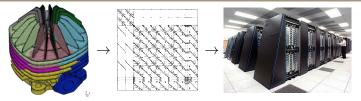
Complexity, Scalability, and Stability of Block Low-Rank Solvers

Theo Mary University of Manchester, School of Mathematics LIP, ENS Lyon, 11 December 2018

Context



Linear system Ax = b

Often a keystone in scientific computing applications (discretization of PDEs, step of an optimization method, ...)

Large, sparse matrices

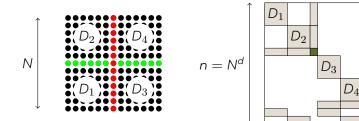
Matrix A is sparse (many zeros) but also large $(10^6 - 10^9$ unknowns)

Direct methods

Factorize A = LU and solve LUx = b

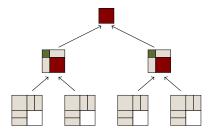
© Numerically reliable © Computational cost

Structural sparsity



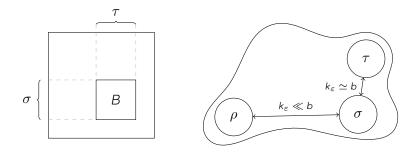
2D problem complexity

- Flops: $O(n^3) \rightarrow O(n^{3/2})$
- Storage: $O(n^2) \rightarrow O(n \log n)$ 3D problem complexity
- Flops: $O(n^3) \rightarrow O(n^2)$
- Storage: $O(n^2) \rightarrow O(n^{4/3})$



Data sparsity

In many cases of interest the matrix has a block low-rank structure



A block *B* represents the interaction between two subdomains. Far away subdomains \Rightarrow block of low numerical rank:

$$egin{array}{cccc} B &pprox & X & Y^{ au} \ b imes b & b imes k_arepsilon & k_arepsilon imes b \end{array}$$

with
$$k_{\varepsilon} \ll b$$
 such that $||B - XY^T|| \leq \varepsilon$

Theo Mary

Flat vs hierarchical matrices

How to choose a good block partitioning of the matrix?

BLR matrix

- Superlinear complexity
- Simple, flat structure

 $\mathcal H ext{-matrix}$

- Nearly linear complexity
- Complex, hierarchical structure

Outline

1. Asymptotic complexity of BLR factorization

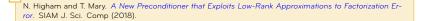
P. Amestoy, A. Buttari, J.-Y. L'Excellent, and T. Mary. *On the Complexity of the Block Low-Rank Multifrontal Factorization*. SIAM J. Sci. Comput. (2017).

P. Amestoy, A. Buttari, J.-Y. L'Excellent, and T. Mary. *Bridging the gap between flat and hierarchical low-rank matrix formats: the multilevel BLR format.* Submitted (2018).

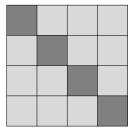
2. Performance and scalability of BLR solvers

P. Amestoy, A. Buttari, J.-Y. L'Excellent, and T. Mary. *Performance and Scalability of the Block Low-Rank Multifrontal Factorization on Multicore Architectures*. ACM Trans. Math. Soft. (2018).

- 3. Rounding error analysis of BLR factorization
- 4. Low-accuracy BLR preconditioners



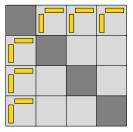
Asymptotic complexity of BLR factorization



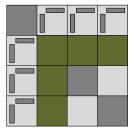
• FCU

Theo Mary

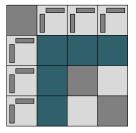
- FCU (Factor,
- Easy to handle numerical pivoting



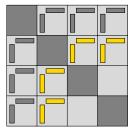
- FCU (Factor, Compress,
- Easy to handle numerical pivoting



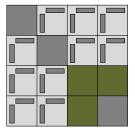
- FCU (Factor, Compress, Update)
- Easy to handle numerical pivoting



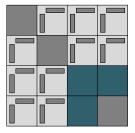
- FCU (Factor, Compress, Update)
- Easy to handle numerical pivoting



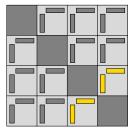
- FCU (Factor, Compress, Update)
- Easy to handle numerical pivoting



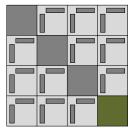
- FCU (Factor, Compress, Update)
- Easy to handle numerical pivoting



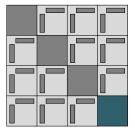
- FCU (Factor, Compress, Update)
- Easy to handle numerical pivoting



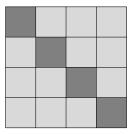
- FCU (Factor, Compress, Update)
- Easy to handle numerical pivoting



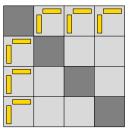
- FCU (Factor, Compress, Update)
- Easy to handle numerical pivoting



- FCU (Factor, Compress, Update)
- Easy to handle numerical pivoting



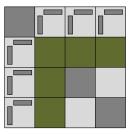
• CFU



• CFU (Compress,

Theo Mary

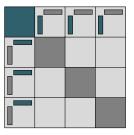
- CFU (Compress, Factor,
- Factor step is performed on compressed blocks ⇒ reduced flops



- CFU (Compress, Factor, Update)
- Factor step is performed on compressed blocks ⇒ reduced flops

- CFU (Compress, Factor, Update)
- Factor step is performed on compressed blocks ⇒ reduced flops
- How can we handle numerical pivoting?

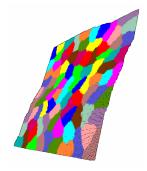
- CFU (Compress, Factor, Update)
- Factor step is performed on compressed blocks ⇒ reduced flops
- How can we handle numerical pivoting?
 - Restricting pivot choice to diagonal block is acceptable (in combination with a pivot delaying strategy)



- CFU (Compress, Factor, Update)
- Factor step is performed on compressed blocks ⇒ reduced flops
- How can we handle numerical pivoting?
 - Restricting pivot choice to diagonal block is acceptable (in combination with a pivot delaying strategy)
 - Must still check entries in off-diagonal blocks: can be estimated from entries in low-rank blocks

Complexity of the dense BLR factorization

Complexity analysis based on \mathcal{H} matrix theory and requires the important assumption that the number of full-rank blocks per row/column is constant \Rightarrow can be guaranteed with an adequate clustering (so-called BLR admissibility condition)



Then, for a $m \times m$ dense matrix with blocks of rank r:

- Storage: $O(m^2) \rightarrow O(m^{3/2}r^{1/2})$
- Flops LU: $O(m^3) \rightarrow O(m^{7/3}r^{2/3})$ (FCU) $\rightarrow O(m^2r)$ (CFU)

P. Amestoy, A. Buttari, J.-Y. L'Excellent, and T. Mary. *On the Complexity of the Block Low-Rank Multifrontal Factorization*. SIAM J. Sci. Comput. (2017).

Complexity of the sparse BLR factorization

		storage	flops				
dense	FR BLR	$ig egin{array}{c} O(m^2) \ O(m^{3/2}) \end{array}$	$O(m^3)$ $O(m^2)$				
	\mathcal{H}	$O(m \log m)$	$O(m \log^2 m)$				
(assuming $r = O(1)$)							

Complexity of the sparse BLR factorization

		storage	flops	
dense	FR BLR H	$\begin{array}{c} O(m^2) \\ O(m^{3/2}) \\ O(m\log m) \end{array}$	$\begin{array}{c} O(m^3)\\ O(m^2)\\ O(m\log^2 m) \end{array}$	
sparse 2D	FR BLR H	$O(n \log n)$ O(n) O(n)	$O(n^{3/2})$ $O(n \log n)$ $O(n)$	
(assuming $r = O(1)$)				

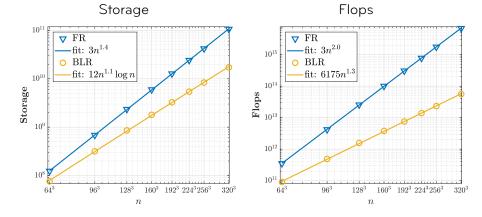
• In a 2D world hierarchical matrices would not be needed

Complexity of the sparse BLR factorization

		storage	flops	
dense	FR BLR H	$\begin{array}{c} O(m^2) \\ O(m^{3/2}) \\ O(m\log m) \end{array}$	$O(m^3)$ $O(m^2)$ $O(m \log^2 m)$	
sparse 2D	FR BLR H	$O(n \log n)$ O(n) O(n)	$O(n^{3/2})$ $O(n \log n)$ $O(n)$	
sparse 3D	FR BLR H	$O(n^{4/3})$ $O(n \log n)$ $O(n)$	$O(n^2) O(n^{4/3}) O(n)$	
(assuming $r = O(1)$)				

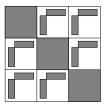
- In a 2D world hierarchical matrices would not be needed
- Superlinear complexities in **3D**

Experimental complexity fit: 3D Poisson ($arepsilon=10^{-10}$)



- Good agreement with theoretical complexity:
 - Storage: $O(n \log n) \rightarrow O(n^{1.1} \log n)$
 - Flops: $O(n^{4/3}) \rightarrow O(n^{1.3})$

Two-level BLR format



Two-level BLR format

Key idea: replace full-rank blocks by their BLR approximation \Rightarrow two-level BLR matrix

Technically hierarchical, but much simpler

Two-level BLR format

Key idea: replace full-rank blocks by their BLR approximation \Rightarrow two-level BLR matrix

Technically hierarchical, but much simpler



Storage complexity (assuming $r = O(1)$):						
	FR	BLR	2-BLR		\mathcal{H}	
dense	$O(m^2)$	$O(m^{1.5})$	$O(m^{1.33})$		$O(m \log m)$	
sparse (2D)	$O(n \log n)$	O(n)	O(n)		O(n)	
sparse (3D)	$O(n^{1.33})$	$O(n \log n)$	O(n)		O(n)	
Flop complexity (assuming $r = O(1)$):						
dense	$O(m^3)$	$O(m^2)$	$O(m^{1.66})$		$O(m \log^3 m)$	
sparse (2D)	$O(n^{3/2})$	$O(n \log n)$			O(n)	
sparse (3D)	$O(n^2)$	$O(n^{1.33})$	$O(n^{1.11})$		O(n)	

Multilevel BLR format

Multilevel BLR (MBLR) format: recursively refine full-rank blocks up to a constant number of levels ℓ

MBLR complexity

Storage =
$$O(m^{(\ell+2)/(\ell+1)}r^{\ell/(\ell+1)})$$

FlopLU = $O(m^{(\ell+3)/(\ell+1)}r^{2\ell/(\ell+1)})$

P. Amestoy, A. Buttari, J.-Y. L'Excellent, and T. Mary. Bridging the gap between flat and hierarchical lowrank matrix formats: the multilevel BLR format. Submitted (2018).

Multilevel BLR format

Multilevel BLR (MBLR) format: recursively refine full-rank blocks up to a constant number of levels ℓ

MBLR complexity

Storage =
$$O(m^{(\ell+2)/(\ell+1)}r^{\ell/(\ell+1)})$$

FlopLU = $O(m^{(\ell+3)/(\ell+1)}r^{2\ell/(\ell+1)})$

P. Amestoy, A. Buttari, J.-Y. L'Excellent, and T. Mary. *Bridging the gap between flat and hierarchical low*rank matrix formats: the multilevel *BLR* format. Submitted (2018).

Flop complexity (assuming r = O(1)):

	$\ell = 1$	$\ell = 2$	Hierar.
Dense Sparse (3D)	$O(m^2) \\ O(n^{1.33})$	$O(m^{1.66}) \\ O(n^{1.11})$	$\frac{O(m\log^2 m)}{O(n)}$

Multilevel BLR format

Multilevel BLR (MBLR) format: recursively refine full-rank blocks up to a constant number of levels ℓ

MBLR complexity

Storage =
$$O(m^{(\ell+2)/(\ell+1)}r^{\ell/(\ell+1)})$$

FlopLU = $O(m^{(\ell+3)/(\ell+1)}r^{2\ell/(\ell+1)})$

P. Amestoy, A. Buttari, J.-Y. L'Excellent, and T. Mary. *Bridging the gap between flat and hierarchical low-rank matrix formats: the multilevel BLR format.* Submitted (2018).

Flop complexity (assuming r = O(1)):

		$\ell = 2$		Hierar.
Dense Sparse (3D)	$O(m^2) \\ O(n^{1.33})$	$O(m^{1.66}) \\ O(n^{1.11})$	$\frac{O(m^{1.5})}{O(n\log n)}$	$O(m \log^2 m)$ O(n)

Multilevel BLR format

Multilevel BLR (MBLR) format: recursively refine full-rank blocks up to a constant number of levels ℓ

MBLR complexity

Storage =
$$O(m^{(\ell+2)/(\ell+1)}r^{\ell/(\ell+1)})$$

FlopLU = $O(m^{(\ell+3)/(\ell+1)}r^{2\ell/(\ell+1)})$

P. Amestoy, A. Buttari, J.-Y. L'Excellent, and T. Mary. *Bridging the gap between flat and hierarchical low-rank matrix formats: the multilevel BLR format.* Submitted (2018).

Flop complexity (assuming r = O(1)):

	$\ell = 1$	$\ell = 2$	$\ell = 3$	$\ell = 4$	Hierar.
Dense Sparse (3D)	$O(m^2) \\ O(n^{1.33})$	$O(m^{1.66}) \ O(n^{1.11})$	$\frac{O(m^{1.5})}{O(n\log n)}$	O(m ^{1.4}) O(n)	$\frac{O(m\log^2 m)}{O(n)}$

Multilevel BLR format

Multilevel BLR (MBLR) format: recursively refine full-rank blocks up to a constant number of levels ℓ

MBLR complexity

Storage =
$$O(m^{(\ell+2)/(\ell+1)}r^{\ell/(\ell+1)})$$

FlopLU = $O(m^{(\ell+3)/(\ell+1)}r^{2\ell/(\ell+1)})$

P. Amestoy, A. Buttari, J.-Y. L'Excellent, and T. Mary. *Bridging the gap between flat and hierarchical low-rank matrix formats: the multilevel BLR format.* Submitted (2018).

Flop complexity (assuming r = O(1)):

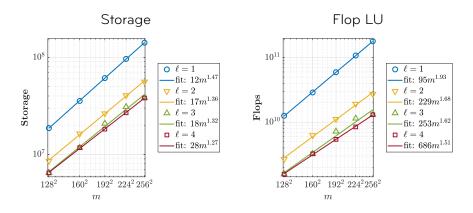
	$\ell = 1$	$\ell = 2$	$\ell = 3$	$\ell = 4$	Hierar.
Dense Sparse (3D)	$O(m^2) \\ O(n^{1.33})$	$O(m^{1.66}) \\ O(n^{1.11})$	$\frac{O(m^{1.5})}{O(n\log n)}$	O(m ^{1.4}) O(n)	$O(m \log^2 m)$ O(n)

With r = O(1) only 4 levels are enough. With larger ranks more levels needed but gain from adding more levels decreases rapidly

Block Low-Rank Solvers

Theo Mary

Numerical experiments (3D Poisson)



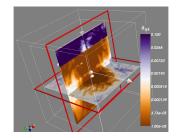
- Experimental complexity in relatively good agreement with theoretical one
- Asymptotic gain decreases with levels

Performance and scalability of BLR solvers

Shared-memory performance analysis: an example

Matrix S3 Double complex (z) symmetric Electromagnetics application (CSEM) 3.3 millions unknowns Required accuracy: $\varepsilon = 10^{-7}$

D. Shantsev, P. Jaysaval, S. Kethulle de Ryhove, P. Amestoy, A. Buttari, J.-Y. L'Excellent, and T. Mary. *Large-scale 3D EM modeling with a Block Low-Rank multifrontal direct solver*. Geophys. J. Int (2017).



	flops ($ imes 10^{12}$)	time (1 core)	time (24 cores)
FR	78.0	7390	509
BLR	10.2	2242	307
ratio	7.7	3.3	1.7

7.7 gain in flops only translated to a **1.7** gain in time: Can we do better?

Block Low-Rank Solvers

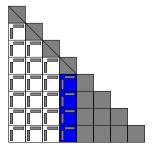
Variant name	time	FR/BLR ratio
Full-Rank	509	
BLR (FCU)	307	1.7

Tree parallelism improves performance by reducing the relative cost of the fronts at the bottom of the tree, which achieve poor compression

Variant name	time	FR/BLR ratio	- <i>thr</i> 0-3
Full-Rank +Tree par.	509 418		- thr0-3 thr0-3
BLR (FCU) +Tree par.	307 221	1.7 1.9	$ \begin{array}{c} \text{Intro-3} \\ \text{Intro-3} \\ \text{Intro-3} \\ \text{Intro-3} \\ \text{Tree} \\ \text{par.} \\ \text{thr0} \\ \text{thr0} \\ \text{thr1} \\ \text{thr2} \\ \text{thr3} \\ thr3$

Left-looking FCU improves performance thanks to a left-looking approach which reduces memory transfers

Variant name	time	FR/BLR ratio
Full-Rank +Tree par.	509 418	
BLR (FCU) +Tree par. +Left-looking	307 221 175	1.7 1.9 2.4



LUA improves performance because it accumulates multiple low-rank updates and applies them at once increasing the granularity of operations

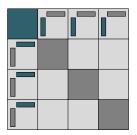
Variant name	time	FR/BLR ratio	
Full-Rank +Tree par.	509 418		+
BLR (FCU) +Tree par. +Left-looking +Accumulation	307 221 175 167	1.7 1.9 2.4 2.5	

LUAR reduces complexity because recompresses accumulated updates on the fly

Variant name	time	FR/BLR ratio	
Full-Rank +Tree par.	509 418		+
BLR (FCU)	307	1.7	$\xrightarrow{Acc.}$
+Tree par.	221	1.9	
+Left-looking	175	2.4	
+Accumulation	167	2.5	$\xrightarrow{Rec.}$
+Recompression	160	2.6	

CFU reduces complexity because solve operations are also done in low-rank

Variant name	time	FR/BLR ratio
Full-Rank	509 418	
+Tree par.	410	
BLR (FCU)	307	1.7
+Tree par.	221	1.9
+Left-looking	175	2.4
+Accumulation	167	2.5
+Recompression	160	2.6
+CFU	111	3.8



Variant name	time	FR/BLR ratio
Full-Rank +Tree par.	509 418	
BLR (FCU)	307	1.7
+Tree par.	221	1.9
+Left-looking	175	2.4
+Accumulation	167	2.5
+Recompression	160	2.6
+CFU	111	3.8

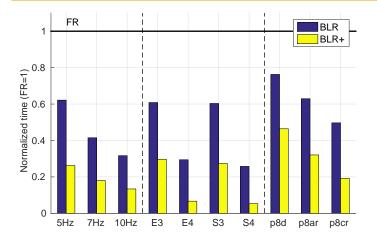
Converting the theoretical flop reduction into **actual time gains on modern architectures** requires careful algorithmic work

Block Low-Rank Solvers

Multicore performance results (24 cores)

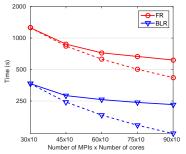
Results with the BLR MUMPS solver:

P. Amestoy, A. Buttari, J.-Y. L'Excellent, and T. Mary. *Performance and Scalability of the Block Low-Rank* Multifrontal Factorization on Multicore Architectures. ACM Trans. Math. Soft. (2018).



Distributed-memory performance results

Results on $300 \rightarrow 900$ cores (eos supercomputer, CALMIP)



Matrix 10Hz Single complex (c) unsymmetric Seismic imaging application (FWI) 17 millions unknowns Required accuracy: $\varepsilon = 10^{-3}$ P. Amestoy, R. Brossier, A. Buttari, J.-Y. L'Excellent, T. Mary, L. Métrivier, A. Miniussi, and S. Operto. Fast 3D frequencydomain full waveform inversion with a parallel Block Low-Rank multifrontial direct solver: application to OBC data from the North Sea. Geophysics (2016).

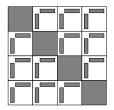
How to improve the scalability of the BLR factorization? Two main difficulties:

- Higher weight of communications: flops reduced by 13 but volume of communications only by 2
- Unpredictability of compression: more difficult to design good mapping and scheduling strategies

Block Low-Rank Solvers

Rounding error analysis of BLR factorization

Why we need an error analysis



Each off-diagonal block *B* is approximated by a low-rank matrix \widetilde{B} such that $||B - \widetilde{B}|| \le \varepsilon ||B||$ $\Rightarrow ||A - A_{\varepsilon}|| \le \varepsilon ||A||$ with good norm choice However:

 $||A - L_{\varepsilon}U_{\varepsilon}|| \neq \varepsilon$ because of rounding errors \Rightarrow What is the overall accuracy $||A - L_{\varepsilon}U_{\varepsilon}||$?

- Can we prove that ||A − L_εU_ε|| = O(ε)? What is the role of the unit roundoff u?
- What is the error growth, i.e., how does the error depend on the matrix size *n*?
- How do the different variants (FCU, CFU, etc.) compare?
- Should we use an absolute threshold (||B − B̃|| ≤ ε) or a relative one (||B − B̃|| ≤ ε||B||)?

Reminder

The full-rank LU factorization of $A \in \mathbb{R}^{n \times n}$ satisfies

$$||A - LU|| \le nu||L|| ||U|| + O(u^2)$$

Main result

The FCU BLR factorization of $A \in \mathbb{R}^{n \times n}$ with relative threshold ε satisfies

$$\|A - L_{\varepsilon}U_{\varepsilon}\| \le (nu + \varepsilon)\|L\|\|U\| + O(u\varepsilon) + O(u^2)$$

The proof is quite technical and based on *Stability of Block Algorithms with Fast Level-3 BLAS* (Demmel and Higham, 1992)

Block Low-Rank Solvers

Main result

The FCU BLR factorization of $A \in \mathbb{R}^{n \times n}$ with relative threshold ε satisfies

 $\|A - L_{\varepsilon}U_{\varepsilon}\| \le (nu + \varepsilon)\|L\|\|U\| + O(u\varepsilon) + O(u^{2})$

Main result

The FCU BLR factorization of $A \in \mathbb{R}^{n \times n}$ with relative threshold ε satisfies

 $\|A - L_{\varepsilon}U_{\varepsilon}\| \le (nu + \varepsilon)\|L\|\|U\| + O(u\varepsilon) + O(u^2)$

||L||||U|| ≤ n²ρ_n||A|| where ρ_n is the growth factor
 ⇒ with partial pivoting, the BLR factorization is stable!

Main result

The FCU BLR factorization of $A \in \mathbb{R}^{n \times n}$ with relative threshold ε satisfies

 $\|A - L_{\varepsilon}U_{\varepsilon}\| \le (nu + \varepsilon)\|L\|\|U\| + O(u\varepsilon) + O(u^{2})$

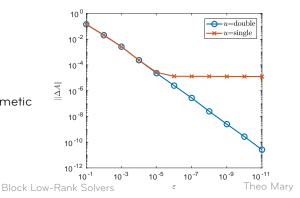
- ||L||||U|| ≤ n²ρ_n||A|| where ρ_n is the growth factor
 ⇒ with partial pivoting, the BLR factorization is stable!
- Usually $\varepsilon \gg u$:
- \Rightarrow Role of *u* is limited
- \Rightarrow Very slow error growth
- ⇒ Usage of fast matrix arithmetic may be stable in BLR

Main result

The FCU BLR factorization of $A \in \mathbb{R}^{n \times n}$ with relative threshold ε satisfies

 $\|A - L_{\varepsilon}U_{\varepsilon}\| \le (nu + \varepsilon)\|L\|\|U\| + O(u\varepsilon) + O(u^2)$

- ||L|||U|| ≤ n²ρ_n||A|| where ρ_n is the growth factor
 ⇒ with partial pivoting, the BLR factorization is stable!
- Usually $\varepsilon \gg u$:
- \Rightarrow Role of *u* is limited
- \Rightarrow Very slow error growth
- ⇒ Usage of fast matrix arithmetic may be stable in BLR

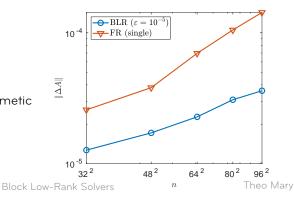


Main result

The FCU BLR factorization of $A \in \mathbb{R}^{n \times n}$ with relative threshold ε satisfies

 $\|A - L_{\varepsilon}U_{\varepsilon}\| \le (nu + \varepsilon)\|L\|\|U\| + O(u\varepsilon) + O(u^{2})$

- ||L||||U|| ≤ n²ρ_n ||A|| where ρ_n is the growth factor
 ⇒ with partial pivoting, the BLR factorization is stable!
- Usually $\varepsilon \gg u$:
- \Rightarrow Role of *u* is limited
- ⇒ Very slow error growth
- ⇒ Usage of fast matrix arithmetic may be stable in BLR



Main result

The FCU BLR factorization of $A \in \mathbb{R}^{n \times n}$ with relative threshold ε satisfies

 $\|A - L_{\varepsilon}U_{\varepsilon}\| \le (nu + \varepsilon)\|L\|\|U\| + O(u\varepsilon) + O(u^{2})$

- ||L||||U|| ≤ n²ρ_n||A|| where ρ_n is the growth factor
 ⇒ with partial pivoting, the BLR factorization is stable!
- Usually $\varepsilon \gg u$:
- \Rightarrow Role of *u* is limited
- \Rightarrow Very slow error growth
- ⇒ Usage of fast matrix arithmetic may be stable in BLR

For example with Strassen's algorithm, $nu \rightarrow n^{\log_2 12} u \approx n^{3.6} u$

Ongoing work with C.-P. Jeannerod, C. Pernet, and D. Roche: Exploiting fast matrix arithmetic within BLR factorizations: $O(n^2)$ complexity $\rightarrow O(n^{(\omega+1)/2})$ ($\approx O(n^{1.9})$ for Strassen)

The FCU BLR factorization of $A \in \mathbb{R}^{n \times n}$ with absolute threshold ε satisfies

$$\begin{split} \|A - L_{\varepsilon} U_{\varepsilon}\| &\leq (nu + \theta \varepsilon) \|L\| \|U\| + O(u\varepsilon) + O(u^2) \\ \text{where } \theta &= \sqrt{n/b - 1} \sum_{i=1}^{n/b} \|L_{ii}\| + \|U_{ii}\| \end{split}$$

The BLR factorization with absolute threshold

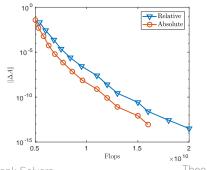
- 🙁 Has a faster error growth
- Is scaling-dependent

The FCU BLR factorization of $A \in \mathbb{R}^{n \times n}$ with absolute threshold ε satisfies

$$\begin{split} \|A - L_{\varepsilon}U_{\varepsilon}\| &\leq (nu + \theta\varepsilon)\|L\|\|U\| + O(u\varepsilon) + O(u^2)\\ \text{where } \theta &= \sqrt{n/b - 1}\sum_{i=1}^{n/b}\|L_{ii}\| + \|U_{ii}\| \end{split}$$

The BLR factorization with absolute threshold

- Bas a faster error growth
- Is scaling-dependent
- © Is more efficient in practice



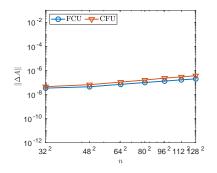
Block Low-Rank Solvers

The CFU BLR factorization of $A \in \mathbb{R}^{n \times n}$ with relative threshold ε satisfies

$$\|A - L_{\varepsilon}U_{\varepsilon}\| \le (nu + \varepsilon)\|L\|\|U\| + O(\kappa(A)u\varepsilon) + O(u^2)$$

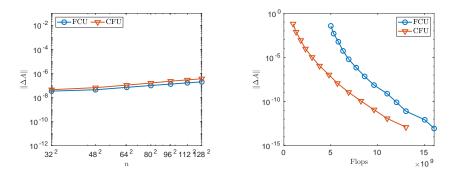
The CFU BLR factorization of $A \in \mathbb{R}^{n \times n}$ with relative threshold ε satisfies

 $\|A - L_{\varepsilon}U_{\varepsilon}\| \le (nu + \varepsilon)\|L\|\|U\| + O(\kappa(A)u\varepsilon) + O(u^{2})$



The CFU BLR factorization of $A \in \mathbb{R}^{n \times n}$ with relative threshold ε satisfies

 $\|A - L_{\varepsilon}U_{\varepsilon}\| \le (nu + \varepsilon)\|L\|\|U\| + O(\kappa(A)u\varepsilon) + O(u^2)$



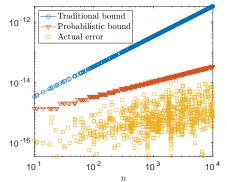
Block Low-Rank Solvers

Probabilistic rounding error analysis

Traditional bound: $|A - LU| \le nu|L||U|$

Traditional bound offers no accuracy guarantees when nu is large \Rightarrow important issue for large-scale, low-precision computations

Probabilistic bound: $|A - LU| \le \lambda \sqrt{nu} |L| |U|$ with high probability



Solution of Ax = b, for 943 matrices from the SuiteSparse collection

N. Higham and T. Mary. A New Approach to Probabilistic Rounding Error Analysis. Submitted (2018).

Probabilistic rounding error analysis could be of special relevance for low-rank solvers: $nu + \varepsilon \rightarrow \lambda \sqrt{nu} + \varepsilon$?

Low-accuracy BLR preconditioners

Low-accuracy BLR preconditioners: storage

BLR factorization + GMRES solve with stopping tolerance 10^{-9}

Matrix	n	Time (s)		Storage (GB)	
		$\varepsilon = 10^{-2}$	$\varepsilon = 10^{-8}$	$\varepsilon = 10^{-2}$	$\varepsilon = 10^{-8}$
audikw_1	1.0M	1163	69	5	10
Bump_2911	2.9M	_	282	34	56
Emilia_923	0.9M	304	63	7	12
Fault_639	0.6M	_	45	5	9
Ga41As41H72	0.3M	_	76	12	17
Hook_1498	1.5M	902	75	6	11
Si87H76	0.2M	_	62	10	14

Low-accuracy BLR solvers:

- ③ are slower and less robust
- but require much less storage

Improved preconditioner: context

Objective

- Compute solution to linear system Ax = b
- $A \in \mathbb{R}^{n \times n}$ is ill conditioned

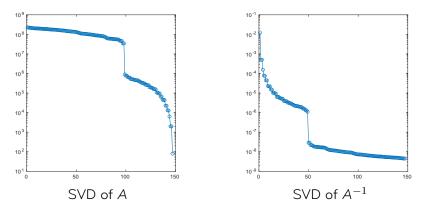
LU-based preconditioner

- 1. Compute approximate factorization $A = \widehat{L}\widehat{U} + \Delta A$
 - Half-precision factorization
 - Incomplete LU factorization
 - $\circ~$ Structured matrix factorization: Block Low-Rank, \mathcal{H}_{r} HSS,...
- 2. Solve $\prod_{LU}Ax = \prod_{LU}b$ with $\prod_{LU} = \hat{U}^{-1}\hat{L}^{-1}$ via some iterative method
 - Convergence to solution may be slow or fail

> Objective: accelerate convergence

Improved preconditioner: key observation

Matrix lund_a (n = 147, $\kappa(A) = 2.8e+06$)



- Often, A is ill conditioned due to a small number of small singular values
- Then, A^{-1} is numerically low-rank

Theo Mary

Improved preconditioner: key idea

Factorization error might be low-rank?

Let the error
$$E = \widehat{U}^{-1}\widehat{L}^{-1}A - I = \widehat{U}^{-1}\widehat{L}^{-1}(\widehat{L}\widehat{U} + \Delta A) - I$$

= $\widehat{U}^{-1}\widehat{L}^{-1}\Delta A \approx A^{-1}\Delta A$

Does *E* retain the low-rank property of A^{-1} ?

A novel preconditioner

Consider the preconditioner

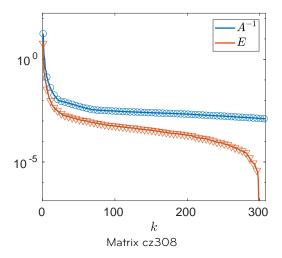
$$\Pi_{E_k} = (I + E_k)^{-1} \Pi_{LU}$$

with E_k a rank-k approximation to E.

• If
$$E = E_k$$
, $\Pi_{E_k} = A^{-1}$

• If $E \approx E_k$ for some small k, Π_{E_k} can be computed cheaply

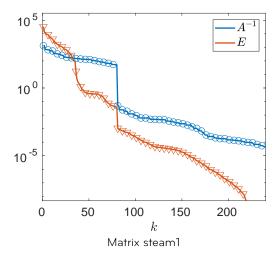
Typical SV distributions of A^{-1} and E



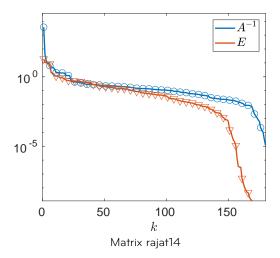
Block Low-Rank Solvers

Theo Mary

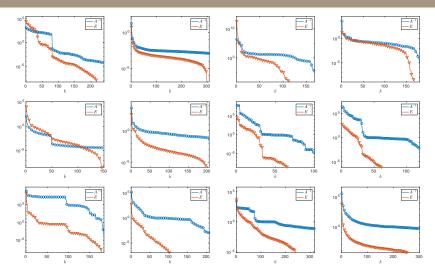
Typical SV distributions of A^{-1} and E



Typical SV distributions of A^{-1} and E



Typical SV distributions of A^{-1} and E



We did **not** specifically select matrices for which A^{-1} is low-rank!

We need to compute a rank-k approximation of

$$E = \widehat{U}^{-1}\widehat{L}^{-1}A - I$$

E cannot be built explicitly! \Rightarrow use **randomized** method

Algorithm 1 Randomized SVD via direct SVD of $V^T E$.

- 1: Sample E: $S = E\Omega$, with Ω a $n \times (k + p)$ random matrix.
- 2: Orthonormalize S: V = qr(S). $\{\Rightarrow E \approx VV^T E.\}$
- 3: Compute truncated SVD $V^T E \approx X_k \Sigma_k Y_k^T$.
- 4: $E_k \approx (VX_k)\Sigma_k Y_k^T$.

Results for $\varepsilon = 10^{-2}$:

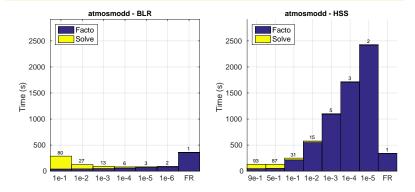
Matrix	Π_{LU}		Π_{E_k}	
	lter.	Time	Iter.	Time
audikw_1	691	1163	331	625
Bump_2911	_	_	284	1708
Emilia_923	174	304	136	267
Fault_639	_	_	294	345
Ga41As41H72	_	_	135	143
Hook_1498	417	902	356	808
Si87H76	_	_	131	116

 \Rightarrow performance and robustness improvement with zero storage overhead

Comparison with a hierarchical solver

Comparison with **STRUMPACK** solver (HSS format):

C. Gorman, G. Chavez, P. Ghysels, T. Mary, F.-H. Rouet, and X. S. Li. *Matrix-free Construction of HSS Representation Using Adaptive Randomized Sampling*. Submitted (2018).



Comparatively with BLR, HSS favors low-accuracy preconditioning Applying improved preconditioner to HSS should have an even greater impact! 39 Block Low-Bank Solvers Theo Mary

Conclusion

Complexity

BLR factorization achieves quadratic dense complexity but (quasi-)linear sparse complexity with a small number of levels

Scalability

A large fraction of this theoretical reduction is converted into actual time gains, even on large numbers of cores

Stability

It is numerically stable thanks to numerical pivoting and can potentially exploit low-precision floating-point arithmetic

⇒ BLR solvers achieve a good compromise between asymptotic complexity, parallel scalability, and numerical stability

Perspectives

Complexity

- Can we exploit nested bases (\mathcal{H}^2 , HSS) in BLR/MBLR?
- Exploiting fast matrix arithmetic (e.g. Strassen's algorithm)
- Asymptotic complexity of the solution phase with sparse RHS

Scalability

- MBLR performance and scalability analysis
- Distributed-memory: need for specialized scheduling strategies
- How to achieve good memory scalability?

Stability

- Rounding error analysis of multilevel and hierarchical solvers
- Exploiting half precision within low-rank preconditioners
- Numerical pivoting strategies for BLR factorization

References

P. Amestoy, A. Buttari, J.-Y. L'Excellent, and T. Mary. On the Complexity of the Block Low-Rank Multifrontal Factorization. SIAM J. Sci. Comput. (2017).

P. Amestoy, A. Buttari, J.-Y. L'Excellent, and T. Mary. *Bridging the gap between flat and hierarchical low*rank matrix formats: the multilevel *BLR* format. Submitted (2018).

P. Amestoy, A. Buttari, J.-Y. L'Excellent, and T. Mary. *Performance and Scalability of the Block Low-Rank Multifrontal Factorization on Multicore Architectures.* ACM Trans. Math. Soft. (2018).

C. Gorman, G. Chavez, P. Ghysels, T. Mary, F.-H. Rouet, and X. S. Li. *Matrix-free Construction of HSS Representation Using Adaptive Randomized Sampling*. Submitted (2018).

N. Higham and T. Mary. A New Preconditioner that Exploits Low-Rank Approximations to Factorization Error. SIAM J. Sci. Comp (2018).

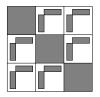
N. Higham and T. Mary. A New Approach to Probabilistic Rounding Error Analysis. Submitted (2018).

P. Amestoy, R. Brossier, A. Buttari, J.-Y. L'Excellent, T. Mary, L. Métivier, A. Miniussi, and S. Operto. Fast 3D frequency-domain full waveform inversion with a parallel Block Low-Rank multifrontal direct solver: application to OBC data from the North Sea. Geophysics (2016).

D. Shantsev, P. Jaysaval, S. Kethulle de Ryhove, P. Amestoy, A. Buttari, J.-Y. L'Excellent, and T. Mary. Largescale 3D EM modeling with a Block Low-Rank multifrontal direct solver. Geophys. J. Int (2017).

Backup slides

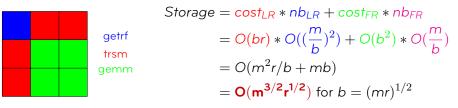
Assume all off-diagonal blocks are low-rank. Then:



Storage =
$$cost_{LR} * nb_{LR} + cost_{FR} * nb_{FR}$$

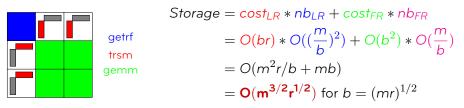
= $O(br) * O((\frac{m}{b})^2) + O(b^2) * O(\frac{m}{b})$
= $O(m^2 r/b + mb)$
= $O(m^{3/2}r^{1/2})$ for $b = (mr)^{1/2}$

Assume all off-diagonal blocks are low-rank. Then:



 $FlopLU = cost_{gettf} * nb_{gettf} + cost_{trsm} * nb_{trsm} + cost_{gemm} * nb_{gemm}$ = $O(b^3) * O(\frac{m}{b}) + O(b^3) * O((\frac{m}{b})^2) + O(br^2) * O((\frac{m}{b})^3)$ = $O(mb^2 + m^2b + m^3r^2/b^2)$ = $O(m^{7/3}r^{2/3})$ for $b = (mr^2)^{1/3}$

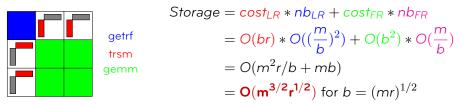
Assume all off-diagonal blocks are low-rank. Then:



 $FlopLU = \operatorname{cost}_{getrf} * \operatorname{nb}_{getrf} + \operatorname{cost}_{trsm} * \operatorname{nb}_{trsm} + \operatorname{cost}_{gemm} * \operatorname{nb}_{gemm}$ $= O(b^3) * O(\frac{m}{b}) + O(b^3b^2r) * O((\frac{m}{b})^2) + O(br^2) * O((\frac{m}{b})^3)$ $= O(mb^2 + m^2br + m^3r^2/b^2)$ $= O(mr^{7/3}r^{2/3}m^2r) \text{ for } b = (mr^2)^{1/3}(mr)^{1/2}$

CFU variant improves asymptotic complexity!

Assume all off-diagonal blocks are low-rank. Then:



 $FlopLU = \operatorname{cost_{getrf}} * \operatorname{nb}_{getrf} + \operatorname{cost_{trsm}} * \operatorname{nb}_{trsm} + \operatorname{cost_{gemm}} * \operatorname{nb}_{gemm}$ $= O(b^3) * O(\frac{m}{b}) + O(b^3b^2r) * O((\frac{m}{b})^2) + O(br^2) * O((\frac{m}{b})^3)$ $= O(mb^2 + m^2br + m^3r^2/b^2)$ $= O(m^{7/3}r^{2/3}m^2r) \text{ for } b = (mr^2)^{1/3}(mr)^{1/2}$

CFU variant improves asymptotic complexity!

Result holds if a **constant** number of off-diag. blocks is full-rank.

Nested dissection complexity formulas

In the **2D** case:

$$\mathcal{C}_{\text{sparse}} = \sum_{\ell=0}^{\log N} 4^{\ell} \mathcal{C}_{\text{dense}}(rac{N}{2^{\ell}})$$

Nested dissection complexity formulas

In the **2D** case:

$$\mathcal{C}_{\text{sparse}} = \sum_{\ell=0}^{\log N} 4^{\ell} \mathcal{C}_{\text{dense}}(\frac{N}{2^{\ell}}) = N^{\alpha} \sum_{\ell=0}^{\log N} 2^{(2-\alpha)\ell}$$

If $\mathcal{C}_{dense} = O(m^{lpha})$, \mathcal{C}_{sparse} is a geom. series of common ratio 2^{2-lpha} :

$$\mathcal{C}_{\text{sparse}} = \begin{cases} O(n^{\alpha/2}) & \text{if } \alpha > 2\\ O(n \log n) & \text{if } \alpha = 2\\ O(n) & \text{if } \alpha < 2 \end{cases}$$

Nested dissection complexity formulas

In the **2D** case:

$$\mathcal{C}_{\text{sparse}} = \sum_{\ell=0}^{\log N} 4^{\ell} \mathcal{C}_{\text{dense}}(\frac{N}{2^{\ell}}) = N^{\alpha} \sum_{\ell=0}^{\log N} 2^{(2-\alpha)\ell}$$

If $\mathcal{C}_{dense} = O(m^{lpha})$, \mathcal{C}_{sparse} is a geom. series of common ratio 2^{2-lpha} :

$$\mathcal{C}_{\text{sparse}} = \left\{ \begin{array}{ll} O(n^{\alpha/2}) & \text{if } \alpha > 2\\ O(n\log n) & \text{if } \alpha = 2\\ O(n) & \text{if } \alpha < 2 \end{array} \right.$$

Similar formulas in the **3D** case:

$$\mathcal{C}_{\text{sparse}} = \sum_{\ell=0}^{\log N} 8^{\ell} \mathcal{C}_{\text{dense}} \left(\frac{N^2}{4^{\ell}}\right) = N^{2\alpha} \sum_{\ell=0}^{\log N} 2^{(3-2\alpha)\ell}$$
$$\mathcal{C}_{\text{sparse}} = \begin{cases} O(n^{2\alpha/3}) & \text{if } \alpha > 1.5\\ O(n\log n) & \text{if } \alpha = 1.5\\ O(n) & \text{if } \alpha < 1.5 \end{cases}$$

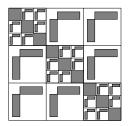
43/39

Block Low-Rank Solvers

Theo Mary

Complexity of the two-level BLR format

Assume all off-diagonal blocks are low-rank. Then:

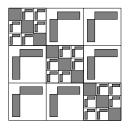


Storage = $cost_{LR} * nb_{LR} + cost_{BLR} * nb_{BLR}$ = $O(br) * O((\frac{m}{b})^2) + O(b^{3/2}r^{1/2}) * O(\frac{m}{b})$ = $O(m^2r/b + m(br)^{1/2})$

$$= O(m^{4/3}r^{2/3}) \text{ for } b = (m^2r)^{1/3}$$

Complexity of the two-level BLR format

Assume all off-diagonal blocks are low-rank. Then:



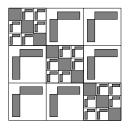
Storage = $cost_{LR} * nb_{LR} + cost_{BLR} * nb_{BLR}$ = $O(br) * O((\frac{m}{b})^2) + O(b^{3/2}r^{1/2}) * O(\frac{m}{b})$ = $O(m^2r/b + m(br)^{1/2})$ = $O(m^{4/3}r^{2/3})$ for $b = (m^2r)^{1/3}$

Similarly, we can prove: $FlopLU = \mathbf{O}(\mathbf{m}^{5/3}\mathbf{r}^{4/3})$ for $b = (m^2 r)^{1/3}$

Result holds if a constant number of off-diag. blocks is BLR.

Complexity of the two-level BLR format

Assume all off-diagonal blocks are low-rank. Then:

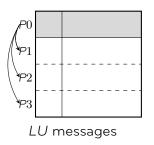


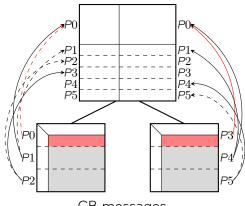
Storage = $cost_{LR} * nb_{LR} + cost_{BLR} * nb_{BLR}$ = $O(br) * O((\frac{m}{b})^2) + O(b^{3/2}r^{1/2}) * O(\frac{m}{b})$ = $O(m^2r/b + m(br)^{1/2})$ = $O(m^{4/3}r^{2/3})$ for $b = (m^2r)^{1/3}$

Similarly, we can prove: $FlopLU = \mathbf{O}(\mathbf{m}^{5/3}\mathbf{r}^{4/3})$ for $b = (m^2 r)^{1/3}$

Result holds if a constant number of off-diag. blocks is BLR.

Type of messages

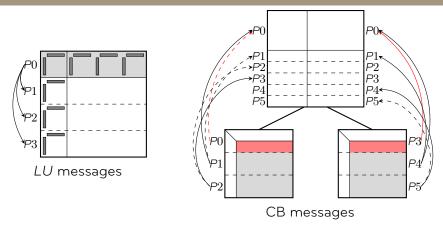




CB messages

Theo Mary

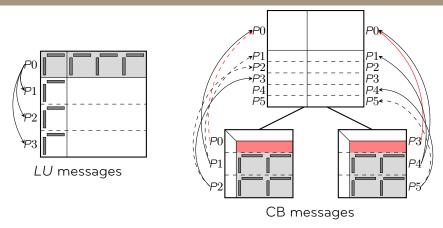
Type of messages



• Volume of *LU* messages is reduced by compressing the factors

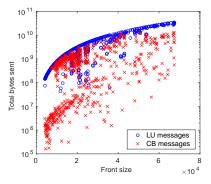
© Reduces operation count, communications, and memory consumption

Type of messages



- Volume of LU messages is reduced by compressing the factors
 - $\ensuremath{\textcircled{}}$ Reduces operation count, communications, and memory consumption
- Volume of CB messages can be reduced by compressing the CB
 - © Reduces communications and memory consumption
 - Increases operation count unless assembly is done in LR

Communication analysis



• FR case: LU messages dominate

Theoretical communication bounds

	\mathcal{W}_{LU}	\mathcal{W}_{CB}	\mathcal{W}_{tot}
FR	$\mathcal{O}\left(n^{4/3}p ight)$	$\mathcal{O}\left(n^{4/3} ight)$	$\mathcal{O}\left(n^{4/3}p ight)$

Communication analysis

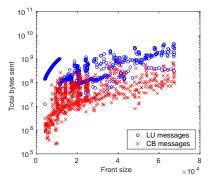


- FR case: LU messages dominate
- BLR case: CB messages dominate ⇒ underwhelming reduction of communications

Theoretical communication bounds

	\mathcal{W}_{LU}	\mathcal{W}_{CB}	\mathcal{W}_{tot}
FR BLR (CB _{FR})	$rac{\mathcal{O}\left(n^{4/3}p ight)}{\mathcal{O}\left(nr^{1/2}p ight)}$	$\mathcal{O}\left(n^{4/3} ight) \ \mathcal{O}\left(n^{4/3} ight)$	$\mathcal{O}\left(n^{4/3} p ight) \\ \mathcal{O}\left(n r^{1/2} p + n^{4/3} ight)$

Communication analysis



- FR case: LU messages dominate
- BLR case: CB messages dominate ⇒ underwhelming reduction of communications
- ⇒ CB compression allows for truly reducing the communications

Theoretical communication bounds

	\mathcal{W}_{LU}	\mathcal{W}_{CB}	\mathcal{W}_{tot}
FR BLR (CB _{FR}) BLR (CB _{LR})	$egin{array}{l} \mathcal{O}\left(n^{4/3}p ight) \ \mathcal{O}\left(nr^{1/2}p ight) \ \mathcal{O}\left(nr^{1/2}p ight) \end{array}$	$\mathcal{O}\left(n^{4/3} ight)$	$ \begin{array}{c} \mathcal{O}\left(n^{4/3}p\right) \\ \mathcal{O}\left(nr^{1/2}p + n^{4/3}\right) \\ \mathcal{O}\left(nr^{1/2}p\right) \end{array} $

Performance impact of the CB compression

matrix	10Hz	15Hz
order	17 M	58 M
factor flops (FR)	2.6 PF	29.6 PF
\Rightarrow BLR (CB _{FR})	0.1 PF (5.3%)	1.0 PF (3.3%)
\Rightarrow BLR (CB _{LR})	0.2 PF (6.1%)	1.1 PF (3.7%)
CB _{LR} flops impact	+15%	+12%
factor time (FR)	601	5,206
\Rightarrow BLR (CB _{FR})	123 (4.9)	838 (6.2)
\Rightarrow BLR (CB _{LR})	213 (2.8)	856 (6.1)
CB _{LR} time impact	+73%	+2%
comm. volume (FR)	5.3 TB	29.6 TB
comm. volume (CB _{FR})	1.7 TB (3.2)	13.3 TB (2.2)
comm. volume (CB _{LR})	0.6 TB (9.1)	1.2 TB (23.2)

⇒ CB compression becomes increasingly critical?

Performance impact of the CB compression

matrix	10Hz	15Hz
order	17 M	58 M
factor flops (FR)	2.6 PF	29.6 PF
\Rightarrow BLR (CB _{FR})	0.1 PF (5.3%)	1.0 PF (3.3%)
\Rightarrow BLR (CB _{LR})	0.2 PF (6.1%)	1.1 PF (3.7%)
CB _{LR} flops impact	+15%	+12%
factor time (FR)	601	5,206
\Rightarrow BLR (CB _{FR})	123 (4.9)	838 (6.2)
\Rightarrow BLR (CB _{LR})	213 (2.8)	856 (6.1)
CB _{LR} time impact	+73%	+2%
comm. volume (FR)	5.3 TB	29.6 TB
comm. volume (CB _{FR})	1.7 TB (3.2)	13.3 TB (2.2)
comm. volume (CB _{LR})	0.6 TB (9.1)	1.2 TB (23.2)

⇒ CB compression becomes increasingly critical?

Performance impact of the CB compression

matrix	10Hz	15Hz
order	17 M	58 M
factor flops (FR)	2.6 PF	29.6 PF
\Rightarrow BLR (CB _{FR})	0.1 PF (5.3%)	1.0 PF (3.3%)
\Rightarrow BLR (CB _{LR})	0.2 PF (6.1%)	1.1 PF (3.7%)
CB _{LR} flops impact factor time (FR)	+15%	+12%
	123 (4.9) 213 (2.8)	
CB_{LR} time impact	+73%	+2%
comm. volume (FR)	5.3 TB	29.6 TB
comm. volume (CB _{FR})	1.7 TB (3.2)	13.3 TB (2.2)
comm. volume (CB _{LR})	0.6 TB (9.1)	1.2 TB (23.2)

\Rightarrow CB compression becomes increasingly critical?

The proof is based on *Stability of Block Algorithms with Fast Level-3 BLAS* (Demmel and Higham, 1992)

$$A = \left[\begin{array}{cc} A_{11} & A_{12} \\ A_{21} & A_{22} \end{array} \right]$$

Inductive proof: easy to bound error of computing

 $S = A_{22} - L_{21}U_{12}$ and error of $S = L_{22}U_{22}$ is obtained by induction

The proof is based on *Stability of Block Algorithms with Fast Level-3 BLAS* (Demmel and Higham, 1992)

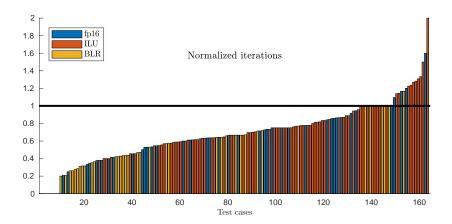
$$\mathsf{A} = \left[\begin{array}{cc} \mathsf{A}_{11} & \mathsf{A}_{12} \\ \mathsf{A}_{21} & \mathsf{A}_{22} \end{array} \right]$$

 $S = A_{22} - L_{21}U_{12}$ and error of $S = L_{22}U_{22}$ is obtained by induction

For BLR, several specific difficulties arise:

- Need to bound error of low-rank product kernel: $C = \widetilde{A}\widetilde{B} = X_A \left(Y_A^T X_B\right) Y_B^T$
- Choice of norm matters: to obtain best constants possible, we need a consistent, unitarily invariant norm
- Global bound is obtained from blockwise bounds
 ⇒ we work with the Frobenius norm

Black-box setting: use p = 10 and k = num. rank at acc. 10^{-7}



We need to store E_k : two dense $n \times k$ matrices \Rightarrow but only needed after factorization

We need to store E_k : two dense $n \times k$ matrices \Rightarrow but only needed after factorization

Traditional multifrontal storage is $S_A + S_{LU} + S_{CB}$

- S_A = storage for matrix A
- S_{LU} = storage for (BLR) LU factors
- S_{CB} = storage for contribution blocks ⇒ temporary storage during factorization

We need to store E_k : two dense $n \times k$ matrices \Rightarrow but only needed after factorization

Traditional multifrontal storage is $S_A + S_{LU} + S_{CB}$

- S_A = storage for matrix A
- S_{LU} = storage for (BLR) LU factors
- S_{CB} = storage for contribution blocks ⇒ temporary storage during factorization

Thus, S_{CB} and S_{E_k} do not overlap!

- Factorization storage: $S_A + S_{LU} + S_{CB}$
- Solution storage: $S_A + S_{LU} + S_{E_k}$
- \Rightarrow Total storage: $S_A + S_{LU} + \max(S_{CB}, S_{E_k})$

We need to store E_k : two dense $n \times k$ matrices \Rightarrow but only needed after factorization

Traditional multifrontal storage is $S_A + S_{LU} + S_{CB}$

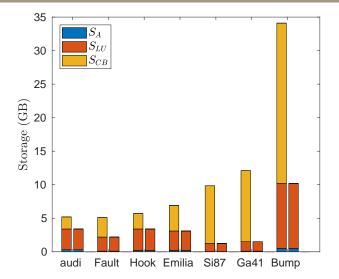
- S_A = storage for matrix A
- S_{LU} = storage for (BLR) LU factors
- S_{CB} = storage for contribution blocks ⇒ temporary storage during factorization

Thus, S_{CB} and S_{E_k} do not overlap!

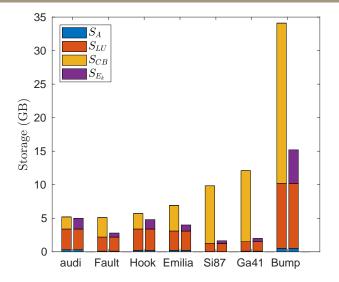
- Factorization storage: $S_A + S_{LU} + S_{CB}$
- Solution storage: $S_A + S_{LU} + S_{E_k}$
- \Rightarrow Total storage: $S_A + S_{LU} + \max(S_{CB}, S_{E_k})$

If $S_{E_k} \leq S_{CB}$, zero storage overhead!

Storage overhead: results



Storage overhead: results



\Rightarrow zero storage overhead on all matrices