A comparison of different low-rank approximation techniques

François-Henry Rouet

Lawrence Berkeley National Laboratory
Joint work with:

- LBNL: P. Ghysels, X. S. Li
- LSTC: C. Ashcraft, C. Weisbecker
- MUMPS project: P. R. Amestoy, A. Buttari, J.-Y. L'Excellent, T. Mary

Low-rankness

■ Low-rank/structured methods rely on data sparsity, similar to the Fast Multipole Method.

- In algebraic terms: some off-diagonal blocks of the input matrix are low-rank; they can be compressed.

- NB: sometimes this applies to intermediate matrices (not the input matrix), e.g., in sparse factorizations.

Most structured matrices belong to the class of Hierarchical matrices (\mathcal{H}-matrices) [Hackbusch, Bebendorf, Börm, Grasedyck...].

- \mathcal{H}^{2} (Hackbusch, Börm, et al.)

■ HSS (Chandrasekaran, Jia, et al.)
■ HODLR (Darve et al.)
■ BLR (Amestoy, Ashcraft, et al.)
■ + SSS, MHS, ...
In this talk:
■ We review some algorithmic and implementation differences.
■ We compare four different rank-structured software packages for dense problems (four different classes of matrices).

Differences

Three criteria differentiate all the low-rank formats:

Differences

Three criteria differentiate all the low-rank formats:

- Clustering/partitioning: off-diagonal blocks can be refined or not.

The partitioning is defined by a single tree whose leaves cluster $[1, n]$.

The partitioning is defined by the product of two trees (rows \times columns).

Differences

Three criteria differentiate all the low-rank formats:

- Clustering/partitioning: off-diagonal blocks can be refined or not.

The partitioning is defined by a single tree whose leaves cluster $[1, n]$.

The partitioning is defined by the product of two trees (rows \times columns).

■ Nested basis or not.
Blocks have independent compressed representations (bases).

Shared information:

$$
U_{3}^{\mathrm{big}}=\left[\begin{array}{cc}
U_{1} & 0 \\
0 & U_{2}
\end{array}\right] U_{3}
$$

Differences

Three criteria differentiate all the low-rank formats:

- Clustering/partitioning: off-diagonal blocks can be refined or not.

The partitioning is defined by a single tree whose leaves cluster $[1, n]$.

The partitioning is defined by the product of two trees (rows \times columns).

- Nested basis or not.

Blocks have independent compressed representations (bases).

Shared information:

$$
U_{3}^{\mathrm{big}}=\left[\begin{array}{cc}
U_{1} & 0 \\
0 & U_{2}
\end{array}\right] U_{3}
$$

■ Buffer zone next to the diagonal or not ("strong admissibility").

Assumes interaction between two clusters is low-rank.

Blocks next to the diagonal not
"admitted" (compressed).

Main classes of hierarchical matrices

HODLR (Darve et al.)
■ No nested bases.

- No off-diagonal refinement.

■ No buffer zone.

Main classes of hierarchical matrices

HSS (Chandrasekaran, Jia...)

- Nested bases.
- No off-diagonal refinement.

■ No buffer zone.

Main classes of hierarchical matrices

BLR (Amestoy, Ashcraft, et al.)
■ No nested bases.

- Refine off-diagonal blocks.
- Can do buffer zone.

Main classes of hierarchical matrices

Barnes-Hut ("tree code")
■ No nested bases.
■ Refine off-diagonal blocks.

- Buffer zone.

Main classes of hierarchical matrices

Fast Multipole Method (Greengard \& Rokhlin)

- Nested bases.
- Refine off-diagonal blocks.
- Buffer zone.

Main classes of hierarchical matrices

Fast Multipole Method (Greengard \& Rokhlin)

- Nested bases.
- Refine off-diagonal blocks.
- Buffer zone.

$\mathcal{H} \rightarrow \mathcal{H}^{2} \equiv$ Barnes-Hut \rightarrow FMM

In this talk, we examine:

Compression kernel

Compression of an $m \times n$ block B :
■ SVD: optimal but costly $\left(O\left(m n^{2}\right)\right)$.

Compression kernel

Compression of an $m \times n$ block B :
■ SVD: optimal but costly $\left(O\left(m n^{2}\right)\right)$.
■ Rank-Revealing QR (Householder or Gram-Schmidt). Cost O (mnk). Strong RRQR might reduce ranks but is more costly.

Compression kernel

Compression of an $m \times n$ block B :
■ SVD: optimal but costly $\left(O\left(m n^{2}\right)\right)$.
■ Rank-Revealing QR (Householder or Gram-Schmidt). Cost O (mnk). Strong RRQR might reduce ranks but is more costly.
■ Interpolative Decomposition (ID) is RRQR + 1 step:

$$
B=Q R \Pi^{-1}=Q\left[R_{1} R_{2}\right] \Pi^{-1}=\left(Q R_{1}\right)\left[I R_{1}^{-1} R_{2}\right] \Pi^{-1}=B(:, J) X
$$

Compression kernel

Compression of an $m \times n$ block B :
■ SVD: optimal but costly $\left(O\left(m n^{2}\right)\right)$.
■ Rank-Revealing QR (Householder or Gram-Schmidt). Cost O (mnk). Strong RRQR might reduce ranks but is more costly.
■ Interpolative Decomposition (ID) is RRQR + 1 step:

$$
B=Q R \Pi^{-1}=Q\left[R_{1} R_{2}\right] \Pi^{-1}=\left(Q R_{1}\right)\left[I R_{1}^{-1} R_{2}\right] \Pi^{-1}=B(:, J) X
$$

- Adaptive Cross Approximation (Bebendorf) is essentially rank-revealing LU and a similar trick to get

$$
B=X B(I, J) Y
$$

Cost $O\left(k^{2} n\right)$. In some applications people choose I, J a priori.

Compression kernel

Compression of an $m \times n$ block B :
■ SVD: optimal but costly $\left(O\left(m n^{2}\right)\right)$.
■ Rank-Revealing QR (Householder or Gram-Schmidt). Cost O (mnk). Strong RRQR might reduce ranks but is more costly.
■ Interpolative Decomposition (ID) is RRQR + 1 step:
$B=Q R \Pi^{-1}=Q\left[R_{1} R_{2}\right] \Pi^{-1}=\left(Q R_{1}\right)\left[I R_{1}^{-1} R_{2}\right] \Pi^{-1}=B(:, J) X$

- Adaptive Cross Approximation (Bebendorf) is essentially rank-revealing $L U$ and a similar trick to get

$$
B=X B(I, J) Y
$$

Cost $O\left(k^{2} n\right)$. In some applications people choose I, J a priori.

- CUR (Mahoney \& Drineas), or pseudo-skeleton decomposition, is essentially a two-sided ID:

$$
B=C \cup R=B(:, J) \cup B(I,:)
$$

Compression kernel

Compression of an $m \times n$ block B :
■ SVD: optimal but costly $\left(O\left(m n^{2}\right)\right)$.
■ Rank-Revealing QR (Householder or Gram-Schmidt). Cost $O(m n k)$. Strong RRQR might reduce ranks but is more costly.
■ Interpolative Decomposition (ID) is RRQR + 1 step:
$B=Q R \Pi^{-1}=Q\left[R_{1} R_{2}\right] \Pi^{-1}=\left(Q R_{1}\right)\left[I R_{1}^{-1} R_{2}\right] \Pi^{-1}=B(:, J) X$

- Adaptive Cross Approximation (Bebendorf) is essentially rank-revealing $L U$ and a similar trick to get

$$
B=X B(I, J) Y
$$

Cost $O\left(k^{2} n\right)$. In some applications people choose I, J a priori.

- CUR (Mahoney \& Drineas), or pseudo-skeleton decomposition, is essentially a two-sided ID:

$$
B=C \cup R=B(:, J) \cup B(I,:)
$$

- BDLR (Darve et al.) is a new technique that looks at the underlying graph to pick some interesting rows/columns.

Software packages - 1/2

Code	License	Authors	Format	Arch	Matrix
$\begin{gathered} \hline \text { HLIBPro } \\ 2.4^{*} \end{gathered}$	Commercial (free academia)	Kriemann et al.	$\begin{aligned} & \mathcal{H}, \\ & \mathcal{H}^{2} \end{aligned}$	Shared (TBB), Dist. (MPI)	Dense, Sparse
$\begin{gathered} \hline \text { HODLR } \\ 3.14 \end{gathered}$	None	Ambikasaran, Darve	HODLR	Serial	Dense
MUMPS 5.X dev	$\begin{aligned} & \text { Cecill-C } \\ & \simeq G P L \end{aligned}$	Amestoy, L'Excellent, et al.	BLR	Dist. (MPI), Shared (OpenMP)	Sparse (dense)
STRUMPACK -dense 1.1.1	BSD	R., Li , Ghysels	HSS	Dist. (MPI)	Dense
STRUMPACK -sparse 0.9.4	BSD	Ghysels, Li, R.	HSS	Shared (OpenMP)	Sparse

[^0]
Software packages $-2 / 2$

Code	Matrix	Clustering	Compress	Factor	Solve	Extract	Matvec
HLIBPro	Dense	\checkmark (geo)	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark
	Sparse	\checkmark (graph)	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark
HODLR	Dense		\checkmark	\checkmark	\checkmark	\checkmark	\checkmark
MUMPS	Sparse	\checkmark (graph)		\checkmark	\checkmark		
	Dense			\checkmark	\checkmark		
STRUMPACK	Dense		\checkmark	\checkmark	\checkmark	\checkmark	\checkmark
	Sparse	\checkmark (graph)		\checkmark	\checkmark		

Software packages - 2/2

Code	Matrix	Clustering	Compress	Factor	Solve	Extract	Matvec
HLIBPro	Dense	\checkmark (geo)	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark
	Sparse	\checkmark (graph)	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark
HODLR	Dense		\checkmark	\checkmark	\checkmark	\checkmark	\checkmark
MUMPS	Sparse	\checkmark (graph)		\checkmark	\checkmark		
	Dense			\checkmark	\checkmark		
STRUMPACK	Dense		\checkmark	\checkmark	\checkmark	\checkmark	\checkmark
	Sparse	\checkmark (graph)		\checkmark	\checkmark		

HLIBPro also has:

- \mathcal{H}-matrix addition and multiplication,
- BEM-specific features,
- Iterative solvers,
- Visualization. . .

HODLR: there is a new code by A. Aminfar with sparse features.

STRUMPACK: HSS algorithms based on randomized sampling [Martinsson]. Sparse MPI+OpenMP solver to be released soon (P. Ghysel's talk).

MUMPS: BLR features implemented in the dissertations of C . Weisbecker and T. Mary, to be released soon.
F.-H. Rouet, SIAM Conference on Applied Linear Algebra, October 29th, 2015

Algorithmic and implementation differences

■ Workflow (dense case):

- HODLR, HLIBPro and STRUMPACK 1/ compress the entire matrix then $2 /$ perform a structured factorization (e.g., ULV factorization for HSS).
- MUMPS interleaves compressions and factorizations of panels.

Algorithmic and implementation differences

■ Workflow (dense case):

- HODLR, HLIBPro and STRUMPACK 1/ compress the entire matrix then 2/ perform a structured factorization (e.g., ULV factorization for HSS).
- MUMPS interleaves compressions and factorizations of panels.

■ Compression kernel:

- MUMPS and STRUMPACK use QR with column pivoting.
- HODLR and HLIBPro use ACA.

Algorithmic and implementation differences

■ Workflow (dense case):

- HODLR, HLIBPro and STRUMPACK 1/ compress the entire matrix then 2/ perform a structured factorization (e.g., ULV factorization for HSS).
- MUMPS interleaves compressions and factorizations of panels.

■ Compression kernel:

- MUMPS and STRUMPACK use QR with column pivoting.
- HODLR and HLIBPro use ACA.

■ Compression threshold:

- HLIBPro, HODLR and STRUMPACK use a relative threshold.
- MUMPS uses an absolute threshold on singular values.

Algorithmic and implementation differences

■ Workflow (dense case):

- HODLR, HLIBPro and STRUMPACK 1/ compress the entire matrix then 2/ perform a structured factorization (e.g., ULV factorization for HSS).
- MUMPS interleaves compressions and factorizations of panels.

■ Compression kernel:

- MUMPS and STRUMPACK use QR with column pivoting.
- HODLR and HLIBPro use ACA.

■ Compression threshold:

- HLIBPro, HODLR and STRUMPACK use a relative threshold.
- MUMPS uses an absolute threshold on singular values.
- Interface:
- HLIBPro and HODLR require only a function that defines $A_{i, j}$.
- MUMPS requires an explicit matrix A.
- STRUMPACK can take either an explicit matrix, either an element function and samples of the row and column spaces of the matrix: $S_{r}=A \cdot R_{r}, S_{c}=A^{T} \cdot R_{c}$.
- Test: solving a linear system with GMRES (PETSc), preconditioned by HODLR / HLIBPro / MUMPS-BLR / STRUMPACK. Sequential execution.
■ Three different compression thresholds: $10^{-14}, 10^{-8}, 10^{-2}$.
■ Block sizes, leaf sizes, tree levels: the best for each code.
■ All the matrices are built/permuted in a way that reveals low-rankness and most problems don't have an underlying geometry. In HLIBPro, geometric clustering is disabled and the default partitioning/admissibility condition is used:

Test problems - 1/2

All problems are dense.

- Quantum Chemistry Toeplitz matrix (from J. Jones, D. Haxton, LBNL). Ranks grow slowly with matrix size.
■ "Simple" Toeplitz matrix. $A_{i, j}=i-j$ for $i \neq j$. For any partitioning/decomposition, ranks should be 2.
- Covariance matrix (from U. Villa, LLNL). Associated with a 3D mesh, used to generate "random Gaussian fields".
■ Root node of the multifrontal factorization of a 2D Laplacian problem (5-point FD). Max off-diagonal rank is expected to be very small, almost constant with problem size.
- Root node of the multifrontal factorization of a 3D Laplacian problem (7-point FD). Max off-diagonal rank grows as \sqrt{n} (and is big w.r.t problem size).

Test problems - 2/2

- BEM Acoustic Sphere (from G. Sylvand, Airbus). Frequency 510 MHz , radius 1 meter, discretization step wavelength/10.
■ Artificial HODLR matrix. Each block has rank 3\% of its size.
- Two-electron integrals matrix (from J. McClean, LBNL). Corresponds to a CxHy molecule (e.g., C 8 H 18), generated from a rank-4 tensor.
- FMM matrix (from Rio Yokota, Tokyo), Laplacian kernel for a 3D problem, random particules in a cube.
■ Matrix associated with the pendigits dataset (from M. Mahoney, UC Berkeley). Gaussian kernel of a dataset of handwriting samples.

Results - 1/10

Quantum Chemistry Toeplitz matrix, $n=12,500$.

Solver	Times (s)			Mem (MB)		Iter	Rank
	Compr.	Facto.	Total	Compr.	Facto.		
LAPACK	-	63.0	63.5	-	1192.1	1	-
HODLR 10^{-14}	0.4	0.3	0.7	40.9	42.5	2	30
HODLR 10-08	0.2	0.1	0.5	27.0	27.5	3	18
HODLR 10^{-02}	0.2	0.1	60.0	10.6	10.7	600	1
HLIBPro 10^{-14}	0.4	3.0	3.6	43.0	42.8	2	-
HLIBPro 10-08	0.3	1.2	2.2	31.0	30.3	2	-
HLIBPro 10^{-02}	0.1	0.6	1.4	16.3	16.3	6	-
MUMPS-BLR 10^{-14}	-	7.6	8.3	-	64.3	2	-
MUMPS-BLR 10^{-08}	-	7.5	9.0	-	58.4	3	-
MUMPS-BLR 10^{-02}	-	4.9	12.2	-	53.6	17	-
STRUMPACK 10^{-14}	0.3	0.09	0.7	14.3	40.7	1	84
STRUMPACK 10^{-08}	0.2	0.04	0.5	8.9	22.7	3	65
STRUMPACK 10^{-02}	0.1	0.02	1.0	3.4	7.9	65	10

Results - 2/10

Simple Toeplitz matrix, $n=12,500$.

Solver	Times (s)			Mem (MB)		Iter	Rank
	Compr.	Facto.	Total	Compr.	Facto.		
LAPACK	-	63.0	63.5	-	1192.1	1	-
HODLR 10^{-14}	0.1	0.04	0.2	13.4	13.4	1	4
HODLR 10^{-08}	0.1	0.03	0.2	12.0	12.0	1	2
HODLR 10^{-02}	0.01	0.03	0.6	10.6	10.7	5	1
HLIBPro 10^{-14}	0.07	0.6	0.8	16.3	16.3	1	-
HLIBPro 10-08	0.07	0.5	0.7	16.3	16.3	1	-
HLIBPro 10^{-02}	0.07	0.4	0.8	15.0	13.9	3	-
MUMPS-BLR 10^{-14}	-	8.2	9.3	-	48.9	1	-
MUMPS-BLR 10^{-08}		7.5	8.2	-	48.9	1	-
MUMPS-BLR 10^{-02}	-	5.0	6.9	-	35.8	4	-
STRUMPACK 10^{-14}	0.02	0.02	0.05	2.9	7.3	1	2
STRUMPACK 10^{-08}	0.02	0.02	0.05	2.9	7.3	1	2
STRUMPACK 10^{-02}	0.02	0.02	0.1	2.7	7.2	6	2

Results - 3/10

Covariance matrix, $n=10,648(22 \times 22 \times 22$ mesh $)$.

Solver	Times (s)			Mem (MB)		Iter	Rank
	Compr.	Facto.	Total	Compr.	Facto.		
LAPACK	-	41.0	41.0	-	865.0	1	-
HODLR 10^{-14}	157.9	288.9	448.2	952.1	2250.1	2	1750
HODLR 10^{-08}	35.0	52.1	89.6	493.8	935.7	9	739
HODLR 10^{-02}	0.01	0.05	NoCV	10.7	10.9	NoCV	12
HLIBPro 10^{-14}	174.4	73.0	247.8	765.0	764.7	1	-
HLIBPro 10-08	95.3	95.6	191.5	567.6	577.5	3	-
HLIBPro 10^{-02}	0.8	2.8	NoCV	46.3	30.8	NoCV	-
MUMPS-BLR 10^{-14}	-	48.0	48.9	-	865.0	2	-
MUMPS-BLR 10^{-08}		34.4	35.7	-	737.0	3	-
MUMPS-BLR 10^{-02}	-	5.0	49.6	-	203.3	130	-
STRUMPACK 10^{-14}	213.7	62.7	277.7	614.3	1651.9	2	2661
STRUMPACK 10^{-08}	71.3	24.5	97.8	423.8	945.1	6	1486
STRUMPACK 10^{-02}	1.0	13.7	111.1	216.5	648.8	436	2

Results $-4 / 10$

2D Laplacian Schur complement, $n=12,500(12,500 \times 12,500$ mesh $)$.

Solver	Times (s)			Mem (MB)		Iter	Rank
	Compr.	Facto.	Total	Compr.	Facto.		
LAPACK	-	63.0	63.5	-	1192.1	1	-
HODLR 10^{-14}	0.3	0.08	1.2	16.7	16.8	7	8
HODLR 10^{-08}	0.2	0.06	1.2	14.4	14.5	8	6
HODLR 10^{-02}	0.2	0.04	1.4	11.6	11.6	11	4
HLIBPro 10^{-14}	0.07	0.2	1.0	10.9	11.1	7	-
HLIBPro 10-08	0.06	0.1	1.0	10.3	10.5	7	-
HLIBPro 10^{-02}	0.05	0.1	1.0	9.9	10.1	7	-
MUMPS-BLR 10^{-14}	-	8.4	9.3	-	38.1	1	-
MUMPS-BLR 10^{-08}	-	8.9	10.2	-	38.4	2	-
MUMPS-BLR 10^{-02}	-	8.3	10.5	-	38.1	5	-
STRUMPACK 10^{-14}	1.0	0.1	1.3	12.0	29.8	1	18
STRUMPACK 10^{-08}	1.0	0.1	1.3	8.2	28.9	1	13
STRUMPACK 10^{-02}	0.9	0.1	1.6	10.4	28.3	5	8

Results - 5/10

3D Laplacian Schur complement, $n=12,100(110 \times 110 \times 110$ mesh $)$.

Solver	Times (s)						
	Compr.	Facto.	Total	Mem (MB) Compr.		Facto.	Iter

Results - 6/10

BEM Acoustic Sphere, $n=10,002$.

Solver	Times (s)			Mem (MB)		Iter	Rank
	Compr.	Facto.	Total	Compr.	Facto.		
LAPACK		35.0	35.0	-	763.2	1	-
HODLR 10^{-14}	31.5	39.4	71.4	400.0	580.4	2	653
HODLR 10-08	4.2	2.6	7.6	117.7	150.7	7	185
HODLR 10^{-02}	0.1	0.04	0.8	5.8	5.8	9	0
HLIBPro 10^{-14}	111.8	38.7	151.6	544.5	544.6	1	-
HLIBPro 10-08	90.1	21.6	111.9	429.2	429.3	1	-
HLIBPro 10^{-02}	2.3	7.6	10.6	80.0	80.3	8	-
MUMPS-BLR 10^{-14}		22.5	23.3		508.8	2	-
MUMPS-BLR 10^{-08}	-	8.5	9.6		238.9	3	-
MUMPS-BLR 10^{-02}	-	3.8	5.9	-	37.4	7	-
STRUMPACK 10^{-14}	338.0	92.2	432.2	695.4	2404.1	2	3614
STRUMPACK 10^{-08}	51.2	15.6	67.6	277.2	851.2	2	1182
STRUMPACK 10^{-02}	10.0	2.1	14.7	106.3	251.4	6	384

Results - 7/10

HODLR artificial matrix, $n=12.500$.

Solver	Times (s)			Mem (MB)		Iter	Rank
	Compr.	Facto.	Total	Compr.	Facto.		
LAPACK	-	63.0	63.5	-	1192.1	1	-
HODLR 10^{-14}	1.3	2.1	4.4	107.8	109.9	2	188
HODLR 10-08	1.9	2.0	4.2	106.8	108.9	1	187
HODLR 10^{-02}	0.05	1.2	1.6	38.2	38.2	3	1
HLIBPro 10^{-14}	6.1	99.7	106.0	243.8	461.3	1	
HLIBPro 10^{-08}	6.2	43.0	49.5	237.2	259.3	1	
HLIBPro 10^{-02}	1.5	0.9	2.9	71.5	71.5	3	-
MUMPS-BLR 10^{-14}	-	62.6	63.3		1105.1	1	
MUMPS-BLR 10^{-08}	-	56.0	57.1	-	939.4	2	-
MUMPS-BLR 10^{-02}	-	5.0	6.1	-	35.8	2	-
STRUMPACK 10^{-14}	19.9	5.4	26.0	182.9	545.7	1	400
STRUMPACK 10^{-08}	16.4	3.8	20.6	153.9	445.6	1	360
STRUMPACK 10^{-02}	1.0	0.5	1.9	37.5	111.9	3	1

Results - 8/10

Two-electron integrals, C 8 H 18 molecule, $n=11,664$.

Solver	Times (s)			Mem (MB)		Iter	Rank
	Compr.	Facto.	Total	Compr.	Facto.		
LAPACK	-	48.7	49.8	-	1038.0	1	-
HODLR 10^{-14}	133.4	123.1	257.5	776.4	1082.7	2	1854
HODLR 10-08	18.1	14.1	32.9	330.8	393.5	3	705
HODLR 10^{-02}	0.1	0.05	6.0	14.7	14.8	58	12
HLIBPro 10^{-14}	100.9	222.3	330.2	764.5	804.7	42	
HLIBPro 10-08	21.5	95.6	123.0	397.7	409.7	42	
HLIBPro 10^{-02}	0.3	2.1	7.1	28.7	31.6	43	
MUMPS-BLR 10^{-14}	-	58.7	59.7		1006.8	2	
MUMPS-BLR 10^{-08}		33.7	35.1	-	685.1	3	
MUMPS-BLR 10^{-02}	-	4.7	29.2	-	55.0	64	-
STRUMPACK 10^{-14}	158.4	33.9	193.9	311.2	1039.8	2	1700
STRUMPACK 10^{-08}	21.8	2.1	23.9	83.6	257.9	3	570
STRUMPACK 10^{-02}	2.1	0.1	19.5	8.4	24.5	179	16

Results - 9/10

3D FMM matrix (Laplacian kernel), $n=12,000$.

Solver	Times (s)			Mem (MB)		Iter	Rank
	Compr.	Facto.	Total	Compr.	Facto.		
LAPACK		53.0	53.5	-	1098.6	2	-
HODLR 10^{-14}	87.3	101.0	190.1	758.7	1068.1	2	1608
HODLR 10^{-08}	15.1	15.6	33.1	346.6	425.9	12	641
HODLR 10^{-02}	0.1	0.05	6.0	14.7	14.8	58	5
HLIBPro 10^{-14}	64.2	217.6	282.1	730.3	768.6	2	
HLIBPro 10-08	26.6	104.8	131.9	428.3	467.5	12	
HLIBPro 10^{-02}	0.9	4.0	NoCV	46.5	43.3	NoCV	
MUMPS-BLR 10^{-14}		62.9	63.9		1077.8	2	
MUMPS-BLR 10^{-08}		32.7	34.4	-	708.6	4	-
MUMPS-BLR 10^{-02}	-	8.9	NoCV	-	183.5	NoCV	-
STRUMPACK 10^{-14}	126.4	16.9	144.1	527.4	1590.8	5	1775
STRUMPACK 10^{-08}	52.3	11.2	64.7	269.6	257.9	5	570
STRUMPACK 10^{-02}	1.0	1.5	NoCV	8.4	24.5	NoCV	2

Results - 10/10

Pendigits Gaussian kernel, $n=10,992$.

Solver	Times (s)			Mem (MB)		Iter	Rank
	Compr.	Facto.	Total	Compr.	Facto.		
LAPACK	-	52.6	53.0	-	921.8	1	-
HODLR 10^{-14}	0.8	0.3	1.5	22.1	23.1	4	51
HODLR 1008	0.2	0.1	0.8	9.5	9.5	5	22
HODLR 10^{-02}	0.1	0.1	1.0	7.2	7.2	8	3
HLIBPro 10^{-14}	0.09	0.5	1.5	12.2	13.7	7	
HLIBPro 10-08	0.08	0.4	1.4	10.4	11.4	7	
HLIBPro 10^{-02}	0.06	0.2	1.2	8.6	9.3	7	
MUMPS-BLR 10^{-14}	-	10.4	11.1	-	48.3	1	
MUMPS-BLR 10^{-08}	-	8.1	9.1	-	40.6	2	-
MUMPS-BLR 10^{-02}	-	7.6	9.8	-	38.5	5	-
STRUMPACK 10^{-14}	215.3	30.1	245.8	133.7	501.8	1	2327
STRUMPACK 10^{-08}	8.5	0.08	8.8	9.6	22.7	2	113
STRUMPACK 10^{-02}	1.4	0.05	1.9	3.7	10.9	5	9

A matrix-free problem

Problem: Quantum Chemistry Toeplitz matrix, threshold 10^{-14}. Benchmark: compression + factorization + GMRES iterations.

■ Run times behave similarly, with a $\sim 2 x$ slowdown for HLIBPro.

- Memory: HSS pays off for very large problems; $O(n)$ behavior.

$$
\text { F.-H. Rouet, SIAM Conference on Applied Linear Algebra, October 29th, } 2015 \text { 24/27 }
$$

Findings

For our test suite:
■ Problems with very low-ranks (Toeplitz, 2D Laplacian): HLIBPro/HODLR/STRUMPACK dominate.

- Problems with large ranks (in A_{12}, A_{21}) (Covariance, 3D Laplacian): MUMPS-BLR faster.
■ Some problems: no clear result, depends on threshold.

Findings

For our test suite:
■ Problems with very low-ranks (Toeplitz, 2D Laplacian): HLIBPro/HODLR/STRUMPACK dominate.

- Problems with large ranks (in A_{12}, A_{21}) (Covariance, 3D Laplacian): MUMPS-BLR faster.
■ Some problems: no clear result, depends on threshold.
Remarks:
■ HODLR and HLIBPro perform similarly in this setting, but HLIBPro can take advantage of geometry.
- With STRUMPACK/HSS, the compressed matrix is the smallest in most cases, but there is a large increase after factorization.
■ HSS + randomized sampling should perform better for sparse problems. Compression of an "independent" dense matrix: $O\left(r n^{2}\right)$, inside a sparse factorization: $O\left(r^{2} n\right)$ (cheaper sampling).
- MUMPS-BLR limits the worst-case: no huge increase in run time or memory for 10^{-14}. It rejects blocks with large ranks.

Future work

■ Parallel experiments, larger scale:

- HLIBPro: block-wise \mathcal{H}-arithmetic doesn't give much parallelism for dense problems. Work in progress at the algorithmic level.
- HODLR: need to try new code.
- STRUMPACK-dense ready.
- MUMPS-BLR ready.
- Sparse problems:
- HLIBPro ready.
- HODLR: need to try new code.
- STRUMPACK-sparse: shared-memory ready, distributed-memory almost done.
- MUMPS-BLR ready.

End

STRUMPACK-related talks at LA15

- Today, 3:30pm, Rio Yokota, A comparison of FMM and HSS at scale, MS45 (fast solvers).
- Tomorrow, 11:45am, Pieter Ghysels, A parallel multifrontal solver using HSS matrices, MS51 (preconditioners).

Thank you for your attention!

Any questions?

[^0]: *2.4 released yesterday!

