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Low-rankness

Low-rank/structured methods rely on data sparsity, similar to the
Fast Multipole Method.

In algebraic terms: some off-diagonal blocks of the input matrix
are low-rank; they can be compressed.

NB: sometimes this applies to intermediate matrices (not the
input matrix), e.g., in sparse factorizations.
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Classes of structured matrices

Most structured matrices belong to the class of Hierarchical matrices
(H−matrices) [Hackbusch, Bebendorf, Börm, Grasedyck. . . ].
H2 (Hackbusch, Börm, et al.)
HSS (Chandrasekaran, Jia, et al.)
HODLR (Darve et al.)
BLR (Amestoy, Ashcraft, et al.)
+ SSS, MHS, . . .

In this talk:
We review some algorithmic and implementation differences.
We compare four different rank-structured software packages for
dense problems (four different classes of matrices).
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Differences

Three criteria differentiate all the low-rank formats:

Clustering/partitioning: off-diagonal blocks can be refined or not.
The partitioning is
defined by a single
tree whose leaves
cluster [1, n].

vs
The partitioning is
defined by the
product of two trees
(rows × columns).

Nested basis or not.
Blocks have
independent
compressed
representations
(bases).

vs
U1

U2
U3

Shared information:

Ubig
3 =

[
U1 0
0 U2

]
U3

Buffer zone next to the diagonal or not (“strong admissibility”).

Assumes interaction
between two clusters
is low-rank.

vs
Blocks next to the
diagonal not
“admitted”
(compressed).
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Main classes of hierarchical matrices

HODLR (Darve et al.)
No nested bases.
No off-diagonal refinement.
No buffer zone.

F.-H. Rouet, SIAM Conference on Applied Linear Algebra, October 29th, 2015 5/27



Main classes of hierarchical matrices

HSS (Chandrasekaran, Jia. . . )
Nested bases.
No off-diagonal refinement.
No buffer zone.
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Main classes of hierarchical matrices

BLR (Amestoy, Ashcraft, et al.)
No nested bases.
Refine off-diagonal blocks.
Can do buffer zone.
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Main classes of hierarchical matrices

Barnes-Hut (“tree code”)
No nested bases.
Refine off-diagonal blocks.
Buffer zone.
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Main classes of hierarchical matrices

Fast Multipole Method (Greengard & Rokhlin)
Nested bases.
Refine off-diagonal blocks.
Buffer zone.
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Main classes of hierarchical matrices

Fast Multipole Method (Greengard & Rokhlin)
Nested bases.
Refine off-diagonal blocks.
Buffer zone.

H → H2 ≡ Barnes-Hut→ FMM
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The four formats

In this talk, we examine:

HODLRH (one instance)

HSSBLR

Simple clusteringUniform
partitioning

Nested
bases
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Compression kernel

Compression of an m × n block B:
SVD: optimal but costly (O(mn2)).

Rank-Revealing QR (Householder or Gram-Schmidt). Cost
O(mnk). Strong RRQR might reduce ranks but is more costly.
Interpolative Decomposition (ID) is RRQR + 1 step:

B = QRΠ−1 = Q [R1R2] Π−1 = (QR1)
[
I R−1

1 R2
]

Π−1 = B(:, J)X
Adaptive Cross Approximation (Bebendorf) is essentially
rank-revealing LU and a similar trick to get

B = X B(I, J) Y
Cost O(k2n). In some applications people choose I, J a priori.
CUR (Mahoney & Drineas), or pseudo-skeleton decomposition, is
essentially a two-sided ID:

B = CUR = B(:, J) U B(I, :)
BDLR (Darve et al.) is a new technique that looks at the
underlying graph to pick some interesting rows/columns.
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Software packages – 1/2

Code License Authors Format Arch Matrix
HLIBPro Commercial Kriemann H, Shared (TBB), Dense,
2.4∗ (free academia) et al. H2 Dist. (MPI) Sparse

HODLR None Ambikasaran, HODLR Serial Dense
3.14 Darve

MUMPS Cecill-C Amestoy, BLR Dist. (MPI), Sparse
5.X dev ' GPL L’Excellent, et al. Shared (OpenMP) (dense)

STRUMPACK BSD R., Li , HSS Dist. (MPI) Dense
-dense 1.1.1 Ghysels
STRUMPACK BSD Ghysels, Li, HSS Shared (OpenMP) Sparse
-sparse 0.9.4 R.

∗2.4 released yesterday!
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Software packages – 2/2

Code Matrix Clustering Compress Factor Solve Extract Matvec
HLIBPro Dense X(geo) X X X X X

Sparse X(graph) X X X X X

HODLR Dense X X X X X

MUMPS Sparse X(graph) X X
Dense X X

STRUMPACK Dense X X X X X
Sparse X(graph) X X

HLIBPro also has:
H-matrix addition and
multiplication,
BEM-specific features,
Iterative solvers,
Visualization. . .

HODLR: there is a new code by A.
Aminfar with sparse features.

STRUMPACK: HSS algorithms based
on randomized sampling [Martinsson].
Sparse MPI+OpenMP solver to be
released soon (P. Ghysel’s talk).

MUMPS: BLR features implemented
in the dissertations of C. Weisbecker
and T. Mary, to be released soon.
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Algorithmic and implementation differences

Workflow (dense case):
• HODLR, HLIBPro and STRUMPACK 1/ compress the entire

matrix then 2/ perform a structured factorization (e.g., ULV
factorization for HSS).

• MUMPS interleaves compressions and factorizations of panels.

Compression kernel:
• MUMPS and STRUMPACK use QR with column pivoting.
• HODLR and HLIBPro use ACA.

Compression threshold:
• HLIBPro, HODLR and STRUMPACK use a relative threshold.
• MUMPS uses an absolute threshold on singular values.

Interface:
• HLIBPro and HODLR require only a function that defines Ai,j .
• MUMPS requires an explicit matrix A.
• STRUMPACK can take either an explicit matrix, either an

element function and samples of the row and column spaces of
the matrix: Sr = A · Rr , Sc = AT · Rc .
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The comparison

Test: solving a linear system with GMRES (PETSc),
preconditioned by HODLR / HLIBPro / MUMPS-BLR /
STRUMPACK. Sequential execution.
Three different compression thresholds: 10−14, 10−8, 10−2.
Block sizes, leaf sizes, tree levels: the best for each code.
All the matrices are built/permuted in a way that reveals
low-rankness and most problems don’t have an underlying
geometry. In HLIBPro, geometric clustering is disabled and the
default partitioning/admissibility condition is used:
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Test problems – 1/2

All problems are dense.

Quantum Chemistry Toeplitz matrix (from J. Jones, D. Haxton,
LBNL). Ranks grow slowly with matrix size.
“Simple” Toeplitz matrix. Ai ,j = i − j for i 6= j . For any
partitioning/decomposition, ranks should be 2.
Covariance matrix (from U. Villa, LLNL). Associated with a 3D
mesh, used to generate “random Gaussian fields”.
Root node of the multifrontal factorization of a 2D Laplacian
problem (5-point FD). Max off-diagonal rank is expected to be
very small, almost constant with problem size.
Root node of the multifrontal factorization of a 3D Laplacian
problem (7-point FD). Max off-diagonal rank grows as √n (and
is big w.r.t problem size).
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Test problems – 2/2

BEM Acoustic Sphere (from G. Sylvand, Airbus). Frequency
510 MHz, radius 1 meter, discretization step wavelength/10.
Artificial HODLR matrix. Each block has rank 3% of its size.
Two-electron integrals matrix (from J. McClean, LBNL).
Corresponds to a CxHy molecule (e.g., C8H18), generated from
a rank-4 tensor.
FMM matrix (from Rio Yokota, Tokyo), Laplacian kernel for a
3D problem, random particules in a cube.
Matrix associated with the pendigits dataset (from M. Mahoney,
UC Berkeley). Gaussian kernel of a dataset of handwriting
samples.
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Results – 1/10

Quantum Chemistry Toeplitz matrix, n = 12, 500.

Solver Times (s) Mem (MB) Iter Rank
Compr. Facto. Total Compr. Facto.

LAPACK - 63.0 63.5 - 1192.1 1 -
HODLR 10−14 0.4 0.3 0.7 40.9 42.5 2 30
HODLR 10−08 0.2 0.1 0.5 27.0 27.5 3 18
HODLR 10−02 0.2 0.1 60.0 10.6 10.7 600 1
HLIBPro 10−14 0.4 3.0 3.6 43.0 42.8 2 -
HLIBPro 10−08 0.3 1.2 2.2 31.0 30.3 2 -
HLIBPro 10−02 0.1 0.6 1.4 16.3 16.3 6 -
MUMPS-BLR 10−14 - 7.6 8.3 - 64.3 2 -
MUMPS-BLR 10−08 - 7.5 9.0 - 58.4 3 -
MUMPS-BLR 10−02 - 4.9 12.2 - 53.6 17 -
STRUMPACK 10−14 0.3 0.09 0.7 14.3 40.7 1 84
STRUMPACK 10−08 0.2 0.04 0.5 8.9 22.7 3 65
STRUMPACK 10−02 0.1 0.02 1.0 3.4 7.9 65 10
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Results – 2/10

Simple Toeplitz matrix, n = 12, 500.

Solver Times (s) Mem (MB) Iter Rank
Compr. Facto. Total Compr. Facto.

LAPACK - 63.0 63.5 - 1192.1 1 -
HODLR 10−14 0.1 0.04 0.2 13.4 13.4 1 4
HODLR 10−08 0.1 0.03 0.2 12.0 12.0 1 2
HODLR 10−02 0.01 0.03 0.6 10.6 10.7 5 1
HLIBPro 10−14 0.07 0.6 0.8 16.3 16.3 1 -
HLIBPro 10−08 0.07 0.5 0.7 16.3 16.3 1 -
HLIBPro 10−02 0.07 0.4 0.8 15.0 13.9 3 -
MUMPS-BLR 10−14 - 8.2 9.3 - 48.9 1 -
MUMPS-BLR 10−08 - 7.5 8.2 - 48.9 1 -
MUMPS-BLR 10−02 - 5.0 6.9 - 35.8 4 -
STRUMPACK 10−14 0.02 0.02 0.05 2.9 7.3 1 2
STRUMPACK 10−08 0.02 0.02 0.05 2.9 7.3 1 2
STRUMPACK 10−02 0.02 0.02 0.1 2.7 7.2 6 2
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Results – 3/10

Covariance matrix, n = 10, 648 (22× 22× 22 mesh).
Solver Times (s) Mem (MB) Iter Rank

Compr. Facto. Total Compr. Facto.
LAPACK - 41.0 41.0 - 865.0 1 -
HODLR 10−14 157.9 288.9 448.2 952.1 2250.1 2 1750
HODLR 10−08 35.0 52.1 89.6 493.8 935.7 9 739
HODLR 10−02 0.01 0.05 NoCV 10.7 10.9 NoCV 12
HLIBPro 10−14 174.4 73.0 247.8 765.0 764.7 1 -
HLIBPro 10−08 95.3 95.6 191.5 567.6 577.5 3 -
HLIBPro 10−02 0.8 2.8 NoCV 46.3 30.8 NoCV -
MUMPS-BLR 10−14 - 48.0 48.9 - 865.0 2 -
MUMPS-BLR 10−08 - 34.4 35.7 - 737.0 3 -
MUMPS-BLR 10−02 - 5.0 49.6 - 203.3 130 -
STRUMPACK 10−14 213.7 62.7 277.7 614.3 1651.9 2 2661
STRUMPACK 10−08 71.3 24.5 97.8 423.8 945.1 6 1486
STRUMPACK 10−02 1.0 13.7 111.1 216.5 648.8 436 2
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Results – 4/10

2D Laplacian Schur complement, n = 12, 500 (12, 500×12, 500 mesh).
Solver Times (s) Mem (MB) Iter Rank

Compr. Facto. Total Compr. Facto.
LAPACK - 63.0 63.5 - 1192.1 1 -
HODLR 10−14 0.3 0.08 1.2 16.7 16.8 7 8
HODLR 10−08 0.2 0.06 1.2 14.4 14.5 8 6
HODLR 10−02 0.2 0.04 1.4 11.6 11.6 11 4
HLIBPro 10−14 0.07 0.2 1.0 10.9 11.1 7 -
HLIBPro 10−08 0.06 0.1 1.0 10.3 10.5 7 -
HLIBPro 10−02 0.05 0.1 1.0 9.9 10.1 7 -
MUMPS-BLR 10−14 - 8.4 9.3 - 38.1 1 -
MUMPS-BLR 10−08 - 8.9 10.2 - 38.4 2 -
MUMPS-BLR 10−02 - 8.3 10.5 - 38.1 5 -
STRUMPACK 10−14 1.0 0.1 1.3 12.0 29.8 1 18
STRUMPACK 10−08 1.0 0.1 1.3 8.2 28.9 1 13
STRUMPACK 10−02 0.9 0.1 1.6 10.4 28.3 5 8
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Results – 5/10

3D Laplacian Schur complement, n = 12, 100 (110×110×110 mesh).
Solver Times (s) Mem (MB) Iter Rank

Compr. Facto. Total Compr. Facto.
LAPACK - - 55.6 - 1117.0 1 -
HODLR 10−14 42.7 76.0 119.5 605.0 1222.1 2 783
HODLR 10−08 15.6 25.1 43.6 368.7 689.7 12 510
HODLR 10−02 0.9 0.9 13.8 79.2 86.4 101 112
HLIBPro 10−14 46.3 55.7 102.4 554.0 555.7 2 -
HLIBPro 10−08 21.4 40.9 64.2 389.5 392.4 13 -
HLIBPro 10−02 2.6 10.7 23.4 96.4 104.5 83 -
MUMPS-BLR 10−14 - 29.3 30.4 - 665.7 2 -
MUMPS-BLR 10−08 - 16.2 17.7 - 401.0 3 -
MUMPS-BLR 10−02 - 6.1 14.3 - 150.8 20 -
STRUMPACK 10−14 85.0 26.9 112.9 424.7 1106.0 2 1302
STRUMPACK 10−08 49.8 11.9 64.7 309.3 714.9 3 906
STRUMPACK 10−02 19.5 6.8 30.4 209.5 480.1 19 468
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Results – 6/10

BEM Acoustic Sphere, n = 10, 002.

Solver Times (s) Mem (MB) Iter Rank
Compr. Facto. Total Compr. Facto.

LAPACK - 35.0 35.0 - 763.2 1 -
HODLR 10−14 31.5 39.4 71.4 400.0 580.4 2 653
HODLR 10−08 4.2 2.6 7.6 117.7 150.7 7 185
HODLR 10−02 0.1 0.04 0.8 5.8 5.8 9 0
HLIBPro 10−14 111.8 38.7 151.6 544.5 544.6 1 -
HLIBPro 10−08 90.1 21.6 111.9 429.2 429.3 1 -
HLIBPro 10−02 2.3 7.6 10.6 80.0 80.3 8 -
MUMPS-BLR 10−14 - 22.5 23.3 - 508.8 2 -
MUMPS-BLR 10−08 - 8.5 9.6 - 238.9 3 -
MUMPS-BLR 10−02 - 3.8 5.9 - 37.4 7 -
STRUMPACK 10−14 338.0 92.2 432.2 695.4 2404.1 2 3614
STRUMPACK 10−08 51.2 15.6 67.6 277.2 851.2 2 1182
STRUMPACK 10−02 10.0 2.1 14.7 106.3 251.4 6 384
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Results – 7/10

HODLR artificial matrix, n = 12.500.

Solver Times (s) Mem (MB) Iter Rank
Compr. Facto. Total Compr. Facto.

LAPACK - 63.0 63.5 - 1192.1 1 -
HODLR 10−14 1.3 2.1 4.4 107.8 109.9 2 188
HODLR 10−08 1.9 2.0 4.2 106.8 108.9 1 187
HODLR 10−02 0.05 1.2 1.6 38.2 38.2 3 1
HLIBPro 10−14 6.1 99.7 106.0 243.8 461.3 1 -
HLIBPro 10−08 6.2 43.0 49.5 237.2 259.3 1 -
HLIBPro 10−02 1.5 0.9 2.9 71.5 71.5 3 -
MUMPS-BLR 10−14 - 62.6 63.3 - 1105.1 1 -
MUMPS-BLR 10−08 - 56.0 57.1 - 939.4 2 -
MUMPS-BLR 10−02 - 5.0 6.1 - 35.8 2 -
STRUMPACK 10−14 19.9 5.4 26.0 182.9 545.7 1 400
STRUMPACK 10−08 16.4 3.8 20.6 153.9 445.6 1 360
STRUMPACK 10−02 1.0 0.5 1.9 37.5 111.9 3 1
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Results – 8/10

Two-electron integrals, C8H18 molecule, n = 11, 664.

Solver Times (s) Mem (MB) Iter Rank
Compr. Facto. Total Compr. Facto.

LAPACK - 48.7 49.8 - 1038.0 1 -
HODLR 10−14 133.4 123.1 257.5 776.4 1082.7 2 1854
HODLR 10−08 18.1 14.1 32.9 330.8 393.5 3 705
HODLR 10−02 0.1 0.05 6.0 14.7 14.8 58 12
HLIBPro 10−14 100.9 222.3 330.2 764.5 804.7 42 -
HLIBPro 10−08 21.5 95.6 123.0 397.7 409.7 42 -
HLIBPro 10−02 0.3 2.1 7.1 28.7 31.6 43 -
MUMPS-BLR 10−14 - 58.7 59.7 - 1006.8 2 -
MUMPS-BLR 10−08 - 33.7 35.1 - 685.1 3 -
MUMPS-BLR 10−02 - 4.7 29.2 - 55.0 64 -
STRUMPACK 10−14 158.4 33.9 193.9 311.2 1039.8 2 1700
STRUMPACK 10−08 21.8 2.1 23.9 83.6 257.9 3 570
STRUMPACK 10−02 2.1 0.1 19.5 8.4 24.5 179 16
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Results – 9/10

3D FMM matrix (Laplacian kernel), n = 12, 000.
Solver Times (s) Mem (MB) Iter Rank

Compr. Facto. Total Compr. Facto.
LAPACK - 53.0 53.5 - 1098.6 2 -
HODLR 10−14 87.3 101.0 190.1 758.7 1068.1 2 1608
HODLR 10−08 15.1 15.6 33.1 346.6 425.9 12 641
HODLR 10−02 0.1 0.05 6.0 14.7 14.8 58 5
HLIBPro 10−14 64.2 217.6 282.1 730.3 768.6 2 -
HLIBPro 10−08 26.6 104.8 131.9 428.3 467.5 12 -
HLIBPro 10−02 0.9 4.0 NoCV 46.5 43.3 NoCV -
MUMPS-BLR 10−14 - 62.9 63.9 - 1077.8 2 -
MUMPS-BLR 10−08 - 32.7 34.4 - 708.6 4 -
MUMPS-BLR 10−02 - 8.9 NoCV - 183.5 NoCV -
STRUMPACK 10−14 126.4 16.9 144.1 527.4 1590.8 5 1775
STRUMPACK 10−08 52.3 11.2 64.7 269.6 257.9 5 570
STRUMPACK 10−02 1.0 1.5 NoCV 8.4 24.5 NoCV 2
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Results – 10/10

Pendigits Gaussian kernel, n = 10, 992.

Solver Times (s) Mem (MB) Iter Rank
Compr. Facto. Total Compr. Facto.

LAPACK - 52.6 53.0 - 921.8 1 -
HODLR 10−14 0.8 0.3 1.5 22.1 23.1 4 51
HODLR 10−08 0.2 0.1 0.8 9.5 9.5 5 22
HODLR 10−02 0.1 0.1 1.0 7.2 7.2 8 3
HLIBPro 10−14 0.09 0.5 1.5 12.2 13.7 7 -
HLIBPro 10−08 0.08 0.4 1.4 10.4 11.4 7 -
HLIBPro 10−02 0.06 0.2 1.2 8.6 9.3 7 -
MUMPS-BLR 10−14 - 10.4 11.1 - 48.3 1 -
MUMPS-BLR 10−08 - 8.1 9.1 - 40.6 2 -
MUMPS-BLR 10−02 - 7.6 9.8 - 38.5 5 -
STRUMPACK 10−14 215.3 30.1 245.8 133.7 501.8 1 2327
STRUMPACK 10−08 8.5 0.08 8.8 9.6 22.7 2 113
STRUMPACK 10−02 1.4 0.05 1.9 3.7 10.9 5 9
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A matrix-free problem

Problem: Quantum Chemistry Toeplitz matrix, threshold 10−14.
Benchmark: compression + factorization + GMRES iterations.
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Run times behave similarly, with a ∼ 2x slowdown for HLIBPro.
Memory: HSS pays off for very large problems; O(n) behavior.

F.-H. Rouet, SIAM Conference on Applied Linear Algebra, October 29th, 2015 24/27



Findings

For our test suite:
Problems with very low-ranks (Toeplitz, 2D Laplacian):
HLIBPro/HODLR/STRUMPACK dominate.
Problems with large ranks (in A12, A21) (Covariance, 3D
Laplacian): MUMPS-BLR faster.
Some problems: no clear result, depends on threshold.

Remarks:
HODLR and HLIBPro perform similarly in this setting, but
HLIBPro can take advantage of geometry.
With STRUMPACK/HSS, the compressed matrix is the smallest
in most cases, but there is a large increase after factorization.
HSS + randomized sampling should perform better for sparse
problems. Compression of an “independent” dense matrix:
O(rn2), inside a sparse factorization: O(r2n) (cheaper sampling).
MUMPS-BLR limits the worst-case: no huge increase in run time
or memory for 10−14. It rejects blocks with large ranks.
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Future work

Parallel experiments, larger scale:
• HLIBPro: block-wise H−arithmetic doesn’t give much parallelism

for dense problems. Work in progress at the algorithmic level.
• HODLR: need to try new code.
• STRUMPACK-dense ready.
• MUMPS-BLR ready.

Sparse problems:
• HLIBPro ready.
• HODLR: need to try new code.
• STRUMPACK-sparse: shared-memory ready, distributed-memory

almost done.
• MUMPS-BLR ready.
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End

STRUMPACK-related talks at LA15

Today, 3:30pm, Rio Yokota, A comparison of FMM and
HSS at scale, MS45 (fast solvers).
Tomorrow, 11:45am, Pieter Ghysels, A parallel multifrontal
solver using HSS matrices, MS51 (preconditioners).

Thank you for your attention!

Any questions?
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