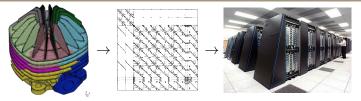
Accuracy and Stability of Low-rank Linear Solvers

Theo Mary University of Manchester, School of Mathematics Séminaire HiePACS, Inria Bordeaux – Sud-Ouest, 29 November 2018

Context



Linear system Ax = b

Often a keystone in scientific computing applications (discretization of PDEs, step of an optimization method, ...)

Large, sparse matrices

Matrix A is sparse (many zeros) but also large $(10^6 - 10^9$ unknowns)

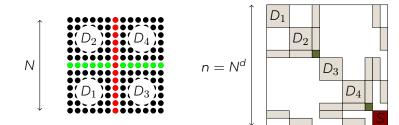
Direct methods

Factorize A = LU and solve LUx = b

© Numerically reliable 🛛 🙁 Computational cost

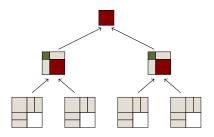
Accuracy and Stability of Low-rank Solvers

Structural sparsity



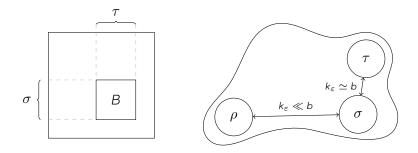
2D problem complexity

- Flops: $O(n^3) \rightarrow O(n^{3/2})$
- Storage: $O(n^2) \rightarrow O(n \log n)$ 3D problem complexity
- Flops: $O(n^3) \rightarrow O(n^2)$
- Storage: $O(n^2) \rightarrow O(n^{4/3})$



Data sparsity

In many cases of interest the matrix has a block low-rank structure



A block *B* represents the interaction between two subdomains. Far away subdomains \Rightarrow block of low numerical rank:

$$egin{array}{cccc} B &pprox & X & Y^{ au} \ b imes b & b imes k_arepsilon & k_arepsilon imes b \end{array}$$

with
$$k_{\varepsilon} \ll b$$
 such that $||B - XY^{T}|| \leq \varepsilon$

Accuracy and Stability of Low-rank Solvers

Theo Mary

4/44

Flat vs hierarchical matrices

How to choose a good block partitioning of the matrix?

BLR matrix

- Superlinear complexity
- Simple, flat structure

		-	

 $\mathcal H ext{-matrix}$

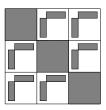
- Nearly linear complexity
- Complex, hierarchical structure

₽

P. Amestoy, A. Buttari, J.-Y. L'Excellent, and T. Mary. *On the Complexity of the Block Low-Rank Multifrontal Factorization*. SIAM J. Sci. Comput. (2017).

Flop complexity (assuming r = O(1)):

	BLR	Hierar.
Dense Sparse (3D)	$O(m^2) O(n^{1.33})$	$O(m \log^2 m)$ O(n)



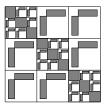
Accuracy and Stability of Low-rank Solvers

P. Amestoy, A. Buttari, J.-Y. L'Excellent, and T. Mary. *On the Complexity of the Block Low-Rank Multifrontal Factorization*. SIAM J. Sci. Comput. (2017).

Flop complexity (assuming r = O(1)):

	BLR	Hierar.
Dense Sparse (3D)	$O(m^2) O(n^{1.33})$	$\frac{O(m\log^2 m)}{O(n)}$

Multilevel BLR (MBLR) format: refine full-rank blocks up to a constant number of levels ℓ



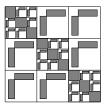
₽.

P. Amestoy, A. Buttari, J.-Y. L'Excellent, and T. Mary. *On the Complexity of the Block Low-Rank Multifrontal Factorization*. SIAM J. Sci. Comput. (2017).

Flop complexity (assuming r = O(1)):

	$\ell = 1$	$\ell = 2$	Hierar.
Dense Sparse (3D)	$O(m^2) \\ O(n^{1.33})$	$O(m^{1.66}) \\ O(n^{1.11})$	$\frac{O(m\log^2 m)}{O(n)}$

Multilevel BLR (MBLR) format: refine full-rank blocks up to a constant number of levels ℓ



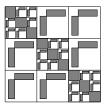
₽.

P. Amestoy, A. Buttari, J.-Y. L'Excellent, and T. Mary. *On the Complexity of the Block Low-Rank Multifrontal Factorization*. SIAM J. Sci. Comput. (2017).

Flop complexity (assuming r = O(1)):

	$\ell = 1$	$\ell = 2$	$\ell = 3$	Hierar.
Dense Sparse (3D)				$\frac{O(m\log^2 m)}{O(n)}$

Multilevel BLR (MBLR) format: refine full-rank blocks up to a constant number of levels ℓ



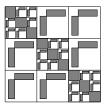
₽

P. Amestoy, A. Buttari, J.-Y. L'Excellent, and T. Mary. *On the Complexity of the Block Low-Rank Multifrontal Factorization*. SIAM J. Sci. Comput. (2017).

Flop complexity (assuming r = O(1)):

	$\ell = 1$	$\ell = 2$	$\ell = 3$	$\ell = 4$	Hierar.
Dense Sparse (3D)	$O(m^2) \\ O(n^{1.33})$	$O(m^{1.66}) \ O(n^{1.11})$	$\frac{O(m^{1.5})}{O(n\log n)}$	O(m ^{1.4}) O(n)	$\frac{O(m\log^2 m)}{O(n)}$

Multilevel BLR (MBLR) format: refine full-rank blocks up to a constant number of levels ℓ



B

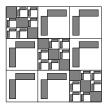
P. Amestoy, A. Buttari, J.-Y. L'Excellent, and T. Mary. *On the Complexity of the Block Low-Rank Multifrontal Factorization*. SIAM J. Sci. Comput. (2017).

Flop complexity (assuming r = O(1)):

	$\ell = 1$	$\ell = 2$	$\ell = 3$	$\ell = 4$	Hierar.
Dense Sparse (3D)	$O(m^2) \\ O(n^{1.33})$	$O(m^{1.66}) \ O(n^{1.11})$	$\frac{O(m^{1.5})}{O(n\log n)}$	O(m ^{1.4}) O(n)	$\frac{O(m\log^2 m)}{O(n)}$

Multilevel BLR (MBLR) format: refine full-rank blocks up to a constant number of levels ℓ

P. Amestoy, A. Buttari, J.-Y. L'Excellent, and T. Mary. *Bridg*ing the gap between flat and hierarchical low-rank matrix formats: the multilevel BLR format. Submitted (2018).



With r = O(1) only 4 levels are enough (even fewer needed for storage and sparse 2D complexities). With larger ranks more levels needed but gain from adding more levels decreases rapidly

Accuracy and Stability of Low-rank Solvers

Outline

This talk discusses several topics regarding the numerical behavior of low-rank linear solvers in finite precision arithmetic:

1. Low-accuracy low-rank preconditioners

N. Higham and T. Mary. A New Preconditioner that Exploits Low-Rank Approximations to Factorization Error. SIAM J. Sci. Comp (2018).

- 2. Rounding error analysis of BLR factorization
- 3. Probabilistic rounding error analysis

N. Higham and T. Mary. A New Approach to Probabilistic Rounding *Error Analysis*. Submitted (2018).

Low-accuracy low-rank preconditioners

Low-accuracy BLR preconditioners: storage

BLR factorization + GMRES solve with stopping tolerance 10^{-9}

Matrix	n	Time (s)		Storage (GB)	
		$\varepsilon = 10^{-2}$	$\varepsilon = 10^{-8}$	$\varepsilon = 10^{-2}$	$\varepsilon = 10^{-8}$
audikw_1	1.0M	1163	69	5	10
Bump_2911	2.9M	-	282	34	56
Emilia_923	0.9M	304	63	7	12
Fault_639	0.6M	-	45	5	9
Ga41As41H72	0.3M	-	76	12	17
Hook_1498	1.5M	902	75	6	11
Si87H76	0.2M	_	62	10	14

Low-accuracy BLR solvers:

- ③ are slower and less robust
- ③ but require much less storage

Improved preconditioner: context

Objective

- Compute solution to linear system Ax = b
- $A \in \mathbb{R}^{n \times n}$ is ill conditioned

LU-based preconditioner

- 1. Compute approximate factorization $A = \widehat{L}\widehat{U} + \Delta A$
 - Half-precision factorization
 - Incomplete LU factorization
 - $\circ~$ Structured matrix factorization: Block Low-Rank, \mathcal{H}_{r} HSS,...
- 2. Solve $\prod_{LU}Ax = \prod_{LU}b$ with $\prod_{LU} = \hat{U}^{-1}\hat{L}^{-1}$ via some iterative method
 - Convergence to solution may be slow or fail

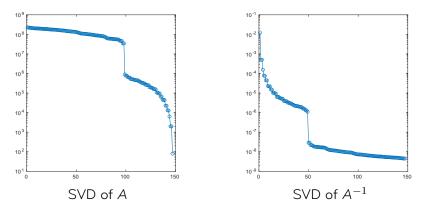
> Objective: accelerate convergence

Accuracy and Stability of Low-rank Solvers

10/44

Improved preconditioner: key observation

Matrix lund_a (n = 147, $\kappa(A) = 2.8e+06$)



- Often, A is ill conditioned due to a small number of small singular values
- Then, A^{-1} is numerically low-rank

Accuracy and Stability of Low-rank Solvers

11/44

Improved preconditioner: key idea

Factorization error might be low-rank?

Let the error
$$E = \widehat{U}^{-1}\widehat{L}^{-1}A - I = \widehat{U}^{-1}\widehat{L}^{-1}(\widehat{L}\widehat{U} + \Delta A) - I$$

= $\widehat{U}^{-1}\widehat{L}^{-1}\Delta A \approx A^{-1}\Delta A$

Does *E* retain the low-rank property of A^{-1} ?

A novel preconditioner

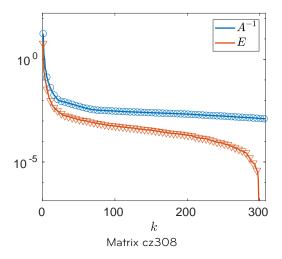
Consider the preconditioner

$$\Pi_{E_k} = (I + E_k)^{-1} \Pi_{LU}$$

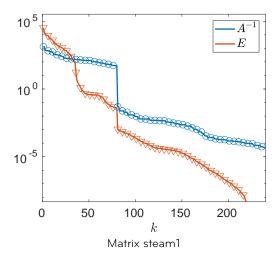
with E_k a rank-k approximation to E.

• If
$$E = E_k$$
, $\Pi_{E_k} = A^{-1}$

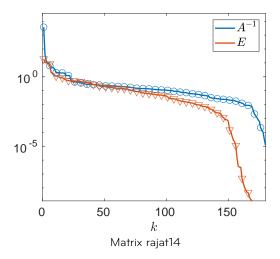
• If $E \approx E_k$ for some small k, Π_{E_k} can be computed cheaply



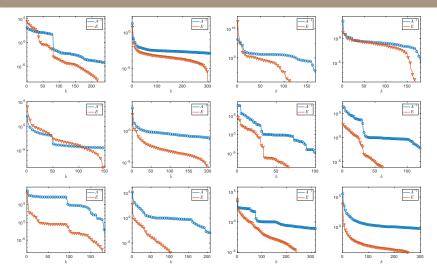
Accuracy and Stability of Low-rank Solvers



Accuracy and Stability of Low-rank Solvers



Accuracy and Stability of Low-rank Solvers



We did **not** specifically select matrices for which A^{-1} is low-rank!

Accuracy and Stability of Low-rank Solvers

We need to compute a rank-k approximation of

$$E = \widehat{U}^{-1}\widehat{L}^{-1}A - I$$

E cannot be built explicitly! \Rightarrow use **randomized** method

Algorithm 1 Randomized SVD via direct SVD of $V^T E$.

- 1: Sample E: $S = E\Omega$, with Ω a $n \times (k + p)$ random matrix.
- 2: Orthonormalize S: V = qr(S). $\{\Rightarrow E \approx VV^T E.\}$
- 3: Compute truncated SVD $V^T E \approx X_k \Sigma_k Y_k^T$.
- 4: $E_k \approx (VX_k)\Sigma_k Y_k^T$.

Results for $\varepsilon = 10^{-2}$:

Matrix	Π_{LU}		I	I_{E_k}
	Iter.	Time	Iter.	Time
audikw_1	691	1163	331	625
Bump_2911	—	_	284	1708
Emilia_923	174	304	136	267
Fault_639	_	_	294	345
Ga41As41H72	_	_	135	143
Hook_1498	417	902	356	808
Si87H76	-	_	131	116

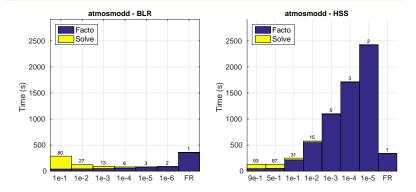
\Rightarrow performance and robustness improvement with zero storage overhead

Accuracy and Stability of Low-rank Solvers

Comparison with a hierarchical solver

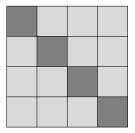
Comparison with **STRUMPACK** solver (HSS format):

C. Gorman, G. Chavez, P. Ghysels, T. Mary, F.-H. Rouet, and X. S. Li. *Matrix-free Construction of HSS Representation Using Adaptive Randomized Sampling*. Submitted (2018).



Comparatively with BLR, HSS favors low-accuracy preconditioning Applying improved preconditioner to HSS (or fully-structured BLR) should have an even greater impact! Accuracy and Stability of Low-rank Solvers Theo Mary

Rounding error analysis of BLR factorization

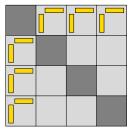


• FCU

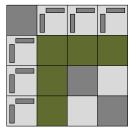
18/44

Accuracy and Stability of Low-rank Solvers

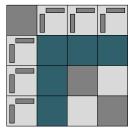
- FCU (Factor,
- Easy to handle numerical pivoting



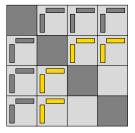
- FCU (Factor, Compress,
- Easy to handle numerical pivoting



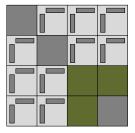
- FCU (Factor, Compress, Update)
- Easy to handle numerical pivoting



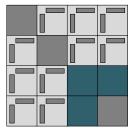
- FCU (Factor, Compress, Update)
- Easy to handle numerical pivoting



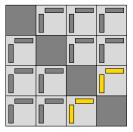
- FCU (Factor, Compress, Update)
- Easy to handle numerical pivoting



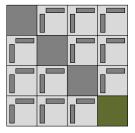
- FCU (Factor, Compress, Update)
- Easy to handle numerical pivoting



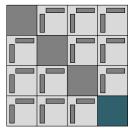
- FCU (Factor, Compress, Update)
- Easy to handle numerical pivoting



- FCU (Factor, Compress, Update)
- Easy to handle numerical pivoting

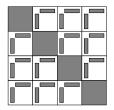


- FCU (Factor, Compress, Update)
- Easy to handle numerical pivoting



- FCU (Factor, Compress, Update)
- Easy to handle numerical pivoting

Why we need an error analysis



Each off-diagonal block *B* is approximated by a low-rank matrix \widetilde{B} such that $||B - \widetilde{B}|| \le \varepsilon ||B||$ $\Rightarrow ||A - A_{\varepsilon}|| \le \varepsilon ||A||$ with good norm choice However:

 $||A - L_{\varepsilon}U_{\varepsilon}|| \neq \varepsilon$ because of rounding errors \Rightarrow What is the overall accuracy $||A - L_{\varepsilon}U_{\varepsilon}||$?

- Can we prove that ||A − L_εU_ε|| = O(ε)? What is the role of the unit roundoff u?
- What is the error growth, i.e., how does the error depend on the matrix size *n*?
- How do the different variants (FCU, CFU, etc.) compare?
- Should we use an absolute threshold (||B − B̃|| ≤ ε) or a relative one (||B − B̃|| ≤ ε||B||)?

Reminder

The full-rank LU factorization of $A \in \mathbb{R}^{n \times n}$ satisfies

$$||A - LU|| \le nu||L|||U|| + O(u^2)$$

Main result

The FCU BLR factorization of $A \in \mathbb{R}^{n \times n}$ with relative threshold ε satisfies

$$\|A - L_{\varepsilon}U_{\varepsilon}\| \le (nu + \varepsilon)\|L\|\|U\| + O(u\varepsilon) + O(u^2)$$

The proof is quite technical and based on *Stability of Block Algorithms with Fast Level-3 BLAS* (Demmel and Higham, 1992)

20/44

Main result

The FCU BLR factorization of $A \in \mathbb{R}^{n \times n}$ with relative threshold ε satisfies

 $\|A - L_{\varepsilon}U_{\varepsilon}\| \le (nu + \varepsilon)\|L\|\|U\| + O(u\varepsilon) + O(u^{2})$

Main result

The FCU BLR factorization of $A \in \mathbb{R}^{n \times n}$ with relative threshold ε satisfies

 $\|A - L_{\varepsilon}U_{\varepsilon}\| \le (nu + \varepsilon)\|L\|\|U\| + O(u\varepsilon) + O(u^2)$

||L||||U|| ≤ n²ρ_n||A|| where ρ_n is the growth factor
 ⇒ with partial pivoting, the BLR factorization is stable!

Main result

The FCU BLR factorization of $A \in \mathbb{R}^{n \times n}$ with relative threshold ε satisfies

 $\|A - L_{\varepsilon}U_{\varepsilon}\| \le (nu + \varepsilon)\|L\|\|U\| + O(u\varepsilon) + O(u^{2})$

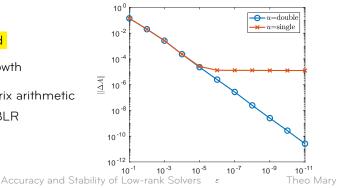
- ||L||||U|| ≤ n²ρ_n||A|| where ρ_n is the growth factor
 ⇒ with partial pivoting, the BLR factorization is stable!
- Usually $\varepsilon \gg u$:
- \Rightarrow Role of *u* is limited
- \Rightarrow Very slow error growth
- ⇒ Usage of fast matrix arithmetic may be stable in BLR

Main result

The FCU BLR factorization of $A \in \mathbb{R}^{n \times n}$ with relative threshold ε satisfies

 $\|A - L_{\varepsilon}U_{\varepsilon}\| \le (nu + \varepsilon)\|L\|\|U\| + O(u\varepsilon) + O(u^2)$

- ||L|||U|| ≤ n²ρ_n||A|| where ρ_n is the growth factor
 ⇒ with partial pivoting, the BLR factorization is stable!
- Usually $\varepsilon \gg u$:
- \Rightarrow Role of *u* is limited
- \Rightarrow Very slow error growth
- ⇒ Usage of fast matrix arithmetic may be stable in BLR

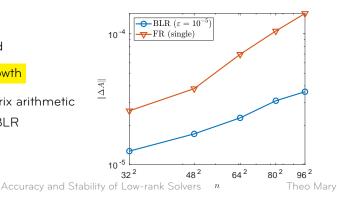


Main result

The FCU BLR factorization of $A \in \mathbb{R}^{n \times n}$ with relative threshold ε satisfies

 $\|A - L_{\varepsilon}U_{\varepsilon}\| \le (nu + \varepsilon)\|L\|\|U\| + O(u\varepsilon) + O(u^2)$

- ||L||||U|| ≤ n²ρ_n ||A|| where ρ_n is the growth factor
 ⇒ with partial pivoting, the BLR factorization is stable!
- Usually $\varepsilon \gg u$:
- \Rightarrow Role of *u* is limited
- ⇒ Very slow error growth
- ⇒ Usage of fast matrix arithmetic may be stable in BLR



Main result

The FCU BLR factorization of $A \in \mathbb{R}^{n \times n}$ with relative threshold ε satisfies

 $\|A - L_{\varepsilon}U_{\varepsilon}\| \le (nu + \varepsilon)\|L\|\|U\| + O(u\varepsilon) + O(u^{2})$

- ||L||||U|| ≤ n²ρ_n||A|| where ρ_n is the growth factor
 ⇒ with partial pivoting, the BLR factorization is stable!
- Usually $\varepsilon \gg u$:
- \Rightarrow Role of *u* is limited
- \Rightarrow Very slow error growth
- ⇒ Usage of fast matrix arithmetic may be stable in BLR

For example with Strassen's algorithm, $nu \rightarrow n^{\log_2 12} u \approx n^{3.6} u$

Ongoing work with C.-P. Jeannerod, C. Pernet, and D. Roche: Exploiting fast matrix arithmetic within BLR factorizations: $O(n^2)$ complexity $\rightarrow O(n^{(\omega+1)/2})$ ($\approx O(n^{1.9})$ for Strassen)

The FCU BLR factorization of $A \in \mathbb{R}^{n \times n}$ with absolute threshold ε satisfies

$$\begin{split} \|A - L_{\varepsilon}U_{\varepsilon}\| &\leq (nu + \theta\varepsilon)\|L\|\|U\| + O(u\varepsilon) + O(u^2) \\ \text{where } \theta &= \sqrt{n/b - 1}\sum_{i=1}^{n/b}\|L_{ii}\| + \|U_{ii}\| \end{split}$$

The BLR factorization with absolute threshold

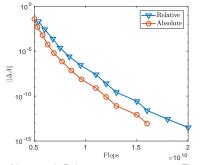
- 🙁 Has a faster error growth
- Is scaling-dependent

The FCU BLR factorization of $A \in \mathbb{R}^{n \times n}$ with absolute threshold ε satisfies

$$\begin{split} \|A - L_{\varepsilon}U_{\varepsilon}\| &\leq (nu + \theta\varepsilon)\|L\|\|U\| + O(u\varepsilon) + O(u^2)\\ \text{where } \theta &= \sqrt{n/b - 1}\sum_{i=1}^{n/b}\|L_{ii}\| + \|U_{ii}\| \end{split}$$

The BLR factorization with absolute threshold

- Bas a faster error growth
- Is scaling-dependent
- © Is more efficient in practice



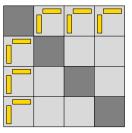
Accuracy and Stability of Low-rank Solvers



• CFU

23/44

Accuracy and Stability of Low-rank Solvers

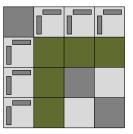


• CFU (Compress,

23/44

Accuracy and Stability of Low-rank Solvers

- CFU (Compress, Factor,
- Factor step is performed on compressed blocks ⇒ reduced flops



- CFU (Compress, Factor, Update)
- Factor step is performed on compressed blocks ⇒ reduced flops

- CFU (Compress, Factor, Update)
- Factor step is performed on compressed blocks ⇒ reduced flops
- How can we handle numerical pivoting?

- CFU (Compress, Factor, Update)
- Factor step is performed on compressed blocks ⇒ reduced flops
- How can we handle numerical pivoting?
 - Restricting pivot choice to diagonal block is acceptable (in combination with a pivot delaying strategy)

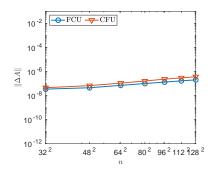
- CFU (Compress, Factor, Update)
- Factor step is performed on compressed blocks ⇒ reduced flops
- How can we handle numerical pivoting?
 - Restricting pivot choice to diagonal block is acceptable (in combination with a pivot delaying strategy)
 - Must still check entries in off-diagonal blocks: can be estimated from entries in low-rank blocks

The CFU BLR factorization of $A \in \mathbb{R}^{n \times n}$ with relative threshold ε satisfies

$$\|A - L_{\varepsilon}U_{\varepsilon}\| \le (nu + \varepsilon)\|L\|\|U\| + O(\kappa(A)u\varepsilon) + O(u^2)$$

The CFU BLR factorization of $A \in \mathbb{R}^{n \times n}$ with relative threshold ε satisfies

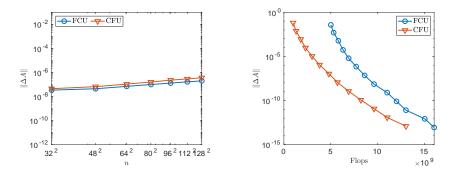
 $\|A - L_{\varepsilon}U_{\varepsilon}\| \le (nu + \varepsilon)\|L\|\|U\| + O(\kappa(A)u\varepsilon) + O(u^2)$



24/44

The CFU BLR factorization of $A \in \mathbb{R}^{n \times n}$ with relative threshold ε satisfies

 $\|A - L_{\varepsilon}U_{\varepsilon}\| \le (nu + \varepsilon)\|L\|\|U\| + O(\kappa(A)u\varepsilon) + O(u^2)$



Probabilistic rounding error analysis

Context and motivation

Floating-point arithmetic model

 $\mathsf{fl}(\mathsf{a} \text{ op } b) = (\mathsf{a} \text{ op } b)(1+\delta), \quad |\delta| \leq u, \quad \mathsf{op} \in \{+,-,\times,/\}$

	fp64	fp32	fp16	fp8
	(double)	(single)	(half)	(quarter)
u	$ \begin{array}{c} 2^{-53} \\ \approx 10^{-16} \end{array} $	$\begin{array}{c} 2^{-24} \\ \approx 10^{-8} \end{array}$	$\begin{array}{c} 2^{-11} \\ \approx 10^{-4} \end{array}$	$ \begin{array}{c} 2^{-4} \\ \approx 10^{-2} \end{array} $

• In many numerical linear algebra computations, traditional error bounds are proportional to *nu*, e.g., for LU factorization:

 $|A - LU| \le nu|L||U|$

⇒ No guarantees if *nu* is large: issue of growing importance with the rise of large-scale, mixed-precision computations

Context and motivation

Floating-point arithmetic model

 $\mathsf{fl}(\mathsf{a} \text{ op } b) = (\mathsf{a} \text{ op } b)(1+\delta), \quad |\delta| \leq u, \quad \mathsf{op} \in \{+,-,\times,/\}$

	fp64	fp32	fp16	fp8
	(double)	(single)	(half)	(quarter)
u	$ \begin{array}{c} 2^{-53} \\ \approx 10^{-16} \end{array} $	$\begin{array}{c} 2^{-24} \\ \approx 10^{-8} \end{array}$	$\begin{array}{c} 2^{-11} \\ \approx 10^{-4} \end{array}$	$ \begin{array}{c} 2^{-4} \\ \approx 10^{-2} \end{array} $

• In many numerical linear algebra computations, traditional error bounds are proportional to *nu*, e.g., for LU factorization:

 $|A - LU| \le nu|L||U|$

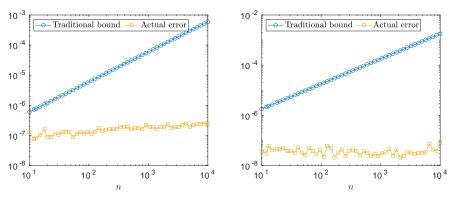
- ⇒ No guarantees if *nu* is large: issue of growing importance with the rise of large-scale, mixed-precision computations
 - This issue is independent of low-rank solvers, but...
 - Improved asymptotic complexity \Rightarrow larger *n*
 - Error bound dominated by $\varepsilon \Rightarrow \text{larger } u$

\Rightarrow nu > 1 will happen fast with low-rank solvers

The issue is that traditional bounds are worst-case bounds, and are thus pessimistic on average

The issue is that traditional bounds are worst-case bounds, and are thus pessimistic on average

Matrix-vector product (fp32)

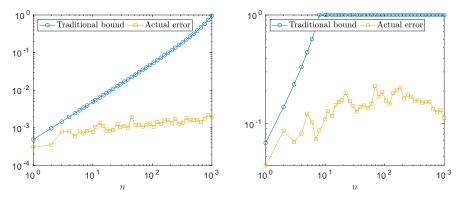


Solution of Ax = b (fp32)

The issue is that traditional bounds are worst-case bounds, and are thus pessimistic on average

Matrix-vector product (fp16)

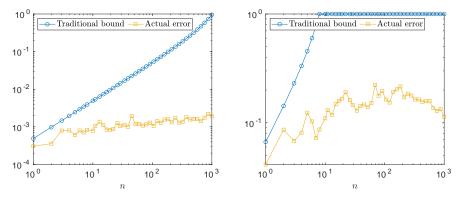
Matrix-vector product (fp8)



The issue is that traditional bounds are worst-case bounds, and are thus pessimistic on average

Matrix-vector product (fp16)

Matrix-vector product (fp8)



⇒ Traditional bounds do not provide a realistic picture of the typical behavior of numerical computations

Accuracy and Stability of Low-rank Solvers

• Consider the accumulated effect of *n* rounding errors

$$\mathsf{s} = \sum_{i=1}^{n} \delta_i$$

- The worst-case bound $|s| \leq nu$ is attained when all δ_i have identical sign and maximal magnitude, which intuitively seems very unlikely
- Assume δ_i are random independent variables of mean zero
- Then, the central limit theorem states that if *n* is sufficiently large, then

$$s/\sqrt{n} \sim \mathcal{N}(0,u)$$

⇒ $|s| \le \lambda \sqrt{nu}$, with λ a small constant, holds with high probability (e.g., 99.7% with $\lambda = 3$ by the 3-sigma rule)

This probabilistic approach had led to the following rule of thumb

In general, the statistical distribution of the rounding errors will reduce considerably the function of n occurring in the relative errors. We might expect in each case that this function should be replaced by something which is no bigger than its square root.

– James Wilkinson, 1961

However, no rigorous result along these lines exists for a wide class of algorithms

This probabilistic approach had led to the following rule of thumb

In general, the statistical distribution of the rounding errors will reduce considerably the function of n occurring in the relative errors. We might expect in each case that this function should be replaced by something which is no bigger than its square root.

– James Wilkinson, 1961

However, no rigorous result along these lines exists for a wide class of algorithms

Our contribution:

We provide the first rigorous foundation for this rule of thumb

by computing rigorous error bounds that hold with probability at least a certain value for a wide class of linear algebra algorithms

29/44

Objective and assumptions

Fundamental lemma in backward error analysis

If
$$|\delta_i| \le u$$
 for $i = 1 : n$ and $nu < 1$, then

$$\prod_{i=1}^n (1 + \delta_i) = 1 + \theta_n, \quad |\theta_n| \le \gamma_n \le nu + O(u^2)$$

Objective and assumptions

Fundamental lemma in backward error analysis

If
$$|\delta_i| \leq u$$
 for $i = 1 : n$ and $nu < 1$, then

$$\prod_{i=1}^n (1 + \delta_i) = 1 + \theta_n, \quad |\theta_n| \leq \gamma_n \leq nu + O(u^2)$$

We seek an anologous result by using the following model

Probabilistic model of rounding errors

In the computation of interest, the quantities δ in the model $fl(a \text{ op } b) = (a \text{ op } b)(1 + \delta), \quad |\delta| \le u, \quad \text{op } \in \{+, -, \times, /\}$ associated with every pair of operands are independent random variables of mean zero.

There is no claim that ordinary rounding and chopping are random processes, or that successive errors are independent. The question to be decided is whether or not these particular probabilistic models of the processes will adequately describe what actually happens.

– Hull and Swenson, 1966

Proof sketch

First step: transform the product in a sum by taking the logarithm

$$S = \log \prod_{i=1}^{n} (1 + \delta_i) = \sum_{i=1}^{n} \log(1 + \delta_i)$$

Proof sketch

First step: transform the product in a sum by taking the logarithm

$$S = \log \prod_{i=1}^{n} (1 + \delta_i) = \sum_{i=1}^{n} \log(1 + \delta_i)$$

Second step: apply Hoeffding's concentration inequality:

Hoeffding's inequality

Let $X_1, ..., X_n$ be random independent variables satisfying $|X_i| \le c_i$. Then the sum $S = \sum_{i=1}^n X_i$ satisfies

$$\Pr(|S - \mathbb{E}(S)| \ge \xi) \le 2 \exp\left(-\frac{\xi^2}{2\sum_{i=1}^n c_i^2}\right)$$

to $X_i = \log(1 + \delta_i) \Rightarrow$ requires bounding $\log(1 + \delta_i)$ and $\mathbb{E}(\log(1 + \delta_i))$ using Taylor expansions

Proof sketch

First step: transform the product in a sum by taking the logarithm

$$S = \log \prod_{i=1}^{n} (1 + \delta_i) = \sum_{i=1}^{n} \log(1 + \delta_i)$$

Second step: apply Hoeffding's concentration inequality:

Hoeffding's inequality

Let $X_1, ..., X_n$ be random independent variables satisfying $|X_i| \le c_i$. Then the sum $S = \sum_{i=1}^n X_i$ satisfies

$$\Pr(|S - \mathbb{E}(S)| \ge \xi) \le 2 \exp\left(-\frac{\xi^2}{2\sum_{i=1}^n c_i^2}\right)$$

to $X_i = \log(1 + \delta_i) \Rightarrow$ requires bounding $\log(1 + \delta_i)$ and $\mathbb{E}(\log(1 + \delta_i))$ using Taylor expansions

Third step: retrieve the result by taking the exponential of S

Our main result

Main result

Let δ_i , i = 1 : n, be independent random variables of mean zero such that $|\delta_i| \le u$. Then, for any constant $\lambda > 0$, the relation

$$\prod_{i=1}^{n} (1+\delta_i) = 1 + \theta_n, \quad |\theta_n| \le \widetilde{\gamma}_n(\lambda) := \exp\left(\lambda\sqrt{n}u + \frac{nu^2}{1-u}\right) - 1$$
$$\le \lambda\sqrt{n}u + O(u^2)$$

holds with probability of failure $P(\lambda) = 2 \exp \left(-\lambda^2 (1-u)^2/2\right)$

Our main result

Main result

Let δ_i , i = 1 : n, be independent random variables of mean zero such that $|\delta_i| \le u$. Then, for any constant $\lambda > 0$, the relation

$$\prod_{i=1}^{n} (1+\delta_i) = 1 + \theta_n, \quad |\theta_n| \le \widetilde{\gamma}_n(\lambda) := \exp\left(\lambda\sqrt{n}u + \frac{nu^2}{1-u}\right) - 1$$
$$\le \lambda\sqrt{n}u + O(u^2)$$

holds with probability of failure $P(\lambda) = 2 \exp \left(-\lambda^2 (1-u)^2/2\right)$

Key features:

- Exact bound, not first order
- *nu* < 1 not required
- No "*n* is sufficiently large" assumption (achieved by replacing the central limit theorem by Hoeffding's inequality)
- Small values of λ suffice: ${\it P}(1)pprox 0.27$, ${\it P}(5) \le 10^{-5}$

Application to numerical linear algebra

Bounds for many numerical linear algebra algorithms are obtained by the repeated application of our main result. For example:

Probabilistic bound for LU factorization

Let $LU = A + \Delta A$ be the LU factors computed by Gaussian elimination of $A \in \mathbb{R}^{n \times n}$. Then, for any constant $\lambda > 0$, the relation $|\Delta A| \leq \widetilde{\gamma}_n(\lambda) |L| |U|, \quad |\widetilde{\gamma}_n(\lambda)| \leq \lambda \sqrt{n}u + O(u^2)$

holds with probability of failure $(n^3/3 + n^2/2 + 7n/6)P(\lambda)$

Application to numerical linear algebra

Bounds for many numerical linear algebra algorithms are obtained by the repeated application of our main result. For example:

Probabilistic bound for LU factorization

Let $LU = A + \Delta A$ be the LU factors computed by Gaussian elimination of $A \in \mathbb{R}^{n \times n}$. Then, for any constant $\lambda > 0$, the relation $|\Delta A| \leq \widetilde{\gamma}_n(\lambda) |L| |U|, \quad |\widetilde{\gamma}_n(\lambda)| \leq \lambda \sqrt{n}u + O(u^2)$

holds with probability of failure $(n^3/3 + n^2/2 + 7n/6)P(\lambda)$

We wish to keep the probabilities independent of *n*! Fortunately:

$$O(n^3)P(\lambda) = O(1) \quad \Rightarrow \quad \lambda = O(\sqrt{\log n})$$

 \Rightarrow error grows no faster than $\sqrt{n \log n u}$

Application to numerical linear algebra

Bounds for many numerical linear algebra algorithms are obtained by the repeated application of our main result. For example:

Probabilistic bound for LU factorization

Let $LU = A + \Delta A$ be the LU factors computed by Gaussian elimination of $A \in \mathbb{R}^{n \times n}$. Then, for any constant $\lambda > 0$, the relation $|\Delta A| \leq \widetilde{\gamma}_n(\lambda) |L| |U|, \quad |\widetilde{\gamma}_n(\lambda)| \leq \lambda \sqrt{n}u + O(u^2)$

holds with probability of failure $(n^3/3 + n^2/2 + 7n/6)P(\lambda)$

We wish to keep the probabilities independent of *n*! Fortunately:

$$O(n^3)P(\lambda) = O(1) \quad \Rightarrow \quad \lambda = O(\sqrt{\log n})$$

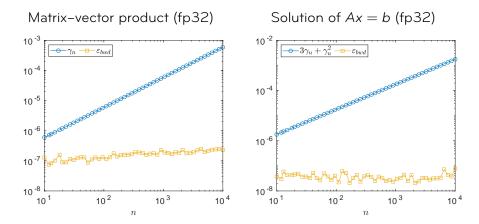
 \Rightarrow error grows no faster than $\sqrt{n \log n u}$

Moreover the constant hidden in the big O is small: $P(13) \leq 10^{-5}$ for $n \leq 10^{10}$

33/44

- We use MATLAB R2018b and set rng(1) for reproducibility
- fp16 and fp8 are simulated with the rounding function chop.m from the Matrix Computation Toolbox
- We use both random matrices with entries drawn from the uniform [-1,1] or [0,1] distribution and real-life matrices from the SuiteSparse collection
- We compare the bounds γ_n and $\tilde{\gamma}_n(\lambda)$ with the componentwise backward error ε_{bwd} measured as (Oettli–Prager):
 - Matrix-vector product y = Ax: $\varepsilon_{bwd} = \max_i \frac{|\hat{y}-y|_i}{(|A||x|)_i}$
 - Solution to Ax = b via LU factorization: $\varepsilon_{bwd} = \max_i \frac{|A\hat{x} b|_i}{(|\hat{L}||\hat{U}||\hat{x}|)_i}$
- Our codes are available online: https://gitlab.com/theo.andreas.mary/proberranalysis

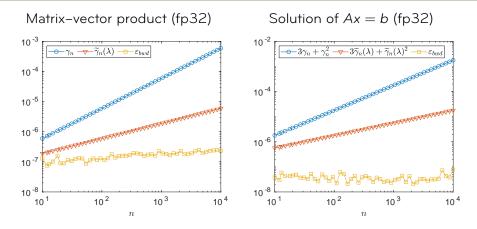
Experimental results with $\left[-1,1 ight]$ entries



Accuracy and Stability of Low-rank Solvers

Theo Mary

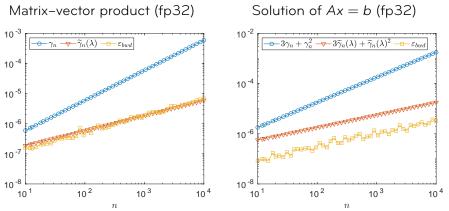
Experimental results with [-1,1] entries



- The probabilistic bound is much closer to the actual error
- However for [-1,1] entries it is still pessimistic

35/44

Experimental results with [0,1] entries



• Probabilistic bound is plotted with $\lambda = 1 \Rightarrow P(\lambda)$ is pessimistic...

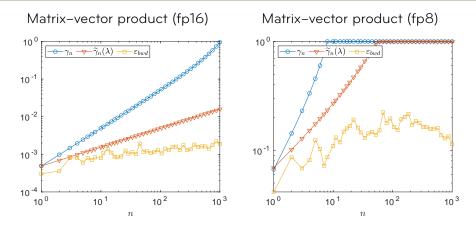
- ...but $\widetilde{\gamma}_n$ bound itself can be sharp and successfully captures the \sqrt{n} error growth
- ⇒ Therefore the bounds cannot be further improved without further assumptions

36/44

Accuracy and Stability of Low-rank Solvers

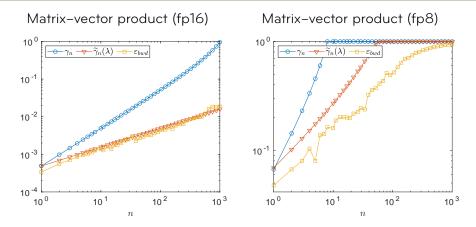
Theo Mary

Experimental results with low precisions ([-1,1] entries)



• Importance of the probabilistic bound becomes even clearer for lower precisions

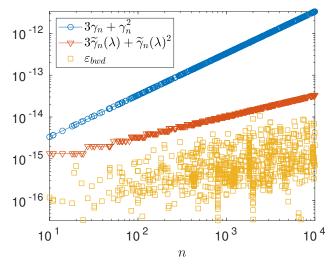
Experimental results with low precisions ([0,1] entries)



• Importance of the probabilistic bound becomes even clearer for lower precisions

Experimental results with real-life matrices

Solution of Ax = b (fp64), for 943 matrices from the SuiteSparse collection



Accuracy and Stability of Low-rank Solvers

Inner product of two constant vectors:

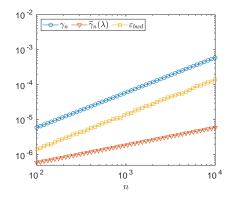
$$\begin{aligned} s_{i+1} &= s_i + a_i b_i = s_i + c \\ \Rightarrow \quad \widehat{s}_{i+1} &= (\widehat{s}_i + c)(1 + \delta_i) \end{aligned}$$

An example where rounding errors are not independent

Inner product of two constant vectors:

$$s_{i+1} = s_i + a_i b_i = s_i + c$$

$$\Rightarrow \quad \widehat{s}_{i+1} = (\widehat{s}_i + c)(1 + \delta_i)$$

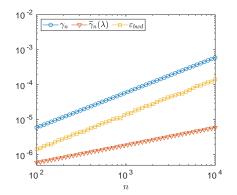


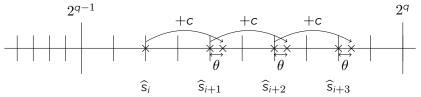
An example where rounding errors are not independent

Inner product of two constant vectors:

$$s_{i+1} = s_i + a_i b_i = s_i + c$$

$$\Rightarrow \quad \hat{s}_{i+1} = (\hat{s}_i + c)(1 + \delta_i)$$





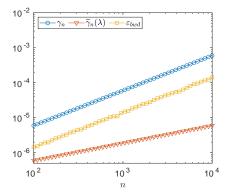
An example where rounding errors are not independent

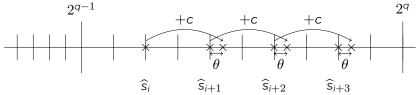
Inner product of two constant vectors:

$$s_{i+1} = s_i + a_i b_i = s_i + c$$

$$\Rightarrow \quad \widehat{s}_{i+1} = (\widehat{s}_i + c)(1 + \delta_i)$$

 $\Rightarrow \delta_i = \theta$ is constant within intervals $[2^{q-1}; 2^q]$



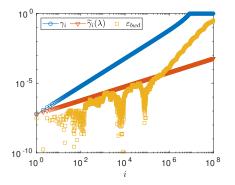


Inner product of two very large nonnegative vectors:

$$s_{i+1} = s_i + a_i b_i \quad \Rightarrow \quad \widehat{s}_{i+1} = (\widehat{s}_i + a_i b_i)(1 + \delta_i)$$

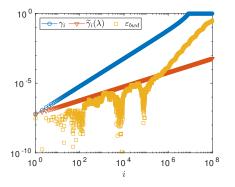
Inner product of two very large nonnegative vectors:

$$s_{i+1} = s_i + a_i b_i \quad \Rightarrow \quad \widehat{s}_{i+1} = (\widehat{s}_i + a_i b_i)(1 + \delta_i)$$



Inner product of two very large nonnegative vectors:

$$s_{i+1} = s_i + a_i b_i \quad \Rightarrow \quad \widehat{s}_{i+1} = (\widehat{s}_i + a_i b_i)(1 + \delta_i)$$



Explanation: s_i keeps increasing, at some point, it becomes so large that $\hat{s}_{i+1} = \hat{s}_i \Rightarrow \delta_i = -a_i b_i / (\hat{s}_i + a_i b_i) < 0$

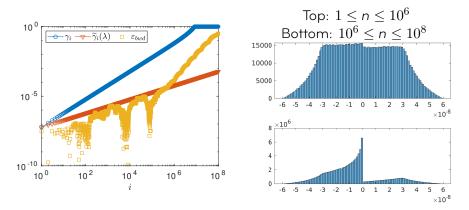
41/44

Accuracy and Stability of Low-rank Solvers

Theo Mary

Inner product of two very large nonnegative vectors:

$$s_{i+1} = s_i + a_i b_i \implies \widehat{s}_{i+1} = (\widehat{s}_i + a_i b_i)(1 + \delta_i)$$



Explanation: s_i keeps increasing, at some point, it becomes so large that $\hat{s}_{i+1} = \hat{s}_i \Rightarrow \delta_i = -a_i b_i / (\hat{s}_i + a_i b_i) < 0$

41/44

Accuracy and Stability of Low-rank Solvers

Theo Mary

Conclusion

- Our analysis provides the first rigorous justification of the rule of thumb that one can take the square root of the constant in traditional error bounds to obtain a more realistic bound
- Our experiments show that the probabilistic bounds are in good agreement with the actual error for both random and real-life matrices, except in two very special situations, justifying that

The fact that rounding errors are neither random nor uncorrelated will not in itself preclude the possibility of modelling them usefully by uncorrelated random variables.

– William Kahan, 1996

and answering Hull and Swenson's question

42/44

Conclusion

Conclusion

Takeaway messages

BLR solvers are numerically stable (with numerical pivoting) and can efficiently exploit low-precision floating-point arithmetic when used as low-accuracy preconditioners

Perspectives

- Apply improved preconditioner to fully-structured BLR (e.g. PaStiX's "minimal memory") and HSS (e.g. STRUMPACK)
- Rounding error analysis of multilevel and hierarchical solvers
- Probabilistic error analysis of low-rank factorizations
- Exploiting half precision within low-rank preconditioners
- Error analysis of low-rank preconditioners with iterative refinement

Slides and papers available here

bit.ly/theomary (list of references on next slide)

References

P. Amestoy, A. Buttari, J.-Y. L'Excellent, and T. Mary. On the Complexity of the Block Low-Rank Multifrontal Factorization. SIAM J. Sci. Comput. (2017).

P. Amestoy, A. Buttari, J.-Y. L'Excellent, and T. Mary. *Bridging the gap between flat and hierarchical low*rank matrix formats: the multilevel *BLR* format. Submitted (2018).

P. Amestoy, A. Buttari, J.-Y. L'Excellent, and T. Mary. *Performance and Scalability of the Block Low-Rank Multifrontal Factorization on Multicore Architectures.* ACM Trans. Math. Soft. (2018).

C. Gorman, G. Chavez, P. Ghysels, T. Mary, F.-H. Rouet, and X. S. Li. *Matrix-free Construction of HSS Representation Using Adaptive Randomized Sampling*. Submitted (2018).

N. Higham and T. Mary. A New Preconditioner that Exploits Low-Rank Approximations to Factorization Error. SIAM J. Sci. Comp (2018).

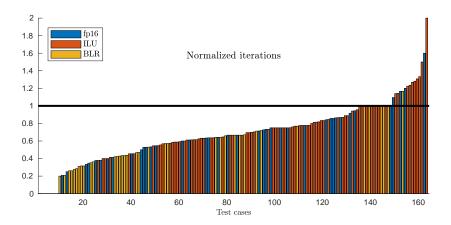
N. Higham and T. Mary. A New Approach to Probabilistic Rounding Error Analysis. Submitted (2018).

P. Amestoy, R. Brossier, A. Buttari, J.-Y. L'Excellent, T. Mary, L. Métivier, A. Miniussi, and S. Operto. Fast 3D frequency-domain full waveform inversion with a parallel Block Low-Rank multifrontal direct solver: application to OBC data from the North Sea. Geophysics (2016).

D. Shantsev, P. Jaysaval, S. Kethulle de Ryhove, P. Amestoy, A. Buttari, J.-Y. L'Excellent, and T. Mary. Largescale 3D EM modeling with a Block Low-Rank multifrontal direct solver. Geophys. J. Int (2017).

Backup slides

Black-box setting: use p = 10 and k = num. rank at acc. 10^{-7}



47/44

We need to store E_k : two dense $n \times k$ matrices \Rightarrow but only needed after factorization

We need to store E_k : two dense $n \times k$ matrices \Rightarrow but only needed after factorization

Traditional multifrontal storage is $S_A + S_{LU} + S_{CB}$

- S_A = storage for matrix A
- S_{LU} = storage for (BLR) LU factors
- S_{CB} = storage for contribution blocks ⇒ temporary storage during factorization

We need to store E_k : two dense $n \times k$ matrices \Rightarrow but only needed after factorization

Traditional multifrontal storage is $S_A + S_{LU} + S_{CB}$

- S_A = storage for matrix A
- S_{LU} = storage for (BLR) LU factors
- S_{CB} = storage for contribution blocks ⇒ temporary storage during factorization

Thus, S_{CB} and S_{E_k} do not overlap!

- Factorization storage: $S_A + S_{LU} + S_{CB}$
- Solution storage: $S_A + S_{LU} + S_{E_k}$
- \Rightarrow Total storage: $S_A + S_{LU} + \max(S_{CB}, S_{E_k})$

We need to store E_k : two dense $n \times k$ matrices \Rightarrow but only needed after factorization

Traditional multifrontal storage is $S_A + S_{LU} + S_{CB}$

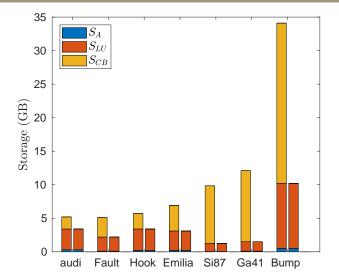
- S_A = storage for matrix A
- S_{LU} = storage for (BLR) LU factors
- S_{CB} = storage for contribution blocks ⇒ temporary storage during factorization

Thus, S_{CB} and S_{E_k} do not overlap!

- Factorization storage: $S_A + S_{LU} + S_{CB}$
- Solution storage: $S_A + S_{LU} + S_{E_k}$
- \Rightarrow Total storage: $S_A + S_{LU} + \max(S_{CB}, S_{E_k})$

If $S_{E_k} \leq S_{CB}$, zero storage overhead!

Storage overhead: results

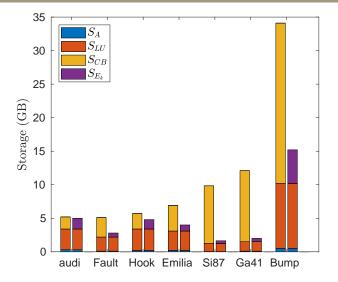


49/44

Accuracy and Stability of Low-rank Solvers

Theo Mary

Storage overhead: results



\Rightarrow zero storage overhead on all matrices

Accuracy and Stability of Low-rank Solvers

Theo Mary

49/44

The proof is based on *Stability of Block Algorithms with Fast Level-3 BLAS* (Demmel and Higham, 1992)

$$\mathsf{A} = \left[\begin{array}{cc} \mathsf{A}_{11} & \mathsf{A}_{12} \\ \mathsf{A}_{21} & \mathsf{A}_{22} \end{array} \right]$$

Inductive proof: easy to bound error of computing

 $S = A_{22} - L_{21}U_{12}$ and error of $S = L_{22}U_{22}$ is obtained by induction

The proof is based on *Stability of Block Algorithms with Fast Level-3 BLAS* (Demmel and Higham, 1992)

$$\mathsf{A} = \left[\begin{array}{cc} \mathsf{A}_{11} & \mathsf{A}_{12} \\ \mathsf{A}_{21} & \mathsf{A}_{22} \end{array} \right]$$

Inductive proof: easy to bound error of computing S = A ,

 $S = A_{22} - L_{21}U_{12}$ and error of $S = L_{22}U_{22}$ is obtained by induction

For BLR, several specific difficulties arise:

- Need to bound error of low-rank product kernel: $C = \widetilde{A}\widetilde{B} = X_A \left(Y_A^T X_B\right) Y_B^T$
- Choice of norm matters: to obtain best constants possible, we need a consistent, unitarily invariant norm
- Global bound is obtained from blockwise bounds
 ⇒ we work with the Frobenius norm