(L−1b) at precision uf ≫ u
repeat

ri = b − Axi at precision ur ≪ u
Solve Adi = ri with preconditioned GMRES

at precision ug ≤ u except matvecs at precision up ≤ u2

xi+1 = xi + di at precision u
until converged

• LU-based IR
◦ Exploit LU factorization in low precision. Can solve systems to full fp64 accuracy with

only an fp32 factorization, as long as κ(A) ≤ 107 Langou et al. (2006)

◦ Three-precision general analysis by Carson and Higham (2018)

• GMRES-based IR
◦ Use GMRES to solve correction equation Adi = ri , preconditioned by low-precision LU

factors. Can handle up to κ(A) ≤ 1016 Carson and Higham (2017)

◦ Five-precision general analysis by Amestoy, Buttari, Higham, L’Excellent, M., Vieublé (2024)
14/46

https://ieeexplore.ieee.org/abstract/document/4090224
https://epubs.siam.org/doi/abs/10.1137/17M1140819
https://doi.org/10.1137/17M1122918
https://doi.org/10.1137/23M1549079

Iterative refinement for Ax = b

• thmgaz matrix (n = 5M)
◦ multi-physics (thermo-hydro-mechanics)
◦ 2 MPI × 18 threads
◦ MUMPS solver Amestoy, Buttari, L’Excellent, M. (2019)

(from code aster)

Facto. time (s) Memory (GB)

Full-rank double 98 192

BLR (ε = 10−8) double 81 131

Full-rank single + LU-IR 65 98

BLR (ε = 10−8) single + LU-IR 59 67

BLR (ε = 10−6) single + GMRES-IR 71 61

 Amestoy, Buttari, Higham, L’Excellent, M., Vieublé (2023)
15/46

https://dl.acm.org/doi/10.1145/3242094
https://doi.org/10.1137/23M1549079

Adaptive precision algorithms

• Given an algorithm and a prescribed accuracy ϵ, adaptively select the minimal
precision for each instruction depending on the data

⇒ First of all, why should the precisions vary?

• Because not all computations are equally “important”!
Example:

a
+ b

64 bits

Unimportant bits

⇒ Opportunity for mixed precision: adapt the precisions to the data at hand by
storing and computing “less important” (which usually means smaller) data in lower
precision

16/46

Adaptive precision algorithms

• Given an algorithm and a prescribed accuracy ϵ, adaptively select the minimal
precision for each instruction depending on the data

⇒ First of all, why should the precisions vary?

• Because not all computations are equally “important”!
Example:

a
+ b

64 bits

Unimportant bits

⇒ Opportunity for mixed precision: adapt the precisions to the data at hand by
storing and computing “less important” (which usually means smaller) data in lower
precision

16/46

Adaptive precision SpMV

• Goal: compute y = Ax , where A is a sparse matrix, with a prescribed accuracy ε

• Given p available precisions u1 < ε < u2 < . . . < up, define partition
A =

∑p
k=1 A

(k) where

a
(k)
ij =

{
flk(aij) if |aij | ∈ (ε∥A∥/uk , ε∥A∥/uk+1]

0 otherwise

⇒ the precision of each element is chosen inversely proportional to its magnitude× ×
× ×
× ×

 =

d
d

d

+

 s

s

+

h

• Compute y (k) = A(k)x in precision uk and y =

∑p
k=1 y

(k) in precision u1. The
computed ŷ satisfies Graillat, Jézéquel, M., Molina (2024)

ŷ = (A+∆A)x , ∥∆A∥ ≤ cε∥A∥.
17/46

https://doi.org/10.1137/22M1522619

Adaptive precision SpMV

• 7 precisions: fp64, fp32, and 5 emulated formats with 56, 48, 40, 24, and 16 bits

• Long Coup dt6 matrix (n ≈ 1.5M) Graillat, Jézéquel, M., Molina, Mukunoki (2024)

2!53 2!45 2!37 2!29 2!24 2!16 2!8

"

10!15

10!10

10!5

100

N
o
rm

w
is
e

b
a
ck

w
a
rd

er
ro

r

Uniform
Adaptive

18/46

https://doi.org/10.1007/978-3-031-69583-4_2

Adaptive precision SpMV

• 7 precisions: fp64, fp32, and 5 emulated formats with 56, 48, 40, 24, and 16 bits

• Long Coup dt6 matrix (n ≈ 1.5M) Graillat, Jézéquel, M., Molina, Mukunoki (2024)

2!53 2!45 2!37 2!29 2!24 2!16 2!8

"

0

20

40

60

80

100

%
o
f
el
em

en
ts

0
16
24
32
40
48
56
64

18/46

https://doi.org/10.1007/978-3-031-69583-4_2

Adaptive precision SpMV

• 7 precisions: fp64, fp32, and 5 emulated formats with 56, 48, 40, 24, and 16 bits

• Long Coup dt6 matrix (n ≈ 1.5M) Graillat, Jézéquel, M., Molina, Mukunoki (2024)

2!53 2!45 2!37 2!29 2!24 2!16 2!8

"

0

20

40

60

80

100

C
o
st

(%
o
f
fp

6
4
)

Uniform storage
Adaptive storage
Uniform time
Adaptive time

18/46

https://doi.org/10.1007/978-3-031-69583-4_2

Mixed precision

Low-rank approximations

Mixed precision low-rank approximations

19/46

Truncated SVD

= · ·A U Σ V T

A = U1Σ1V
T
1 + U2Σ2V

T
2 with Σ1(k, k) = σk > ε, Σ2(1, 1) = σk+1 ≤ ε

If Ã = U1Σ1V
T
1 then ∥A− Ã∥2 = ∥U2Σ2V

T
2 ∥2 = σk+1 ≤ ε

If k < mn/(m + n), Ã requires less storage than A ⇒ low-rank matrix.

SVD cost: O(mnmin(m, n)) flops ⇒ too expensive for large matrices. Other
(suboptimal) methods are used in practice.

20/46

Truncated SVD

= · ·A U2 Σ2 V T
2

U1

Σ1 V T
1

A = U1Σ1V
T
1 + U2Σ2V

T
2 with Σ1(k, k) = σk > ε, Σ2(1, 1) = σk+1 ≤ ε

If Ã = U1Σ1V
T
1 then ∥A− Ã∥2 = ∥U2Σ2V

T
2 ∥2 = σk+1 ≤ ε

If k < mn/(m + n), Ã requires less storage than A ⇒ low-rank matrix.

SVD cost: O(mnmin(m, n)) flops ⇒ too expensive for large matrices. Other
(suboptimal) methods are used in practice.

20/46

Truncated SVD

= · ·A U1

Σ1 V T
1

A = U1Σ1V
T
1 + U2Σ2V

T
2 with Σ1(k, k) = σk > ε, Σ2(1, 1) = σk+1 ≤ ε

If Ã = U1Σ1V
T
1 then ∥A− Ã∥2 = ∥U2Σ2V

T
2 ∥2 = σk+1 ≤ ε

If k < mn/(m + n), Ã requires less storage than A ⇒ low-rank matrix.

SVD cost: O(mnmin(m, n)) flops ⇒ too expensive for large matrices. Other
(suboptimal) methods are used in practice.

20/46

Truncated SVD

= · ·A U1

Σ1 V T
1

A = U1Σ1V
T
1 + U2Σ2V

T
2 with Σ1(k, k) = σk > ε, Σ2(1, 1) = σk+1 ≤ ε

If Ã = U1Σ1V
T
1 then ∥A− Ã∥2 = ∥U2Σ2V

T
2 ∥2 = σk+1 ≤ ε

If k < mn/(m + n), Ã requires less storage than A ⇒ low-rank matrix.

SVD cost: O(mnmin(m, n)) flops ⇒ too expensive for large matrices. Other
(suboptimal) methods are used in practice.

20/46

Truncated SVD

= · ·A U1

Σ1 V T
1

A = U1Σ1V
T
1 + U2Σ2V

T
2 with Σ1(k, k) = σk > ε, Σ2(1, 1) = σk+1 ≤ ε

If Ã = U1Σ1V
T
1 then ∥A− Ã∥2 = ∥U2Σ2V

T
2 ∥2 = σk+1 ≤ ε

If k < mn/(m + n), Ã requires less storage than A ⇒ low-rank matrix.

SVD cost: O(mnmin(m, n)) flops ⇒ too expensive for large matrices. Other
(suboptimal) methods are used in practice.

20/46

QR factorization

• Low-rank approximations can be computed through a Householder QR factorization
QR = A:

×Q1 Q2

R1

R2 ∥A− Q1R1∥ ≤ ∥R2∥

• The QR factorization need not be computed entirely but can actually be truncated

R

AkQkTA = Hk . . .H1A =

Because ∥Ak∥ is monotonically decreasing for k = 1, . . . , n, the factorization can be
interrupted as soon as ∥Ak∥ ≤ ε.

• If column pivoting is used, the QR factorization is rank-revealing and ∥Ak∥ decays
faster

21/46

QR factorization

• Low-rank approximations can be computed through a Householder QR factorization
QR = A:

×Q1 Q2

R1

R2 ∥A− Q1R1∥ ≤ ∥R2∥

• The QR factorization need not be computed entirely but can actually be truncated

R

AkQkTA = Hk . . .H1A =

Because ∥Ak∥ is monotonically decreasing for k = 1, . . . , n, the factorization can be
interrupted as soon as ∥Ak∥ ≤ ε.

• If column pivoting is used, the QR factorization is rank-revealing and ∥Ak∥ decays
faster

21/46

QR factorization

• Low-rank approximations can be computed through a Householder QR factorization
QR = A:

×Q1 Q2

R1

R2 ∥A− Q1R1∥ ≤ ∥R2∥

• The QR factorization need not be computed entirely but can actually be truncated

R

AkQkTA = Hk . . .H1A =

Because ∥Ak∥ is monotonically decreasing for k = 1, . . . , n, the factorization can be
interrupted as soon as ∥Ak∥ ≤ ε.

• If column pivoting is used, the QR factorization is rank-revealing and ∥Ak∥ decays
faster21/46

QR with column pivoting (QRCP)

∥aj∥
k

j

At step k = 1, . . . , n

1. select column j of largest norm

2. permute columns k and j

3. reduce column k via Householder transform

4. update trailing submatrix (at least row k)

5. update column norms

▲ Norm of the trailing submatrix is readily available

▼ Partial block version exists but still poor computational efficiency and parallelization

22/46

QR with column pivoting (QRCP)

∥aj∥
k j

At step k = 1, . . . , n

1. select column j of largest norm

2. permute columns k and j

3. reduce column k via Householder transform

4. update trailing submatrix (at least row k)

5. update column norms

▲ Norm of the trailing submatrix is readily available

▼ Partial block version exists but still poor computational efficiency and parallelization

22/46

QR with column pivoting (QRCP)

∥aj∥
k j

At step k = 1, . . . , n

1. select column j of largest norm

2. permute columns k and j

3. reduce column k via Householder transform

4. update trailing submatrix (at least row k)

5. update column norms

▲ Norm of the trailing submatrix is readily available

▼ Partial block version exists but still poor computational efficiency and parallelization

22/46

QR with column pivoting (QRCP)

∥aj∥
k

j

At step k = 1, . . . , n

1. select column j of largest norm

2. permute columns k and j

3. reduce column k via Householder transform

4. update trailing submatrix (at least row k)

5. update column norms

▲ Norm of the trailing submatrix is readily available

▼ Partial block version exists but still poor computational efficiency and parallelization

22/46

QR with column pivoting (QRCP)

∥aj∥
k

j

At step k = 1, . . . , n

1. select column j of largest norm

2. permute columns k and j

3. reduce column k via Householder transform

4. update trailing submatrix (at least row k)

5. update column norms

▲ Norm of the trailing submatrix is readily available

▼ Partial block version exists but still poor computational efficiency and parallelization

22/46

QR with column pivoting (QRCP)

∥aj∥

k j

At step k = 1, . . . , n

1. select column j of largest norm

2. permute columns k and j

3. reduce column k via Householder transform

4. update trailing submatrix (at least row k)

5. update column norms

▲ Norm of the trailing submatrix is readily available

▼ Partial block version exists but still poor computational efficiency and parallelization

22/46

QR with column pivoting (QRCP)

∥aj∥
k j

At step k = 1, . . . , n

1. select column j of largest norm

2. permute columns k and j

3. reduce column k via Householder transform

4. update trailing submatrix (at least row k)

5. update column norms

▲ Norm of the trailing submatrix is readily available

▼ Partial block version exists but still poor computational efficiency and parallelization

22/46

Randomized LRA

• Let B = AΩ, where Ω ∈ Rn×ℓ is a random Gaussian matrix (ωij ∼ N (0, 1)). Then
Q = qr(B) provides a rank-ℓ approximation A ≈ Q(QTA) as good as the best
rank-k approximation for ℓ = k + p and small p.

• A rank-k approximation can then be recovered with any deterministic LRA.
 Halko, Martinsson, Tropp (2011)

Input: A ∈ Rm×n, k, p
Output: X ∈ Rm×k , Y ∈ Rn×k such that A ≈ XY T

Ω← randn(n, k + p)
B ← AΩ
Q ← qr(B)
C ← QTA
ZY T ← LRA(C , k)
X ← QZ

• Matrix products are the computational bottleneck ⇒ very efficient!23/46

https://doi.org/10.1137/090771806

QR with randomized pivoting (QRRP)

S Duersch and Gu (2017) Martinsson et al. (2017)

Compute a sample S = ΩA using a random matrix
Ω. At step k = 1 : b : n

1. compute QR of S with B-G pivoting to select
the “best” b columns

2. permute the selected columns upfront

3. reduce b columns via Householder transform

4. update trailing submatrix

5. update S

▲ High efficiency and parallelization

▲ Norm of the trailing submatrix is indirectly available through the sample:
∥sj∥ =

√
b∥aj∥ works ok in practice

24/46

https://doi.org/10.1137/15M1044680
https://doi.org/10.1137/16M1081270

QR with randomized pivoting (QRRP)

S Duersch and Gu (2017) Martinsson et al. (2017)

Compute a sample S = ΩA using a random matrix
Ω. At step k = 1 : b : n

1. compute QR of S with B-G pivoting to select
the “best” b columns

2. permute the selected columns upfront

3. reduce b columns via Householder transform

4. update trailing submatrix

5. update S

▲ High efficiency and parallelization

▲ Norm of the trailing submatrix is indirectly available through the sample:
∥sj∥ =

√
b∥aj∥ works ok in practice

24/46

https://doi.org/10.1137/15M1044680
https://doi.org/10.1137/16M1081270

QR with randomized pivoting (QRRP)

S Duersch and Gu (2017) Martinsson et al. (2017)

Compute a sample S = ΩA using a random matrix
Ω. At step k = 1 : b : n

1. compute QR of S with B-G pivoting to select
the “best” b columns

2. permute the selected columns upfront

3. reduce b columns via Householder transform

4. update trailing submatrix

5. update S

▲ High efficiency and parallelization

▲ Norm of the trailing submatrix is indirectly available through the sample:
∥sj∥ =

√
b∥aj∥ works ok in practice

24/46

https://doi.org/10.1137/15M1044680
https://doi.org/10.1137/16M1081270

QR with randomized pivoting (QRRP)

S Duersch and Gu (2017) Martinsson et al. (2017)

Compute a sample S = ΩA using a random matrix
Ω. At step k = 1 : b : n

1. compute QR of S with B-G pivoting to select
the “best” b columns

2. permute the selected columns upfront

3. reduce b columns via Householder transform

4. update trailing submatrix

5. update S

▲ High efficiency and parallelization

▲ Norm of the trailing submatrix is indirectly available through the sample:
∥sj∥ =

√
b∥aj∥ works ok in practice

24/46

https://doi.org/10.1137/15M1044680
https://doi.org/10.1137/16M1081270

QR with randomized pivoting (QRRP)

S Duersch and Gu (2017) Martinsson et al. (2017)

Compute a sample S = ΩA using a random matrix
Ω. At step k = 1 : b : n

1. compute QR of S with B-G pivoting to select
the “best” b columns

2. permute the selected columns upfront

3. reduce b columns via Householder transform

4. update trailing submatrix

5. update S

▲ High efficiency and parallelization

▲ Norm of the trailing submatrix is indirectly available through the sample:
∥sj∥ =

√
b∥aj∥ works ok in practice

24/46

https://doi.org/10.1137/15M1044680
https://doi.org/10.1137/16M1081270

QR with randomized pivoting (QRRP)

S Duersch and Gu (2017) Martinsson et al. (2017)

Compute a sample S = ΩA using a random matrix
Ω. At step k = 1 : b : n

1. compute QR of S with B-G pivoting to select
the “best” b columns

2. permute the selected columns upfront

3. reduce b columns via Householder transform

4. update trailing submatrix

5. update S

▲ High efficiency and parallelization

▲ Norm of the trailing submatrix is indirectly available through the sample:
∥sj∥ =

√
b∥aj∥ works ok in practice

24/46

https://doi.org/10.1137/15M1044680
https://doi.org/10.1137/16M1081270

QR with randomized pivoting (QRRP)

S

 Duersch and Gu (2017) Martinsson et al. (2017)

Compute a sample S = ΩA using a random matrix
Ω. At step k = 1 : b : n

1. compute QR of S with B-G pivoting to select
the “best” b columns

2. permute the selected columns upfront

3. reduce b columns via Householder transform

4. update trailing submatrix

5. update S

▲ High efficiency and parallelization

▲ Norm of the trailing submatrix is indirectly available through the sample:
∥sj∥ =

√
b∥aj∥ works ok in practice

24/46

https://doi.org/10.1137/15M1044680
https://doi.org/10.1137/16M1081270

Mixed precision

Low-rank approximations

Mixed precision low-rank approximations

25/46

Mixed precision low-rank approximations

Three approaches to combine mixed precision and low-rank approximations:

• Multiword arithmetic: use multiword arithmetic to accelerate matrix products, by
combining randomized methods with fast hardware such as NVIDIA tensor cores

• Adaptive precision: adapt the precision to the matrix at hand, taking advantage
of the possibly rapid decay of singular values

• Iterative refinement: compute a low precision LRA and refine its accuracy
iteratively, drawing inspiration from IR for Ax = b

26/46

LRA with multiword arithmetic

Input: A ∈ Rm×n, k, p
Output: X ∈ Rm×k , Y ∈ Rn×k such that A ≈ XY T

Ω← randn(n, k + p)
Compute the MW decomp. A ≈ A1 + A2.
Compute the MW decomp. Ω ≈ Ω1 +Ω2.
B ← A1Ω1 + A2Ω1 + A1Ω2

Q ← qr(B)
Compute the MW decomp. Q ≈ Q1 + Q2.
C ← AT

1 Q1 + AT
2 Q1 + AT

1 Q2

ZY T ← LRA(C , k)
X ← QZ

• If the speed ratio between fp16/fp32 is s, then for asymptotically large matrices this
algorithm should be s/3 faster compared with the uniform fp32 algorithm.

27/46

LRA with multiword arithmetic

• The expectation of the approximation error remains unchanged if Ω ∼ N (0, σ) as
long as σ ≈ 1. Ootomo and Yokota (2023)

• Generating Ω in a t-bit arithmetic yields σ ≈ 1 + 2−t ⇒ can store Ω in low
precision and reduce the cost of the AΩ product!

Input: A ∈ Rm×n, k , p
Output: X ∈ Rm×k , Y ∈ Rn×k such that A ≈ XY T

Ω1 ← randn(n, k + p) in fp16.
Compute the MW decomp. A ≈ A1 + A2.
B ← A1Ω1 + A2Ω1 +A1Ω2

Q ← qr(B)
Compute the MW decomp. Q ≈ Q1 + Q2.
C ← AT

1 Q1 + AT
2 Q1 + AT

1 Q2

ZY T ← LRA(C , k)
X ← QZ

If the speed ratio between
fp16/fp32 is s, then for
asymptotically large matrices
this algorithm should be 2s/5
faster compared with the
uniform fp32 algorithm.

28/46

https://doi.org/10.1145/3592979.3593413

Discussion

• Randomized LRA with multiword arithmetic
▲ Conceptually very simple and transparent for the user
▲ Rigorous control of the accuracy via emulation
▼ Restricted to randomized methods and to fast “tensor core” hardware

• Adaptive precision LRA
▲ Can be applied to a wide range of LRA methods
▲ Rigorous control of the accuracy via adaptive criterion
▼ Performance gains conditioned on rapid decay of singular values

• Iterative refinement for LRA
▲ Unifies both previous methods: can take advantage of both fast hardware and rapid

decay of singular values
▲ Rigorous control of the accuracy via refinement
▼ Requires more flops than either of the two previous methods

Take-away: mixed precision, low-rank approximations, and randomization
synergize well together!

29/46

Adaptive precision low rank compression

U

V T

U1U2 U3

V T
1

V T
2

V T
3

precision u1
precision u2

precision u3

Σ∥B∥

ϵ

ϵ/u2

ϵ/u3

• Adaptive precision compression: partition U and V into q groups of decreasing
precisions u1 ≤ ϵ < u2 < . . . < uq

• Why does it work? B = B1 + B2 + B3 with |Bi | ≤ O(∥Σi∥)
• With p precisions and a partitioning such that ∥Σk∥ ≤ ϵ∥B∥/uk ,
∥B − ÛϵΣϵV̂ϵ∥ ≲ (2p − 1)ϵ∥B∥
 Amestoy, Boiteau, Buttari, Gerest, Jézéquel, L’Excellent, M. (2022)

30/46

https://doi.org/10.1093/imanum/drac037

Adaptive precision low rank compression

U

V T

U1U2 U3

V T
1

V T
2

V T
3

precision u1
precision u2

precision u3

Σ∥B∥

ϵ

ϵ/u2

ϵ/u3

• Adaptive precision compression: partition U and V into q groups of decreasing
precisions u1 ≤ ϵ < u2 < . . . < uq

• Why does it work? B = B1 + B2 + B3 with |Bi | ≤ O(∥Σi∥)
• With p precisions and a partitioning such that ∥Σk∥ ≤ ϵ∥B∥/uk ,
∥B − ÛϵΣϵV̂ϵ∥ ≲ (2p − 1)ϵ∥B∥
 Amestoy, Boiteau, Buttari, Gerest, Jézéquel, L’Excellent, M. (2022)

30/46

https://doi.org/10.1093/imanum/drac037

Adaptive precision low rank compression

U

V T

U1U2 U3

V T
1

V T
2

V T
3

precision u1
precision u2

precision u3

Σ∥B∥

ϵ

ϵ/u2

ϵ/u3

• Adaptive precision compression: partition U and V into q groups of decreasing
precisions u1 ≤ ϵ < u2 < . . . < uq

• Why does it work? B = B1 + B2 + B3 with |Bi | ≤ O(∥Σi∥)

• With p precisions and a partitioning such that ∥Σk∥ ≤ ϵ∥B∥/uk ,
∥B − ÛϵΣϵV̂ϵ∥ ≲ (2p − 1)ϵ∥B∥
 Amestoy, Boiteau, Buttari, Gerest, Jézéquel, L’Excellent, M. (2022)

30/46

https://doi.org/10.1093/imanum/drac037

Adaptive precision low rank compression

U

V T

U1U2 U3

V T
1

V T
2

V T
3

precision u1
precision u2

precision u3

Σ∥B∥

ϵ

ϵ/u2

ϵ/u3

• Adaptive precision compression: partition U and V into q groups of decreasing
precisions u1 ≤ ϵ < u2 < . . . < uq

• Why does it work? B = B1 + B2 + B3 with |Bi | ≤ O(∥Σi∥)
• With p precisions and a partitioning such that ∥Σk∥ ≤ ϵ∥B∥/uk ,
∥B − ÛϵΣϵV̂ϵ∥ ≲ (2p − 1)ϵ∥B∥
 Amestoy, Boiteau, Buttari, Gerest, Jézéquel, L’Excellent, M. (2022)

30/46

https://doi.org/10.1093/imanum/drac037

Performance illustration on Full-Waveform Inversion

• Adastra MUMPS4FWI project led by WIND team

• Application: Gorgon Model, reservoir 23km x 11km x 6.5km,
grid size 15m, Helmholtz equation, 25-Hz

• Complex matrix, 531 Million dofs, storage(A)=220 GBytes;

• FR cost: flops for one LU factorization= 2.6× 1018;
Estimated storage for LU factors= 73 TBytes (25-Hz Gorgon FWI velocity model)

FR (Full-Rank); BLR with ε = 10−5; 48 000 cores (500 MPI × 96 threads/MPI)
FR: fp32; Mixed precision BLR: 3 precisions (32bits, 24bits, 16bits) for storage

LU size (TBytes) Flops Time BLR + Mixed (sec) Scaled Resid.

FR BLR +mixed FR BLR+mixed Analysis Facto Solve BLR+mixed

73 34 26 2.6× 1018 0.5× 1018 446 5500 27 7× 10−4

in practice: hundreds to thousands of Solve steps (sparse right hand sides (sources))

31/46

https://www.geoazur.fr/WIND/bin/view

Performance illustration on Full-Waveform Inversion

• Adastra MUMPS4FWI project led by WIND team

• Application: Gorgon Model, reservoir 23km x 11km x 6.5km,
grid size 15m, Helmholtz equation, 25-Hz

• Complex matrix, 531 Million dofs, storage(A)=220 GBytes;

• FR cost: flops for one LU factorization= 2.6× 1018;
Estimated storage for LU factors= 73 TBytes (25-Hz Gorgon FWI velocity model)

FR (Full-Rank); BLR with ε = 10−5; 48 000 cores (500 MPI × 96 threads/MPI)
FR: fp32; Mixed precision BLR: 3 precisions (32bits, 24bits, 16bits) for storage

LU size (TBytes) Flops Time BLR + Mixed (sec) Scaled Resid.

FR BLR +mixed FR BLR+mixed Analysis Facto Solve BLR+mixed

73 34 26 2.6× 1018 0.5× 1018 446 5500 27 7× 10−4

in practice: hundreds to thousands of Solve steps (sparse right hand sides (sources))

31/46

https://www.geoazur.fr/WIND/bin/view

Householder QR in finite precision

• Can we compute an LRA directly in adaptive precision form?

• At step i of a the Householder QR factorization, for each column b we compute
b̂i = H i (b̂i−1 +∆bi−1) where ∥∆bi−1∥ ≤ mu∥b̂i−1∥ = mu∥b∥

• In the specific case of the QR factorization, the H transforms have a peculiar
structure:

H i b̂i−1 =

[
I i−1

H̄ i

][
b̂i−1
1:i−1

b̂i−1
i :m

]
and, therefore,

∥∆bi−1∥ ≤ (m − i)u∥b̂i−1
i :m ∥

• Introducing mixed precision: because all the H i and H̄ i are unitary
transformations, ∥b̂i−1

i :m ∥ will be monotonically decreasing for i = 1, . . . , k
−→ starting at some i , u can be increased without increasing the error

32/46

Householder QR in finite precision

• Can we compute an LRA directly in adaptive precision form?

• At step i of a the Householder QR factorization, for each column b we compute
b̂i = H i (b̂i−1 +∆bi−1) where ∥∆bi−1∥ ≤ mu∥b̂i−1∥ = mu∥b∥

• In the specific case of the QR factorization, the H transforms have a peculiar
structure:

H i b̂i−1 =

[
I i−1

H̄ i

][
b̂i−1
1:i−1

b̂i−1
i :m

]
and, therefore,

∥∆bi−1∥ ≤ (m − i)u∥b̂i−1
i :m ∥

• Introducing mixed precision: because all the H i and H̄ i are unitary
transformations, ∥b̂i−1

i :m ∥ will be monotonically decreasing for i = 1, . . . , k
−→ starting at some i , u can be increased without increasing the error

32/46

Truncated Householder QR in mixed precision

Theorem

Assume that a truncated QR factorization is computed such that k ≤ n Householder
transformations are computed and applied to a matrix A ∈ Rm×n using p different
precisions of increasing unit roundoff ui . Let k i be the number of transformations that
are computed using precision i . The computed R̂i and Q̂i satisfy

∥A−
p∑

i=1

Q̂i R̂i∥ ≤ ∥Ap+1∥+
p∑

i=1

cmk iui∥Ai∥.

where Ai is the trailing submatrix after
∑i−1

j=1 kj transformations.

 Buttari, M., Pacteau (2024)

33/46

https://hal.science/hal-04490215

Truncated Householder QR in mixed precision

Using this result into an algorithm:

1. start the factorization with u1 ≤ ε

2. if after k1 transformations ∥A2∥ ≤ ε/u2∥A∥, switch to prec. u2
3. same for precisions 2, . . . , p

4. if after k1 + · · ·+ kp transformations ∥Ap+1∥ ≤ ε∥A∥, stop

A

34/46

Truncated Householder QR in mixed precision

Using this result into an algorithm:

1. start the factorization with u1 ≤ ε

2. if after k1 transformations ∥A2∥ ≤ ε/u2∥A∥, switch to prec. u2

3. same for precisions 2, . . . , p

4. if after k1 + · · ·+ kp transformations ∥Ap+1∥ ≤ ε∥A∥, stop

Q̂1

Â2

R̂1

34/46

Truncated Householder QR in mixed precision

Using this result into an algorithm:

1. start the factorization with u1 ≤ ε

2. if after k1 transformations ∥A2∥ ≤ ε/u2∥A∥, switch to prec. u2
3. same for precisions 2, . . . , p

4. if after k1 + · · ·+ kp transformations ∥Ap+1∥ ≤ ε∥A∥, stop

Q̂1 Q̂2

R̂1

Â3

R̂2

34/46

Truncated Householder QR in mixed precision

Using this result into an algorithm:

1. start the factorization with u1 ≤ ε

2. if after k1 transformations ∥A2∥ ≤ ε/u2∥A∥, switch to prec. u2
3. same for precisions 2, . . . , p

4. if after k1 + · · ·+ kp transformations ∥Ap+1∥ ≤ ε∥A∥, stop

Q̂1 Q̂2 Q̂3

R̂1

R̂2

Â4

R̂3

34/46

Truncated Householder QR in mixed precision

Using this result into an algorithm:

1. start the factorization with u1 ≤ ε

2. if after k1 transformations ∥A2∥ ≤ ε/u2∥A∥, switch to prec. u2
3. same for precisions 2, . . . , p

4. if after k1 + · · ·+ kp transformations ∥Ap+1∥ ≤ ε∥A∥, stop

Q̂1 Q̂2 Q̂3

R̂1

R̂2

R̂3

∥A− Q̂1R̂1 − Q̂2R̂2 − Q̂3R̂3∥ ≤ βε∥A∥

34/46

Experiments: Julia

1 512 1,024 1,536 2,048

10−10

10−8

10−6

10−4

10−2

100

E
rr
or
Phillips, FP64+FP32+BFloat16, m = n = 2048

SVD

diag(R)

35/46

Experiments: Julia

ε = 10−10

1 512 1,024 1,536 2,048

10−10

10−8

10−6

10−4

10−2

100

E
rr
or
Phillips, FP64+FP32+BFloat16, m = n = 2048

SVD

diag(R)

35/46

Experiments: Julia

ε = 10−8

1 512 1,024 1,536 2,048

10−10

10−8

10−6

10−4

10−2

100

E
rr
or
Phillips, FP64+FP32+BFloat16, m = n = 2048

SVD

diag(R)

35/46

Experiments: Julia

ε = 10−6

1 512 1,024 1,536 2,048

10−10

10−8

10−6

10−4

10−2

100

E
rr
or
Phillips, FP64+FP32+BFloat16, m = n = 2048

SVD

diag(R)

35/46

Experiments: Julia, image compression

With ε = 0.04 the rank is 191 but only 13 steps are done in fp32 and the rest in bf16
(original size is 1057× 1600)

orig.

fp32/bf16

fp32

bf16

36/46

Experiments: Fortran, performance

10−14 10−12 10−10 10−8 10−6

0.2

0.4

0.6

0.8

1

ε

n
or
m
al
iz
ed

ti
m
e

phillips, m = n = 8192

fp64 QRCP fp64/fp32 QRCP
fp64 QRRP fp64/fp32 QRRP

37/46

Discussion

• Randomized LRA with multiword arithmetic
▲ Conceptually very simple and transparent for the user
▲ Rigorous control of the accuracy via emulation
▼ Restricted to randomized methods and to fast “tensor core” hardware

• Adaptive precision LRA
▲ Can be applied to a wide range of LRA methods
▲ Rigorous control of the accuracy via adaptive criterion
▼ Performance gains conditioned on rapid decay of singular values

• Iterative refinement for LRA
▲ Unifies both previous methods: can take advantage of both fast hardware and rapid

decay of singular values
▲ Rigorous control of the accuracy via refinement
▼ Requires more flops than either of the two previous methods

Take-away: mixed precision, low-rank approximations, and randomization
synergize well together!

38/46

Iterative refinement for LRA

Can we refine a low precision LRA into a higher precision one?

1. Apply method to input in low precision

2. Compute residual error in high precision

3. Apply method to residual error in low precision

4. Combine result of (1) and (3) to obtain refined result in high precision

• Can recompress X1Y
T
1 from rank 3r to rank r

• Achieves u2low accuracy with most of the work done in precision ulow
• Can repeat process: after i iterations, the computed XiY

T
i satisfies

∥A− XiY
T
i ∥ ≤ (ϕi+1 + ξ + O(ulowuhigh))∥A∥

◦ ϕ = O(ulow) is the convergence speed
◦ ξ = O(uhigh) is the attainable accuracy

 Baboulin, Kaya, M., Robeyns (2023)

39/46

https://inria.hal.science/hal-04115337

Iterative refinement for LRA

Can we refine a low precision LRA into a higher precision one?

Input: a matrix A
Output: its low-rank factors X1Y

T
1

1: Compute LRA X0Y
T
0 ≈ A in precision ulow.

2: Compute E = A− X0Y
T
0 in precision uhigh.

3: Compute LRA XEY
T
E ≈ E in precision ulow.

4: X1 = [X0 XE] and Y1 = [Y0 YE].

• Can recompress X1Y
T
1 from rank 3r to rank r

• Achieves u2low accuracy with most of the work done in precision ulow
• Can repeat process: after i iterations, the computed XiY

T
i satisfies

∥A− XiY
T
i ∥ ≤ (ϕi+1 + ξ + O(ulowuhigh))∥A∥

◦ ϕ = O(ulow) is the convergence speed
◦ ξ = O(uhigh) is the attainable accuracy

 Baboulin, Kaya, M., Robeyns (2023)

39/46

https://inria.hal.science/hal-04115337

Iterative refinement for LRA

Can we refine a low precision LRA into a higher precision one?

Input: a matrix A
Output: its low-rank factors X1Y

T
1

1: Compute LRA X0Y
T
0 ≈ A in precision ulow.

2: Compute E = A− X0Y
T
0 in precision uhigh.

3: Compute LRA XEY
T
E ≈ E in precision ulow.

4: X1 = [X0 XE] and Y1 = [Y0 YE].

A

→

X0Y
T
0

r

• Can recompress X1Y
T
1 from rank 3r to rank r

• Achieves u2low accuracy with most of the work done in precision ulow
• Can repeat process: after i iterations, the computed XiY

T
i satisfies

∥A− XiY
T
i ∥ ≤ (ϕi+1 + ξ + O(ulowuhigh))∥A∥

◦ ϕ = O(ulow) is the convergence speed
◦ ξ = O(uhigh) is the attainable accuracy

 Baboulin, Kaya, M., Robeyns (2023)

39/46

https://inria.hal.science/hal-04115337

Iterative refinement for LRA

Can we refine a low precision LRA into a higher precision one?

Input: a matrix A
Output: its low-rank factors X1Y

T
1

1: Compute LRA X0Y
T
0 ≈ A in precision ulow.

2: Compute E = A− X0Y
T
0 in precision uhigh.

3: Compute LRA XEY
T
E ≈ E in precision ulow.

4: X1 = [X0 XE] and Y1 = [Y0 YE].

E

rank(E)

=

≤

A

rank(A)

−

+

X0Y
T
0

r

r

• Can recompress X1Y
T
1 from rank 3r to rank r

• Achieves u2low accuracy with most of the work done in precision ulow
• Can repeat process: after i iterations, the computed XiY

T
i satisfies

∥A− XiY
T
i ∥ ≤ (ϕi+1 + ξ + O(ulowuhigh))∥A∥

◦ ϕ = O(ulow) is the convergence speed
◦ ξ = O(uhigh) is the attainable accuracy

 Baboulin, Kaya, M., Robeyns (2023)

39/46

https://inria.hal.science/hal-04115337

Iterative refinement for LRA

Can we refine a low precision LRA into a higher precision one?

Input: a matrix A
Output: its low-rank factors X1Y

T
1

1: Compute LRA X0Y
T
0 ≈ A in precision ulow.

2: Compute E = A− X0Y
T
0 in precision uhigh.

3: Compute LRA XEY
T
E ≈ E in precision ulow.

4: X1 = [X0 XE] and Y1 = [Y0 YE].

E

→

XEY
T
E

2r

• Can recompress X1Y
T
1 from rank 3r to rank r

• Achieves u2low accuracy with most of the work done in precision ulow
• Can repeat process: after i iterations, the computed XiY

T
i satisfies

∥A− XiY
T
i ∥ ≤ (ϕi+1 + ξ + O(ulowuhigh))∥A∥

◦ ϕ = O(ulow) is the convergence speed
◦ ξ = O(uhigh) is the attainable accuracy

 Baboulin, Kaya, M., Robeyns (2023)

39/46

https://inria.hal.science/hal-04115337

Iterative refinement for LRA

Can we refine a low precision LRA into a higher precision one?

Input: a matrix A
Output: its low-rank factors X1Y

T
1

1: Compute LRA X0Y
T
0 ≈ A in precision ulow.

2: Compute E = A− X0Y
T
0 in precision uhigh.

3: Compute LRA XEY
T
E ≈ E in precision ulow.

4: X1 = [X0 XE] and Y1 = [Y0 YE].

X1Y
T
1

3r

=

X0Y
T
0

r

+

XEY
T
E

2r

• Can recompress X1Y
T
1 from rank 3r to rank r

• Achieves u2low accuracy with most of the work done in precision ulow
• Can repeat process: after i iterations, the computed XiY

T
i satisfies

∥A− XiY
T
i ∥ ≤ (ϕi+1 + ξ + O(ulowuhigh))∥A∥

◦ ϕ = O(ulow) is the convergence speed
◦ ξ = O(uhigh) is the attainable accuracy

 Baboulin, Kaya, M., Robeyns (2023)

39/46

https://inria.hal.science/hal-04115337

Iterative refinement for LRA

Can we refine a low precision LRA into a higher precision one?

Input: a matrix A
Output: its low-rank factors X1Y

T
1

1: Compute LRA X0Y
T
0 ≈ A in precision ulow.

2: Compute E = A− X0Y
T
0 in precision uhigh.

3: Compute LRA XEY
T
E ≈ E in precision ulow.

4: X1 = [X0 XE] and Y1 = [Y0 YE].

• Can recompress X1Y
T
1 from rank 3r to rank r

• Achieves u2low accuracy with most of the work done in precision ulow
• Can repeat process: after i iterations, the computed XiY

T
i satisfies

∥A− XiY
T
i ∥ ≤ (ϕi+1 + ξ + O(ulowuhigh))∥A∥

◦ ϕ = O(ulow) is the convergence speed
◦ ξ = O(uhigh) is the attainable accuracy

 Baboulin, Kaya, M., Robeyns (2023)39/46

https://inria.hal.science/hal-04115337

LRA-IR experiments (MATLAB)

0 2 4 6

Number of IR steps

10
-15

10
-10

10
-5

10
0

E
rr

o
rs

51

Double

40/46

LRA-IR experiments (MATLAB)

0 2 4 6

Number of IR steps

10
-15

10
-10

10
-5

10
0

E
rr

o
rs

51

16

46

Double

Single

40/46

LRA-IR experiments (MATLAB)

0 2 4 6

Number of IR steps

10
-15

10
-10

10
-5

10
0

E
rr

o
rs

51

16

46

7

13

25

41

Double

Single

Half

40/46

LRA-IR experiments (MATLAB)

0 2 4 6

Number of IR steps

10
-15

10
-10

10
-5

10
0

E
rr

o
rs

51

16

46

7

13

25

41

4

7

14

23

33

46

Double

Single

Half

Bfloat

40/46

Cost analysis of LRA-IR

IR faster than standard high precision LRA in two scenarios:

• If the ranks ri at the early iterations are much smaller than the final rank: ri ≪ r ⇒
requires rapid decay of singular values

• If the low precision is much faster than high precision ⇒ requires specialized
hardware (e.g., NVIDIA tensor cores)

LRA-IR therefore bridges the gap between adaptive precision LRA and multiword LRA!

• Large singular values are computed with low precision but high accuracy, à la
multiword arithmetic

• Small singular values are computed with low precision and low accuracy

41/46

Randomized SVD with tensor cores

Input: a matrix A32 ∈ Rm×n, the target rank k
Output: X16 ∈ Rm×k and Y16 ∈ Rn×k such that A32 ≈ X16Y

T
16.

Ω16 = randn(n, k)
A16 = fp16(A32)
B32 = tcgemm16|32(A16,Ω16)
Q32 = qr(B32)
X16 = fp16(Q32)
Y16 = tcgemm16|32(A

T
16,X16)

42/46

Randomized SVD with tensor cores + IR

Input: a matrix A32 ∈ Rm×n, the target rank k
Output: X16 ∈ Rm×k and Y16 ∈ Rn×k such that A32 ≈ X16Y

T
16.

[X16,Y16] = RandLRA(A32, k)
E32 = A32 − tcgemm16|32(X16,Y

T
16)

[X ′
16,Y

′
16] = RandLRA(E32, 2k)

X16 = [X16,X
′
16]

Y16 = [Y16,Y
′
16]

• Since input of tcgemm is already in fp16, can use tensor cores to compute E32 with
fp32 accuracy!

43/46

LRA-IR experiments (tensor cores)

0 256 512 768 1024

0

50

100

150

0 256 512 768 1024

10
-6

10
-4

10
-2

10
0

 Baboulin, Donfack, Kaya, M., Robeyns (2024)

44/46

https://doi.org/10.1007/978-3-031-69583-4_3

LRA-IR experiments (tensor cores)

0 256 512 768 1024

0

50

100

150

0 256 512 768 1024

10
-6

10
-4

10
-2

10
0

 Baboulin, Donfack, Kaya, M., Robeyns (2024)

44/46

https://doi.org/10.1007/978-3-031-69583-4_3

Discussion

• Randomized LRA with multiword arithmetic
▲ Conceptually very simple and transparent for the user
▲ Rigorous control of the accuracy via emulation
▼ Restricted to randomized methods and to fast “tensor core” hardware

• Adaptive precision LRA
▲ Can be applied to a wide range of LRA methods
▲ Rigorous control of the accuracy via adaptive criterion
▼ Performance gains conditioned on rapid decay of singular values

• Iterative refinement for LRA
▲ Unifies both previous methods: can take advantage of both fast hardware and rapid

decay of singular values
▲ Rigorous control of the accuracy via refinement
▼ Requires more flops than either of the two previous methods

Take-away: mixed precision, low-rank approximations, and randomization
synergize well together!

45/46

Discussion

• Randomized LRA with multiword arithmetic
▲ Conceptually very simple and transparent for the user
▲ Rigorous control of the accuracy via emulation
▼ Restricted to randomized methods and to fast “tensor core” hardware

• Adaptive precision LRA
▲ Can be applied to a wide range of LRA methods
▲ Rigorous control of the accuracy via adaptive criterion
▼ Performance gains conditioned on rapid decay of singular values

• Iterative refinement for LRA
▲ Unifies both previous methods: can take advantage of both fast hardware and rapid

decay of singular values
▲ Rigorous control of the accuracy via refinement
▼ Requires more flops than either of the two previous methods

Take-away: mixed precision, low-rank approximations, and randomization
synergize well together!

45/46

References
• Multiword matrix multiplication

 Fasi, Higham, Lopez, M., Mikaitis (2023)

 Blanchard, Higham, Lopez, M., Pranesh (2020)

• Iterative refinement for Ax = b
 Amestoy, Buttari, Higham, L’Excellent, M., Vieublé (2024)

 Amestoy, Buttari, Higham, L’Excellent, M., Vieublé (2023)

• Adaptive precision SpMV
 Graillat, Jézéquel, M., Molina (2024)

 Graillat, Jézéquel, M., Molina, Mukunoki (2024)

• Adaptive precision LRA
 Amestoy, Boiteau, Buttari, Gerest, Jézéquel, L’Excellent, M. (2022)

 Buttari, M., Pacteau (2024)

• Iterative refinement for LRA
 Baboulin, Kaya, M., Robeyns (2023)

 Baboulin, Donfack, Kaya, M., Robeyns (2024)

Thanks!
Questions?

https://doi.org/10.1137/21M1465032
https://epubs.siam.org/doi/10.1137/19M1289546
https://doi.org/10.1137/23M1549079
https://doi.org/10.1137/23M1549079
https://doi.org/10.1137/22M1522619
https://doi.org/10.1007/978-3-031-69583-4_2
https://doi.org/10.1093/imanum/drac037
https://hal.science/hal-04490215
https://inria.hal.science/hal-04115337
https://doi.org/10.1007/978-3-031-69583-4_3

	Mixed precision
	Low-rank approximations
	Mixed precision low-rank approximations

