Multicore performance of the Block Low-Rank multifrontal factorization

P. Amestoy*,1 A. Buttari*,2 J.-Y. L'Excellent ${ }^{\dagger, 3} \quad \underline{\text { T. Mary }}{ }^{*, 4}$

*Université de Toulouse †ENS Lyon
${ }^{1}$ INPT-IRIT ${ }^{2}$ CNRS-IRIT ${ }^{3}$ INRIA-LIP ${ }^{4}$ UPS-IRIT

Journée Lyon Calcul, Lyon, December 15, 2016

Introduction

Sparse direct solvers

Discretization of a physical problem (e.g. Code_Aster, finite elements)

$$
\Downarrow
$$

$\mathbf{A} \mathbf{X}=\mathbf{B}, \mathbf{A}$ large and sparse, \mathbf{B} dense or sparse Sparse direct methods: $\mathbf{A}=\mathbf{L U}\left(\mathbf{L D L}^{\boldsymbol{\top}}\right)$

Often a significant part of simulation cost
Objective discussed in this talk: how to reduce the cost of sparse direct solvers?

Focus on multicore architectures

Multifrontal Factorization with Nested Dissection

Multifrontal Factorization with Nested Dissection

3D problem complexity
\rightarrow Flops: $O\left(n^{2}\right)$, mem: $O\left(n^{4 / 3}\right)$

\mathcal{H} and BLR matrices

\mathcal{H}-matrix

BLR matrix

\mathcal{H} and BLR matrices

\mathcal{H}-matrix

BLR matrix

A block B represents the interaction between two subdomains. If they have a small diameter and are far away their interaction is weak \Rightarrow rank is low.

\mathcal{H} and BLR matrices

\mathcal{H}-matrix

BLR matrix
A block B represents the interaction between two subdomains. If they have a small diameter and are far away their interaction is weak \Rightarrow rank is low.

$$
\tilde{B}=X Y^{\top} \text { such that } \operatorname{rank}(\tilde{B})=k_{\varepsilon} \text { and }\|B-\tilde{B}\| \leq \varepsilon
$$

If $k_{\varepsilon} \ll \operatorname{size}(B) \Rightarrow$ memory and flops can be reduced with a controlled loss of accuracy ($\leq \varepsilon$)

\mathcal{H} and BLR matrices

\mathcal{H}-matrix

- Theoretical complexity can be as low as $O(n)$
- Complex, hierarchical structure

BLR matrix

- Theoretical complexity can be as low as $O\left(n^{4 / 3}\right)$
- Simple structure

\mathcal{H} and BLR matrices

\mathcal{H}-matrix

BLR matrix

- Theoretical complexity can be as low as $O(n)$
- Complex, hierarchical structure
- Theoretical complexity can be as low as $O\left(n^{4 / 3}\right)$
- Simple structure

Find a good comprise between complexity and performance

\mathcal{H} and BLR matrices

\mathcal{H}-matrix

BLR matrix

- Theoretical complexity can be as low as $O(n)$
- Complex, hierarchical structure
- Theoretical complexity can be as low as $O\left(n^{4 / 3}\right)$
- Simple structure

Find a good comprise between complexity and performance
\Rightarrow Ongoing collaboration with STRUMPACK team (LBNL) to compare BLR and hierarchical formats

Complexity of the BLR factorization

\mathcal{H} vs. BLR complexity

Until recently, BLR complexity was unknown.
Can we use \mathcal{H} theory on BLR matrices?

\mathcal{H} vs. BLR complexity

Until recently, BLR complexity was unknown.
Can we use \mathcal{H} theory on BLR matrices?

\mathcal{H} vs. BLR complexity

Until recently, BLR complexity was unknown.
Can we use \mathcal{H} theory on BLR matrices?

Complexity mainly depends on $r_{\text {max }}$, the maximal rank of the blocks With \mathcal{H} partitioning, $r_{\text {max }}$ is small

\mathcal{H} vs. BLR complexity

Until recently, BLR complexity was unknown.
Can we use \mathcal{H} theory on BLR matrices?

Complexity mainly depends on $r_{\text {max }}$ the maximal rank of the blocks With \mathcal{H} partitioning, $r_{\text {max }}$ is small

- Problem: in \mathcal{H} formalism, the maxrank of the blocks of a BLR matrix is $r_{\text {max }}=b$ (due to full-rank blocks)

\mathcal{H} vs. BLR complexity

Until recently, BLR complexity was unknown.
Can we use \mathcal{H} theory on BLR matrices?

Complexity mainly depends on $r_{\text {max }}$ the maximal rank of the blocks With \mathcal{H} partitioning, $r_{\text {max }}$ is small

- Problem: in \mathcal{H} formalism, the maxrank of the blocks of a BLR matrix is $r_{\text {max }}=b$ (due to full-rank blocks)
- \mathcal{H} theory applied to BLR does not give a satisfying result

\mathcal{H} vs. BLR complexity

Until recently, BLR complexity was unknown.
Can we use \mathcal{H} theory on BLR matrices?

Complexity mainly depends on $r_{\text {max }}$, the maximal rank of the blocks With \mathcal{H} partitioning, $r_{\text {max }}$ is small

- Problem: in \mathcal{H} formalism, the maxrank of the blocks of a BLR matrix is $r_{\text {max }}=b$ (due to full-rank blocks)
- \mathcal{H} theory applied to BLR does not give a satisfying result
- Solution: extend the theory by bounding the number of full-rank blocks
- Amestoy, Buttari, L'Excellent, and Mary. On the Complexity of the Block Low-Rank Multifrontal Factorization, under review, SIAM SISC, 2016.

	operations (OPC)		factor size (NNZ)	
	$r=O(1)$	$r=O(N)$	$r=O(1)$	$r=O(N)$
FR	$O\left(n^{2}\right)$	$O\left(n^{2}\right)$	$O\left(n^{\frac{4}{3}}\right)$	$O\left(n^{\frac{4}{3}}\right)$
BLR	$O\left(n^{\frac{4}{3}}\right)-O\left(n^{\frac{5}{3}}\right)$	$O\left(n^{\frac{5}{3}}\right)-O\left(n^{\frac{11}{6}}\right)$	$O(n \log n)$	$O\left(n^{\frac{7}{6}} \log n\right)$
\mathcal{H}	$O\left(n^{\frac{4}{3}}\right)$	$O\left(n^{\frac{5}{3}}\right)$	$O(n)$	$O\left(n^{\frac{7}{6}}\right)$
\mathcal{H} (fully structured)	$O(n)$	$O\left(n^{\frac{4}{3}}\right)$	$O(n)$	$O\left(n^{\frac{7}{6}}\right)$

in the 3D case (similar analysis possible for 2D)
Important properties: with both $r=O(1)$ or $r=O(N)$

- Complexity depends on how the BLR factorization is performed
- The BLR complexity exponent is always lower than the FR one
- The best BLR complexity is not so far from the \mathcal{H}-case

	operations (OPC)		factor size (NNZ)	
	$r=O(1)$	$r=O(N)$	$r=O(1)$	$r=O(N)$
FR	$O\left(n^{2}\right)$	$O\left(n^{2}\right)$	$O\left(n^{\frac{4}{3}}\right)$	$O\left(n^{\frac{4}{3}}\right)$
BLR	$O\left(n^{\frac{4}{3}}\right)-O\left(n^{\frac{5}{3}}\right)$	$O\left(n^{\frac{5}{3}}\right)-O\left(n^{\frac{11}{6}}\right)$	$O(n \log n)$	$O\left(n^{\frac{7}{6}} \log n\right)$
\mathcal{H}	$O\left(n^{\frac{4}{3}}\right)$	$O\left(n^{\frac{5}{3}}\right)$	$O(n)$	$O\left(n^{\frac{7}{6}}\right)$
\mathcal{H} (fully structured)	$O(n)$	$O\left(n^{\frac{4}{3}}\right)$	$O(n)$	$O\left(n^{\frac{7}{6}}\right)$

in the 3D case (similar analysis possible for 2D)
Important properties: with both $r=O(1)$ or $r=O(N)$

- Complexity depends on how the BLR factorization is performed
- The BLR complexity exponent is always lower than the FR one
- The best BLR complexity is not so far from the \mathcal{H}-case

How to convert complexity reduction into performance gain? \Rightarrow answer in the rest of this talk

Experimental setting

Experimental Setting: Machines

Experiments are done on the shared-memory machines of the LIP laboratory of Lyon:

1. brunch

- Four Intel(r) 24-cores Broadwell @ 2,2 GHz
- Peak per core is 35.2 GF/s
- Total memory is 1.5 TB

2. grunch

- Two Intel(r) 14-cores Haswell @ 2,3 GHz
- Peak per core is $36.8 \mathrm{GF} / \mathrm{s}$
- Total memory is 768 GB

Experimental Setting: Matrices (1/3)

3D Seismic Modeling Helmholtz equation Single complex (c) arithmetic Unsymmetric LU factorization Required accuracy: $\varepsilon=10^{-3}$ Credits: SEISCOPE

matrix	n	$n n z$	flops	storage
5 Hz	2.9 M	70 M	65.0 TF	59.7 GB
7 Hz	7.2 M	177 M	404.2 TF	205.0 GB
1 OHz	17.2 M	446 M	2.6 PF	710.8 GB

Full-Rank statistics

- Amestoy, Brossier, Buttari, L'Excellent, Mary, Métivier, Miniussi, and Operto. Fast 3D frequency-domain full waveform inversion with a parallel Block Low-Rank multifrontal direct solver: application to OBC data from the North Sea, Geophysics, 2016.

Experimental Setting: Matrices $(2 / 3)$

$E_{x}, B L R$ STRATEGY $2, I R=0, \varepsilon_{B L R}=10^{-7}$

3D Electromagnetic Modeling Maxwell equation
Double complex (z) arithmetic Symmetric $L D L^{\top}$ factorization Required accuracy: $\varepsilon=10^{-7}$ Credits: EMGS

matrix	n	$n n z$	flops	storage
E3	2.9 M	37 M	57.9 TF	77.5 GB
S3	3.3 M	43 M	78.0 TF	94.6 GB
E4	17.4 M	226 M	1.8 PF	837.0 GB
S4	20.6 M	266 M	2.6 PF	1.0 TB

Full-Rank statistics

- Shantsev, Jaysaval, de la Kethulle de Ryhove, Amestoy, Buttari, L'Excellent, and Mary. Large-scale 3D EM modeling with a Block Low-Rank multifrontal direct solver,

Experimental Setting: Matrices $(3 / 3)$

3D Structural Mechanics Double real (d) arithmetic Symmetric $L D L^{\top}$ factorization Required accuracy: $\varepsilon=10^{-9}$ Credits: Code_Aster (EDF)

matrix	n	nnz	flops	storage
perf008d	1.9 M	81 M	101.0 TF	52.6 GB
perf008ar	3.9 M	159 M	377.5 TF	129.8 GB
perf009ar	5.4 M	209 M	23.4 TF	40.2 GB
perf008cr	7.9 M	321 M	1.6 PF	341.1 GB

Full-Rank statistics

Sequential performance analysis of the BLR factorization

Standard BLR factorization: FSCU

- FSCU

Standard BLR factorization: FSCU

- FSCU (Factor,

Standard BLR factorization: FSCU

- FSCU (Factor, Solve,

Standard BLR factorization: FSCU

- FSCU (Factor, Solve, Compress,

Standard BLR factorization: FSCU

- FSCU (Factor, Solve, Compress, Update)

Standard BLR factorization: FSCU

- FSCU (Factor, Solve, Compress, Update)

Standard BLR factorization: FSCU

- FSCU (Factor, Solve, Compress, Update)

Standard BLR factorization: FSCU

- FSCU (Factor, Solve, Compress, Update)

Standard BLR factorization: FSCU

- FSCU (Factor, Solve, Compress, Update)

Standard BLR factorization: FSCU

- FSCU (Factor, Solve, Compress, Update)

Standard BLR factorization: FSCU

- FSCU (Factor, Solve, Compress, Update)

Standard BLR factorization: FSCU

- FSCU (Factor, Solve, Compress, Update)

Standard BLR factorization: FSCU

\square
\square

- FSCU (Factor, Solve, Compress, Update)

Standard BLR factorization: FSCU

- FSCU (Factor, Solve, Compress, Update)

Standard BLR factorization: FSCU

- FSCU (Factor, Solve, Compress, Update)

Standard BLR factorization: FSCU

- FSCU (Factor, Solve, Compress, Update)

Standard BLR factorization: FSCU

- FSCU (Factor, Solve, Compress, Update)

Sequential result

Normalized Flops

Normalized Time
7.7 gain in flops only translated to a 3.3 gain in time: why?

- lower granularity of the Update
- higher relative weight of the FR parts
- inefficient Compress

Multithreading the BLR factorization

Multithreaded result on 24 threads

Normalized Time (Seq.)

Normalized Time (MT)
3.3 gain in sequential becomes 1.7 in multithreaded: why?

- LAI parts have become critical
- Update and Compress are memory-bound

Exploiting tree-based multithreading in MF solvers

Exploiting tree-based multithreading in MF solvers

- Work based on W. M. Sid-Lakhdar's PhD thesis
- LO layer computed with a variant of the Geist-Ng algorithm
- NUMA-aware implementation
- use of Idle Core Recycling technique (variant of work-stealing)
- L'Excellent and Sid-Lakhdar. A study of shared-memory parallelism in a multifrontal solver, Parallel Computing.

Exploiting tree-based multithreading in MF solvers

- Work based on W. M. Sid-Lakhdar's PhD thesis
- LO layer computed with a variant of the Geist-Ng algorithm
- NUMA-aware implementation
- use of Idle Core Recycling technique (variant of work-stealing)
- L'Excellent and Sid-Lakhdar. A study of shared-memory parallelism in a multifrontal solver, Parallel Computing.
\Rightarrow how big an impact can tree-based multithreading make?

Impact of tree-based multithreading on BLR

Higher AI

Lower Al

	24 threads	24 threads + tree MT		
	time	$\%_{\text {lai }}$	time	$\%_{\text {lai }}$
FR	509	21%		
BLR				

Impact of tree-based multithreading on BLR

Higher AI

Lower Al

	24 threads	24 threads + tree MT		
	time	$\%_{\text {৷ai }}$	time	$\%_{\text {oi }}$
FR	509	21%		
BLR	307	35%		

Impact of tree-based multithreading on BLR

Higher AI

Lower Al

	24 threads	24 threads + tree MT		
	time	$\%_{\text {।ai }}$	time	$\%_{\text {।ai }}$
FR	509	21%	424	13%
BLR	307	35%		

Impact of tree-based multithreading on BLR

Higher AI

	24 threads	24 threads + tree MT		
	time	$\%_{\text {।ai }}$	time	$\%_{\text {1ai }}$
FR	509	21%	424	13%
BLR	307	35%	221	24%

$\Rightarrow 1.7$ gain becomes 1.9 thanks to tree-based MT

Right Looking Vs. Left-Looking analysis

		FR		BLR	
		RL	LL	RL	LL
1 thread	Update	6467		1064	
	Total	7390		2242	
24 threads	Update	338	336	110	67
	Total	424	421	221	175

Right Looking Vs. Left-Looking analysis

		FR		BLR	
		RL	LL	RL	LL
1 thread	Update	6467		1064	
	Total	7390		2242	
24 threads	Update	338	336	110	67
	Total	424	421	221	175

		FR		BLR	
		RL	LL	RL	LL
1 thread	Update	6467		1064	
	Total	7390		2242	
24 threads	Update	338	336	110	67
	Total	424	421	221	175

\Rightarrow Lower volume of memory transfers in LL (more critical in MT)

		FR		BLR	
		RL	LL	RL	LL
1 thread	Update	6467		1064	
	Total	7390		2242	
24 threads	Update	338	336	110	67
	Total	424	421	221	175

RL factorization

\Rightarrow Lower volume of memory transfers in LL (more critical in MT)
Update is now less memory-bound: 1.9 gain becomes 2.4 in LL

Improving the BLR factorization with algorithmic variants

LUAR variant: accumulation and recompression

- FSCU (Factor, Solve, Compress, Update)
- FSCU+LUAR

- FSCU (Factor, Solve, Compress, Update)
- FSCU+LUAR
- Better granularity in Update operations

- FSCU (Factor, Solve, Compress, Update)
- FSCU+LUAR
- Better granularity in Update operations
- Potential recompression \Rightarrow complexity reduction: $O\left(n^{\frac{5}{3}}\right) \rightarrow O\left(n^{\frac{11}{6}}\right)$
- Anton, Ashcraft, and Weisbecker. A Block Low-Rank multithreaded factorization for dense BEM operators, presented at SIAM PP'16.

- FSCU (Factor, Solve, Compress, Update)
- FSCU+LUAR
- Better granularity in Update operations
- Potential recompression \Rightarrow complexity reduction: $O\left(n^{\frac{5}{3}}\right) \rightarrow O\left(n^{\frac{11}{6}}\right)$
- Anton, Ashcraft, and Weisbecker. A Block Low-Rank multithreaded factorization for dense BEM operators, presented at SIAM PP'16.

- FSCU (Factor, Solve, Compress, Update)
- FSCU+LUAR
- Better granularity in Update operations
- Potential recompression \Rightarrow complexity reduction: $O\left(n^{\frac{5}{3}}\right) \rightarrow O\left(n^{\frac{11}{6}}\right)$
- Anton, Ashcraft, and Weisbecker. A Block Low-Rank multithreaded factorization for dense BEM operators, presented at SIAM PP'16.

Performance of Outer Product with LUA(R) (24 threads)

Double complex (z) performance benchmark of Outer Product

* All metrics include the Recompression overhead

Performance of Outer Product with LUA(R) (24 threads)

Double complex (z) performance benchmark of Outer Product

		LL	LUA	LUAR*
average size of Outer Product	16.5	61.0	32.8	
	Outer Product	3.76	3.76	1.59
	Total	10.19	10.19	8.15
time (s)	Outer Product	21	14	6
	Total	175	167	160

* All metrics include the Recompression overhead

Performance of Outer Product with LUA(R) (24 threads)

Double complex (z) performance benchmark of Outer Product

		LL	LUA	LUAR *
average size of Outer Product	16.5	61.0	32.8	
flops $\left(\times 10^{12}\right)$	Outer Product	3.76	3.76	1.59
	Total	10.19	10.19	8.15
time (s)	Outer Product	21	14	6
	Total	175	167	160

* All metrics include the Recompression overhead

Performance of Outer Product with LUA(R) (24 threads)

Double complex (z) performance benchmark of Outer Product

		LL	LUA	LUAR*
average size of Outer Product	16.5	61.0	32.8	
	Outer Product	3.76	3.76	1.59
	Total	10.19	10.19	8.15
time (s)	Outer Product	21	14	6
	Total	175	167	160

* All metrics include the Recompression overhead
\Rightarrow Higher granularity and lower flops in Update: 2.4 gain becomes 2.6

- FSCU (Factor, Solve, Compress, Update)
- FSCU+LUAR
- Better granularity in Update operations
- Potential recompression \Rightarrow complexity reduction: $O\left(n^{\frac{5}{3}}\right) \rightarrow O\left(n^{\frac{11}{6}}\right)$
- Anton, Ashcraft, and Weisbecker. A Block Low-Rank multithreaded factorization for dense BEM operators, presented at SIAM PP'16.
- $\operatorname{FCSU}(+L U A R)$

- FSCU (Factor, Solve, Compress, Update)
- FSCU+LUAR
- Better granularity in Update operations
- Potential recompression \Rightarrow complexity reduction: $O\left(n^{\frac{5}{3}}\right) \rightarrow O\left(n^{\frac{11}{6}}\right)$
- Anton, Ashcraft, and Weisbecker. A Block Low-Rank multithreaded factorization for dense BEM operators, presented at SIAM PP'16.
- $\operatorname{FCSU}(+L U A R)$
- Restricted pivoting, e.g. to diagonal blocks

- FSCU (Factor, Solve, Compress, Update)
- FSCU+LUAR
- Better granularity in Update operations
- Potential recompression \Rightarrow complexity reduction: $O\left(n^{\frac{5}{3}}\right) \rightarrow O\left(n^{\frac{11}{6}}\right)$
- Anton, Ashcraft, and Weisbecker. A Block Low-Rank multithreaded factorization for dense BEM operators, presented at SIAM PP'16.
- $\operatorname{FCSU}(+L U A R)$
- Restricted pivoting, e.g. to diagonal blocks

- FSCU (Factor, Solve, Compress, Update)
- FSCU+LUAR
- Better granularity in Update operations
- Potential recompression \Rightarrow complexity reduction: $O\left(n^{\frac{5}{3}}\right) \rightarrow O\left(n^{\frac{11}{6}}\right)$
- Anton, Ashcraft, and Weisbecker. A Block Low-Rank multithreaded factorization for dense BEM operators, presented at SIAM PP'16.
- $\operatorname{FCSU}(+L U A R)$
- Restricted pivoting, e.g. to diagonal blocks
- Low-rank Solve \Rightarrow complexity reduction: $O\left(n^{\frac{11}{6}}\right) \rightarrow O\left(n^{\frac{4}{3}}\right)$
- Better BLAS-3/BLAS-2 ratio in Solve operations

- FSCU (Factor, Solve, Compress, Update)
- FSCU+LUAR
- Better granularity in Update operations
- Potential recompression \Rightarrow complexity reduction: $O\left(n^{\frac{5}{3}}\right) \rightarrow O\left(n^{\frac{11}{6}}\right)$
- Anton, Ashcraft, and Weisbecker. A Block Low-Rank multithreaded factorization for dense BEM operators, presented at SIAM PP'16.
- $\operatorname{FCSU}(+L U A R)$
- Restricted pivoting, e.g. to diagonal blocks
- Low-rank Solve \Rightarrow complexity reduction: $O\left(n^{\frac{11}{6}}\right) \rightarrow O\left(n^{\frac{4}{3}}\right)$
- Better BLAS-3/BLAS-2 ratio in Solve operations

Performance and accuracy of FCSU vs FSCU

	full pivoting		restricted pivoting		
	FR	FSCU	FR	FSCU	FCSU
		+ LUAR		+ LUAR	+LUAR
flops $\left(\times 10^{12}\right)$	77.97	8.15	77.97	8.15	3.95
time (s)	424	160	404	143	111
scaled residual	$4.5 \mathrm{e}-16$	$1.5 \mathrm{e}-09$	$5.0 e-16$	$1.9 \mathrm{e}-09$	$2.7 \mathrm{e}-09$

- In many cases...
- restricted pivoting is enough \Rightarrow better BLAS-3/BLAS-2 ratio
- compressing before the Solve has little impact \Rightarrow flop reduction
$\Rightarrow 2.6$ gain becomes 3.7

Performance and accuracy of FCSU vs FSCU

	full pivoting		restricted pivoting		
	FR	FSCU	FR	FSCU	FCSU
		+LUAR		+ LUAR	+LUAR
flops $\left(\times 10^{12}\right)$	77.97	8.15	77.97	8.15	3.95
time (s)	424	160	404	143	111
scaled residual	$4.5 \mathrm{e}-16$	$1.5 \mathrm{e}-09$	$5.0 \mathrm{e}-16$	$1.9 \mathrm{e}-09$	$2.7 \mathrm{e}-09$

- In many cases...
- restricted pivoting is enough \Rightarrow better BLAS-3/BLAS-2 ratio
- compressing before the Solve has little impact \Rightarrow flop reduction
$\Rightarrow 2.6$ gain becomes 3.7
- When pivoting cannot be restricted...
- Solve step remains in BLAS-2
- but Compress before Solve is possible by extending pivoting strategy to low-rank blocks

Impact of machine properties on BLR

	specs		time (s) for		
	peak	bw	BLR factorization		
	$(G F / s)$	$(G B / s)$	$R L$	LL	LUA
grunch (28 threads)	37	57	248	228	196
brunch (24 threads)	46	102	221	175	167
S3 matrix					

Impact of machine properties on BLR

	specs		time (s) for		
	peak	bw	BLR factorization		
	$(G F / s)$	$(G B / s)$	$R L$	LL	LUA
grunch (28 threads)	37	57	248	228	196
brunch (24 threads)	46	102	221	175	167

S3 matrix

Arithmetic Intensity in BLR:

- LL > RL (lower volume of memory transfers)
- LUA > LL (higher granularities \Rightarrow more efficient cache use)

Impact of machine properties on BLR

	specs		time (s) for		
	peak	bw	BLR factorization		
	$(G F / s)$	$(G B / s)$	$R L$	LL	LUA
grunch (28 threads)	37	57	248	228	196
brunch (24 threads)	46	102	221	175	167

S3 matrix

Arithmetic Intensity in BLR:

- $L L>R L$ (lower volume of memory transfers)
- LUA > LL (higher granularities \Rightarrow more efficient cache use)

Impact of machine properties on BLR

	specs		time (s) for		
	peak	bw	BLR factorization		
	$(G F / s)$	$(G B / s)$	$R L$	LL	LUA
grunch (28 threads)	37	57	248	228	196
brunch (24 threads)	46	102	221	175	167

S3 matrix

Arithmetic Intensity in BLR:

- LL > RL (lower volume of memory transfers)
- LUA > LL (higher granularities \Rightarrow more efficient cache use)

Conclusion and perspectives

Multicore performance of MF BLR factorization

Summary

- Flop reduction is not fully translated into performance gain, especially with multithreading
- Revisited implementation choices: tree-based multithreading and left-looking factorization become critical in BLR
- Introduced BLR variants with better properties
- Improved BLR leads to speedups up to 3 w.r.t. standard BLR and up to 4 w.r.t FR on 24 threads

Perspectives

- Efficient strategies to recompress LR updates
- Extension of pivoting strategy to low-rank blocks (FCSU variant)
- Task-based multithreading
- Reduction of the cost of the Compress

References

- Amestoy, Buttari, L'Excellent, and Mary. On the Complexity of the Block Low-Rank Multifrontal Factorization, under review, SIAM SISC, 2016.
- Amestoy, Buttari, L'Excellent, and Mary. Performance and Scalability of the Multithreaded Block Low-Rank Multifrontal Factorization on Multicore Architectures, in preparation, 2016.
- Amestoy, Brossier, Buttari, L'Excellent, Mary, Métivier, Miniussi, and Operto. Fast 3D frequency-domain full waveform inversion with a parallel Block Low-Rank multifrontal direct solver: application to OBC data from the North Sea, Geophysics, 2016.
- Shantsev, Jaysaval, de la Kethulle de Ryhove, Amestoy, Buttari, L'Excellent, and Mary. Large-scale 3D EM modeling with a Block Low-Rank multifrontal direct solver, submitted to Geophysical Journal International, 2016.

Acknowledgements

- LIP for providing access to the machines
- EMGS, SEISCOPE and EDF for providing the test matrices
- LSTC members for scientific discussions

Thanks! Questions?

Backup Slides

Accumulator recompression

Accumulator recompression

\section*{| C | |
| :---: | :---: |
| | C |
| | Q^{T} |}

- Weight recompression on $\left\{C_{i}\right\}_{i}$
\Rightarrow With absolute threshold $\varepsilon_{\text {, each }} C_{i}$ can be compressed separately
- Redundancy recompression on $\left\{Q_{i}\right\}_{i}$
\Rightarrow Bigger recompression overhead, when is it worth it?

