Multicore performance of the Block Low-Rank multifrontal factorization

P. Amestoy^{*,1} A. Buttari^{*,2} J.-Y. L'Excellent^{†,3} <u>T. Mary^{*,4}</u> ^{*Université de Toulouse [†]ENS Lyon ¹INPT-IRIT ²CNRS-IRIT ³INRIA-LIP ⁴UPS-IRIT Journée Lyon Calcul, Lyon, December 15, 2016}

Introduction

Sparse direct solvers

Discretization of a physical problem (e.g. Code_Aster, finite elements)

A X = **B**, **A** large and sparse, **B** dense or sparse Sparse direct methods : **A** = **LU** (**LDL**^T)

Often a significant part of simulation cost

∜

Objective discussed in this talk: how to reduce the cost of sparse direct solvers?

Focus on multicore architectures

Multifrontal Factorization with Nested Dissection

Multifrontal Factorization with Nested Dissection

${\cal H}$ and BLR matrices

 $\mathcal H ext{-matrix}$

BLR matrix

${}^{\prime}\mathcal{H}$ and BLR matrices

 $\mathcal{H} ext{-matrix}$

A block *B* represents the interaction between two subdomains. If they have a small diameter and are far away their interaction is weak \Rightarrow rank is low.

${\cal H}$ and BLR matrices

BLR matrix

A block *B* represents the interaction between two subdomains. If they have a small diameter and are far away their interaction is weak \Rightarrow rank is low.

$$ilde{B} = XY^T$$
 such that rank $(ilde{B}) = k_{arepsilon}$ and $\|B - ilde{B}\| \leq arepsilon$

If $k_{\varepsilon} \ll \text{size}(B) \Rightarrow$ memory and flops can be reduced with a controlled loss of accuracy ($\leq \varepsilon$)

${}^{\prime}\mathcal{H}$ and BLR matrices

 $\mathcal H ext{-matrix}$

- Theoretical complexity can be as low as O(n)
- Complex, hierarchical structure

BLR matrix

- Theoretical complexity can be as low as $O(n^{4/3})$
- Simple structure

${\cal H}$ and BLR matrices

 $\mathcal H ext{-matrix}$

- Theoretical complexity can be as low as O(n)
- Complex, hierarchical structure

BLR matrix

- Theoretical complexity can be as low as $O(n^{4/3})$
- Simple structure

Find a good comprise between complexity and performance

${\cal H}$ and BLR matrices

 $\mathcal H ext{-matrix}$

- Theoretical complexity can be as low as O(n)
- Complex, hierarchical structure

BLR matrix

- Theoretical complexity can be as low as $O(n^{4/3})$
- Simple structure

Find a good comprise between complexity and performance

⇒ Ongoing collaboration with STRUMPACK team (LBNL) to compare BLR and hierarchical formats

Complexity of the BLR factorization

Until recently, BLR complexity was unknown. Can we use ${\cal H}$ theory on BLR matrices?

Until recently, BLR complexity was unknown. Can we use ${\cal H}$ theory on BLR matrices?

Until recently, BLR complexity was unknown. Can we use ${\cal H}$ theory on BLR matrices?

Complexity mainly depends on r_{max} , the maximal rank of the blocks With \mathcal{H} partitioning, r_{max} is small

Until recently, BLR complexity was unknown. Can we use ${\cal H}$ theory on BLR matrices?

Complexity mainly depends on r_{max} , the maximal rank of the blocks With \mathcal{H} partitioning, r_{max} is small

• Problem: in \mathcal{H} formalism, the maxrank of the blocks of a BLR matrix is $r_{max} = b$ (due to full-rank blocks)

Until recently, BLR complexity was unknown. Can we use ${\cal H}$ theory on BLR matrices?

Complexity mainly depends on r_{max} , the maximal rank of the blocks With \mathcal{H} partitioning, r_{max} is small

- Problem: in \mathcal{H} formalism, the maxrank of the blocks of a BLR matrix is $r_{max} = b$ (due to full-rank blocks)
- ${\mathcal H}$ theory applied to BLR does not give a satisfying result

Until recently, BLR complexity was unknown. Can we use ${\cal H}$ theory on BLR matrices?

Complexity mainly depends on r_{max} , the maximal rank of the blocks With \mathcal{H} partitioning, r_{max} is small

- Problem: in \mathcal{H} formalism, the maxrank of the blocks of a BLR matrix is $r_{max} = b$ (due to full-rank blocks)
- ${\mathcal H}$ theory applied to BLR does not give a satisfying result
- Solution: extend the theory by bounding the number of full-rank blocks
 - Amestoy, Buttari, L'Excellent, and Mary. On the Complexity of the Block Low-Rank Multifrontal Factorization, under review, SIAM SISC, 2016.

Complexity of multifrontal BLR factorization

	operatio	ns (OPC)	factor size (NNZ)	
	r = O(1)	r = O(N)	r = O(1)	r = O(N)
FR	$O(n^2)$	$O(n^2)$	$O(n^{\frac{4}{3}})$	$O(n^{\frac{4}{3}})$
BLR	$O(n^{\frac{4}{3}}) - O(n^{\frac{5}{3}})$	$O(n^{\frac{5}{3}}) - O(n^{\frac{11}{6}})$	$O(n \log n)$	$O(n^{\frac{7}{6}}\log n)$
${\cal H}$ ${\cal H}$ (fully structured)	$ \begin{array}{c} O(n^{\frac{4}{3}}) \\ O(n) \end{array} $	$O(n^{\frac{5}{3}}) O(n^{\frac{4}{3}})$	0(n) 0(n)	$O(n^{\frac{7}{6}})$ $O(n^{\frac{7}{6}})$

in the 3D case (similar analysis possible for 2D)

Important properties: with both r = O(1) or r = O(N)

- Complexity depends on how the BLR factorization is performed
- The BLR complexity exponent is always lower than the FR one
- The best BLR complexity is not so far from the $\mathcal H$ -case

Complexity of multifrontal BLR factorization

	operations (OPC)		factor size (NNZ)	
	r = O(1)	r = O(N)	r = O(1)	r = O(N)
FR	$O(n^2)$	$O(n^2)$	$O(n^{\frac{4}{3}})$	$O(n^{\frac{4}{3}})$
BLR	$O(n^{\frac{4}{3}}) - O(n^{\frac{5}{3}})$	$O(n^{\frac{5}{3}}) - O(n^{\frac{11}{6}})$	$O(n \log n)$	$O(n^{\frac{7}{6}}\log n)$
${\cal H}$ ${\cal H}$ (fully structured)	$ \begin{array}{ c c } O(n^{\frac{4}{3}}) \\ O(n) \end{array} $	$O(n^{\frac{5}{3}}) O(n^{\frac{4}{3}})$	0(n) 0(n)	$\begin{array}{c}O(n^{\frac{7}{6}})\\O(n^{\frac{7}{6}})\end{array}$

in the 3D case (similar analysis possible for 2D)

Important properties: with both r = O(1) or r = O(N)

- Complexity depends on how the BLR factorization is performed
- The BLR complexity exponent is always lower than the FR one
- $\bullet\,$ The best BLR complexity is not so far from the $\mathcal H\text{-}case$

How to convert complexity reduction into performance gain? \Rightarrow answer in the rest of this talk

Experimental setting

Experiments are done on the shared-memory machines of the LIP laboratory of Lyon:

1. brunch

- Four Intel(r) 24-cores Broadwell @ 2,2 GHz
- Peak per core is 35.2 GF/s
- Total memory is 1.5 TB

2. grunch

- Two Intel(r) 14-cores Haswell @ 2,3 GHz
- Peak per core is 36.8 GF/s
- Total memory is 768 GB

Experimental Setting: Matrices (1/3)

3D Seismic Modeling Helmholtz equation Single complex (c) arithmetic Unsymmetric LU factorization Required accuracy: $\varepsilon = 10^{-3}$ Credits: SEISCOPE

matrix	n	nnz	flops	storage
5Hz	2.9M	70M	65.0 TF	59.7 GB
7Hz	7.2M	177M	404.2 TF	205.0 GB
10Hz	17.2M	446M	2.6 PF	710.8 GB

Amestoy, Brossier, Buttari, L'Excellent, Mary, Métivier, Miniussi, and Operto. Fast 3D frequency-domain full waveform inversion with a parallel Block Low-Rank multifrontal direct solver: application to OBC data from the North Sea, Geophysics, 2016.

Experimental Setting: Matrices (2/3)

 E_x , BLR STRATEGY 2, IR = 0, $\varepsilon_{BLR} = 10^{-7}$

3D Electromagnetic Modeling Maxwell equation Double complex (z) arithmetic Symmetric LDL^{T} factorization Required accuracy: $\varepsilon = 10^{-7}$ Credits: EMGS

#emgs

matrix	n	nnz	flops	storage
E3	2.9M	37M	57.9 TF	77.5 GB
S3	3.3M	43M	78.0 TF	94.6 GB
E4	17.4M	226M	1.8 PF	837.0 GB
S4	20.6M	266M	2.6 PF	1.0 TB

Full-Rank statistics

 Shantsev, Jaysaval, de la Kethulle de Ryhove, Amestoy, Buttari, L'Excellent, and Mary. Large-scale 3D EM modeling with a Block Low-Rank multifrontal direct solver,

/32 submitted to Geophysical Journal International 2016. Lyon Calcul, Lyon, December 15, 2016

Experimental Setting: Matrices (3/3)

3D Structural Mechanics

Double real (d) arithmetic Symmetric LDL^{T} factorization Required accuracy: $\varepsilon = 10^{-9}$ Credits: Code_Aster (EDF)

matrix	n	nnz	flops	storage
perf008d	1.9M	81M	101.0 TF	52.6 GB
perf008ar	3.9M	159M	377.5 TF	129.8 GB
perf009ar	5.4M	209M	23.4 TF	40.2 GB
perf008cr	7.9M	321M	1.6 PF	341.1 GB

Full-Rank statistics

Sequential performance analysis of the BLR factorization

FSCU

• FSCU (Factor,

• FSCU (Factor, Solve,

• FSCU (Factor, Solve, Compress,

• FSCU (Factor, Solve, Compress, Update)

• FSCU (Factor, Solve, Compress, Update)

• FSCU (Factor, Solve, Compress, Update)

• FSCU (Factor, Solve, Compress, Update)

• FSCU (Factor, Solve, Compress, Update)

• FSCU (Factor, Solve, Compress, Update)

• FSCU (Factor, Solve, Compress, Update)

• FSCU (Factor, Solve, Compress, Update)

Sequential result

Normalized Flops

Normalized Time

7.7 gain in flops only translated to a 3.3 gain in time: why?

- lower granularity of the Update
- higher relative weight of the FR parts
- inefficient Compress

Multithreading the BLR factorization

Multithreaded result on 24 threads

Normalized Time (Seq.)

Normalized Time (MT)

- 3.3 gain in sequential becomes 1.7 in multithreaded: why?
- LAI parts have become critical
- Update and Compress are memory-bound

Exploiting tree-based multithreading in MF solvers

Exploiting tree-based multithreading in MF solvers

- Work based on W. M. Sid-Lakhdar's PhD thesis
 - LO layer computed with a variant of the Geist-Ng algorithm
 - NUMA-aware implementation
 - use of Idle Core Recycling technique (variant of work-stealing)
 - L'Excellent and Sid-Lakhdar. A study of shared-memory parallelism in a multifrontal solver, Parallel Computing.

Exploiting tree-based multithreading in MF solvers

- Work based on W. M. Sid-Lakhdar's PhD thesis
 - LO layer computed with a variant of the Geist-Ng algorithm
 - NUMA-aware implementation
 - use of Idle Core Recycling technique (variant of work-stealing)
 - L'Excellent and Sid-Lakhdar. A study of shared-memory parallelism in a multifrontal solver, Parallel Computing.

 \Rightarrow how big an impact can tree-based multithreading make?

	24 threads		24 threads + tree MT		
	time	% _{lai}	time	% _{lai}	
FR BLR	509	21%			

	24 threads		24 threads + tree MT		
	time	% _{lai}	time	% _{lai}	
FR BLR	509 307	21% 35%			

	24 threads		24 threads + tree MT		
	time	% _{lai}	time	% _{lai}	
FR BLR	509 307	21% 35%	424	13%	

	24 th	ireads		reads e MT
	time	% _{lai}	time	% _{lai}
FR BLR	509 307	21% 35%	424 221	13% 24%

 \Rightarrow 1.7 gain becomes 1.9 thanks to tree-based MT

		FR		BLR	
		RL	LL	RL	LL
1 thread	Update Total	6467 7390		1064 2242	
24 threads	Update Total	338 424	336 421	110 221	67 175

RL factorization

LL factorization

 \Rightarrow Lower volume of memory transfers in LL (more critical in MT)

 \Rightarrow Lower volume of memory transfers in LL (more critical in MT) Update is now less memory-bound: 1.9 gain becomes 2.4 in LL

Improving the BLR factorization with algorithmic variants

- FSCU (Factor, Solve, Compress, Update)
- FSCU+LUAR

- FSCU (Factor, Solve, Compress, Update)
- FSCU+LUAR
 - Better granularity in Update operations

- FSCU (Factor, Solve, Compress, Update)
- FSCU+LUAR
 - Better granularity in Update operations
 - Potential recompression \Rightarrow complexity reduction: $O(n^{\frac{5}{3}}) \rightarrow O(n^{\frac{11}{6}})$
 - Anton, Ashcraft, and Weisbecker. A Block Low-Rank multithreaded factorization for dense BEM operators, presented at SIAM PP'16.

- FSCU (Factor, Solve, Compress, Update)
- FSCU+LUAR
 - Better granularity in Update operations
 - Potential recompression \Rightarrow complexity reduction: $O(n^{\frac{5}{3}}) \rightarrow O(n^{\frac{11}{6}})$
 - Anton, Ashcraft, and Weisbecker. A Block Low-Rank multithreaded factorization for dense BEM operators, presented at SIAM PP'16.

- FSCU (Factor, Solve, Compress, Update)
- FSCU+LUAR
 - Better granularity in Update operations
 - Potential recompression \Rightarrow complexity reduction: $O(n^{\frac{5}{3}}) \rightarrow O(n^{\frac{11}{6}})$
 - Anton, Ashcraft, and Weisbecker. A Block Low-Rank multithreaded factorization for dense BEM operators, presented at SIAM PP'16.

			mark of Ou	iter Product
1		50 40 50 20 10 0		0 80 100 Prod.
		LL	LUA	LUAR*
average size of	Outer Product	16.5	61.0	32.8
flops ($ imes 10^{12}$)	Outer Product Total	3.76 10.19	3.76 10.19	1.59 8.15
time (s)	Outer Product Total	21 175	14 167	6 160

* All metrics include the Recompression overhead

Double complex (z) performance

\checkmark		50 40 50 50 50 50 50 50 50 50 50 50 50 50 50		And
		, ,	20 40 6 Avg. size of Out.	b=256 b=512 0 80 100 Prod.
		LL	LUA	LUAR*
average size of	f Outer Product	16.5	61.0	32.8
flops ($\times 10^{12}$)	Outer Product Total	3.76 10.19	3.76 10.19	1.59 8.15
time (s)	Outer Product Total	21 175	14 167	6 160

* All metrics include the Recompression overhead

Double complex (z) performance

	benchi	mark of Ou	uter Product	
		50 40 930 50 20 10 0		0 0 0 100 Prod.
		LL	LUA	LUAR*
average size of	f Outer Product	16.5	61.0	32.8
flops ($ imes 10^{12}$)	Outer Product Total	3.76 10.19	3.76 10.19	1.59 8.15
time (s)	Outer Product Total	21 175	14 167	6 160

* All metrics include the Recompression overhead

Double complex (z) performance

Double complex (z) performance

		bench	mark of Ou	iter Product
		50 40 930 50 20 10 0 0		0 80 100 Prod.
		LL	LUA	LUAR*
average size of	Outer Product	16.5	61.0	32.8
flops ($ imes 10^{12}$)	Outer Product Total	3.76 10.19	3.76 10.19	1.59 8.15
time (s)	Outer Product Total	21 175	14 167	6 160

* All metrics include the Recompression overhead

 \Rightarrow Higher granularity and lower flops in Update: 2.4 gain becomes 2.6 Journée Lyon Calcul, Lyon, December 15, 2016

- FSCU (Factor, Solve, Compress, Update)
- FSCU+LUAR
 - Better granularity in Update operations
 - Potential recompression \Rightarrow complexity reduction: $O(n^{\frac{5}{3}}) \rightarrow O(n^{\frac{11}{6}})$
 - Anton, Ashcraft, and Weisbecker. A Block Low-Rank multithreaded factorization for dense BEM operators, presented at SIAM PP'16.
- FCSU(+LUAR)

- FSCU (Factor, Solve, Compress, Update)
- FSCU+LUAR
 - Better granularity in Update operations
 - Potential recompression \Rightarrow complexity reduction: $O(n^{\frac{5}{3}}) \rightarrow O(n^{\frac{11}{6}})$
 - Anton, Ashcraft, and Weisbecker. A Block Low-Rank multithreaded factorization for dense BEM operators, presented at SIAM PP'16.
- FCSU(+LUAR)
 - Restricted pivoting, e.g. to diagonal blocks

- FSCU (Factor, Solve, Compress, Update)
- FSCU+LUAR
 - Better granularity in Update operations
 - Potential recompression \Rightarrow complexity reduction: $O(n^{\frac{5}{3}}) \rightarrow O(n^{\frac{11}{6}})$
 - Anton, Ashcraft, and Weisbecker. A Block Low-Rank multithreaded factorization for dense BEM operators, presented at SIAM PP'16.
- FCSU(+LUAR)
 - Restricted pivoting, e.g. to diagonal blocks

- FSCU (Factor, Solve, Compress, Update)
- FSCU+LUAR
 - Better granularity in Update operations
 - Potential recompression \Rightarrow complexity reduction: $O(n^{\frac{5}{3}}) \rightarrow O(n^{\frac{11}{6}})$
 - Anton, Ashcraft, and Weisbecker. A Block Low-Rank multithreaded factorization for dense BEM operators, presented at SIAM PP'16.
- FCSU(+LUAR)
 - Restricted pivoting, e.g. to diagonal blocks
 - Low-rank Solve \Rightarrow complexity reduction: $O(n^{\frac{11}{6}}) \rightarrow O(n^{\frac{4}{3}})$
 - Better BLAS-3/BLAS-2 ratio in Solve operations Journée Lyon Calcul, Lyon, December 15, 2016

- FSCU (Factor, Solve, Compress, Update)
- FSCU+LUAR
 - Better granularity in Update operations
 - Potential recompression \Rightarrow complexity reduction: $O(n^{\frac{5}{3}}) \rightarrow O(n^{\frac{11}{6}})$
 - Anton, Ashcraft, and Weisbecker. A Block Low-Rank multithreaded factorization for dense BEM operators, presented at SIAM PP'16.
- FCSU(+LUAR)
 - Restricted pivoting, e.g. to diagonal blocks
 - Low-rank Solve \Rightarrow complexity reduction: $O(n^{\frac{11}{6}}) \rightarrow O(n^{\frac{4}{3}})$
 - Better BLAS-3/BLAS-2 ratio in Solve operations Journée Lyon Calcul, Lyon, December 15, 2016

Performance and accuracy of FCSU vs FSCU

	full pi	voting	restricted pivoting				
	FR FSCU		FR	FSCU	FCSU		
		+LUAR		+LUAR	+LUAR		
flops ($\times 10^{12}$)	77.97	8.15	77.97	8.15	3.95		
time (s)	424	160	404	143	111		
scaled residual	4.5e-16	1.5e-09	5.0e-16	1.9e-09	2.7e-09		

- In many cases...
 - \circ restricted pivoting is enough \Rightarrow better BLAS-3/BLAS-2 ratio
 - $\circ~$ compressing before the Solve has little impact \Rightarrow flop reduction
 - \Rightarrow 2.6 gain becomes 3.7

Performance and accuracy of FCSU vs FSCU

	full pi	voting	restricted pivoting				
	FR FSCU		FR	FSCU	FCSU		
		+LUAR		+LUAR	+LUAR		
flops ($\times 10^{12}$)	77.97	8.15	77.97	8.15	3.95		
time (s)	424	160	404	143	111		
scaled residual	4.5e-16	1.5e-09	5.0e-16	1.9e-09	2.7e-09		

- In many cases...
 - restricted pivoting is enough \Rightarrow better BLAS-3/BLAS-2 ratio
 - $\circ~$ compressing before the Solve has little impact \Rightarrow flop reduction
 - \Rightarrow 2.6 gain becomes 3.7
- When pivoting cannot be restricted...
 - Solve step remains in BLAS-2
 - but Compress before Solve is possible by extending pivoting strategy to low-rank blocks

Results on complete set of problems on 24 threads

Journée Lyon Calcul, Lyon, December 15, 2016

	specs		time (s) for			
	peak bw		BLR factorization RL LL LUA			
	(GF/s)	(GB/s)	RL	LL	LUA	
grunch (28 threads)	37	57	248	228	196	
brunch (24 threads)	46	102	221	175	167	
S3 matrix						

	spe	ecs	time (s) for			
	peak bw			BLR factorization		
	(GF/s)	(GB/s)	RL	LL	LUA	
grunch (28 threads)	37		248			
brunch (24 threads)	46	102	221	175	167	
S3 matrix						

Arithmetic Intensity in BLR:

- LL > RL (lower volume of memory transfers)
- LUA > LL (higher granularities ⇒ more efficient cache use)

		ecs	time (s) for			
	peak bw			BLR factorization		
	(GF/s)	(GB/s)	RL	LL	LUA	
grunch (28 threads)	37	57	248 221	228	196	
brunch (24 threads)	46	102	221	175	167	
S3 matrix						

Arithmetic Intensity in BLR:

- LL > RL (lower volume of memory transfers)
- LUA > LL (higher granularities ⇒ more efficient cache use)

	specs		time (s) for			
	peak bw			BLR factorization		
	(GF/s)	(GB/s)	RL	LL	LUA	
grunch (28 threads)	37	57	248	228	196	
brunch (24 threads)	46	102	248 221	175	167	
S3 matrix						

Arithmetic Intensity in BLR:

- LL > RL (lower volume of memory transfers)
- LUA > LL (higher granularities ⇒ more efficient cache use)

Conclusion and perspectives

Multicore performance of MF BLR factorization

Summary

- Flop reduction is not fully translated into performance gain, especially with multithreading
- Revisited implementation choices: tree-based multithreading and left-looking factorization become critical in BLR
- Introduced BLR variants with better properties
- Improved BLR leads to speedups up to 3 w.r.t. standard BLR and up to 4 w.r.t FR on 24 threads

Perspectives

- Efficient strategies to recompress LR updates
- Extension of pivoting strategy to low-rank blocks (FCSU variant)
- Task-based multithreading
- Reduction of the cost of the Compress

References and acknowledgements

References

- Amestoy, Buttari, L'Excellent, and Mary. On the Complexity of the Block Low-Rank Multifrontal Factorization, under review, SIAM SISC, 2016.
- Amestoy, Buttari, L'Excellent, and Mary. Performance and Scalability of the Multithreaded Block Low-Rank Multifrontal Factorization on Multicore Architectures, in preparation, 2016.
- Amestoy, Brossier, Buttari, L'Excellent, Mary, Métivier, Miniussi, and Operto. Fast 3D frequency-domain full waveform inversion with a parallel Block Low-Rank multifrontal direct solver: application to OBC data from the North Sea, Geophysics, 2016.
- Shantsev, Jaysaval, de la Kethulle de Ryhove, Amestoy, Buttari, L'Excellent, and Mary. Large-scale 3D EM modeling with a Block Low-Rank multifrontal direct solver, submitted to Geophysical Journal International, 2016.

Acknowledgements

- LIP for providing access to the machines
- EMGS, SEISCOPE and EDF for providing the test matrices
- LSTC members for scientific discussions

Thanks! Questions?

Backup Slides

- Weight recompression on $\{C_i\}_i$ \Rightarrow With absolute threshold ε_i each C_i can be compressed separately
- Redundancy recompression on $\{Q_i\}_i$

 \Rightarrow Bigger recompression overhead, when is it worth it?