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Abstract. Randomized projection methods have been shown to be very
efficient at computing low-rank approximations (LRA) of large matri-
ces. In this work, we investigate the design and development of such
methods capable of exploiting recent mixed precision accelerators like
GPUs equipped with tensor core units. We combine three new ideas to
exploit mixed precision arithmetic in randomized LRA. The first is to
perform the matrix multiplication with mixed precision fp16/fp32 ten-
sor cores. The second is to use CholeskyQR orthonormalization, which is
much faster on GPUs, while mitigating its numerical instability by using
fp64 arithmetic. The third is to use a recently proposed iterative refine-
ment method for LRA to improve the accuracy of the LRA by calling
it twice. We implement the proposed approach on various GPU archi-
tectures and analyze its performance and accuracy. We compare with
a standard randomized LRA entirely in fp32 arithmetic, which achieves
an average accuracy of order 10−4. Our results show that our approach
without refinement is up to 8× faster, with an average accuracy of order
10−2, which may be acceptable for some applications. Otherwise, we show
that using refinement significantly improves the accuracy to an average
of order 10−5, while remaining up to 2.2× faster than the standard fp32
randomized LRA. This work illustrates the convergence of approximate
computing techniques by combining low-rank approximations, random-
ization, mixed precision arithmetic, and GPU acceleration.
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1 Introduction

Random projection methods are simple and robust techniques for reducing the
dimensionality of data while preserving its structure [6]. These methods are
commonly used in machine learning and many other application domains for the
flexible trade-off they offer between accuracy and performance [13]. Moreover,
the matrix operations at the heart of these methods make them highly suitable
for exploiting accelerators such as GPUs [10].

This work is motivated by the recent technological advances that allow for
large speedups by using low precision arithmetic [7]. In particular, NVIDIA
GPUs are equipped with so-called tensor core units that can perform matrix
multiplication in mixed precision fp16/fp32 arithmetic up to 16× faster than
in standard fp32 arithmetic [3]. However, the ability to reliably and efficiently
exploit these low precision accelerators in application codes strongly depends on
both the ability of these codes to use matrix operations in low precision, and
their tolerance for rounding errors. In this paper we investigate to what extent
these very fast low precision units can be exploited for accelerating randomized
projection methods.

Specifically, we consider a randomized algorithm for computing low-rank ap-
proximations (LRA) based on random Gaussian sampling [6, Alg. 4.1]. Most of
the literature discussing randomized LRA methods and their implementation
on GPUs has focused on either exact arithmetic or fixed precision arithmetic,
one notable exception being the recent work of Ootomo and Yokota [11] that we
discuss in the next section. The main contribution of this article is the design of
a new mixed precision randomized LRA method, with a performance and accu-
racy analysis showing that the proposed method is able to exploit GPU tensor
cores reliably and efficiently.

Our method is based on three key ideas:

– The first idea consists in performing the matrix–matrix products (GEMM
kernel) in mixed precision arithmetic using the tensor cores, since these
operations represent the asymptotic bottleneck of the method. We compare
several GEMM variants depending on how the conversions between fp32 and
fp16 are handled, and identify one variant in particular that achieves the best
performance–accuracy trade-off.

– Then, having significantly accelerated the GEMM operations, we observe
that the orthonormalization step (QR kernel), despite requiring an asymp-
totically negligible number of flops, becomes the new performance bottle-
neck. Then the second idea is to switch the orthonormalization method from
the standard Householder QR to a CholeskyQR algorithm, which mainly re-
lies on GEMM and is therefore much more efficient on GPUs. We mitigate
the inherent instability of CholeskyQR by performing it in fp64 rather than
fp32 arithmetic.

– This leads to a mixed precision randomized LRA method employing three
precisions (fp16, fp32, and fp64). We show that this method can be up to
8× faster than the standard randomized LRA method in fixed precision fp32
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arithmetic and achieves an average accuracy of order 10−2, which may be
sufficient for some applications. Then the third idea is to use the iterative re-
finement method for LRA recently proposed by Baboulin et al. [2] to improve
the accuracy of the method. This method consists in repeating the random-
ized LRA a second time on an error matrix whose rank is twice the rank of
the original matrix. We show that with refinement, the accuracy of method
is significantly improves to an average of order 10−5, while still being up to
2.2× faster than the standard LRA method in fp32 arithmetic.

The paper is structured as follows. In section 2, we provide the necessary
technical background on randomized LRA methods and discuss related work.
In section 3, we describe the proposed mixed precision method and its imple-
mentation using GPU tensor cores. In section 4, we perform some experiments
to analyze the performance and accuracy of our method. We finally provide our
concluding remarks in section 5.

2 Background

2.1 Randomized LRA

Given a matrix A ∈ Rm×n, we want to approximate A as a low-rank product
XY T of smaller matrices X ∈ Rm×k and Y ∈ Rn×k, where the rank k is (much)
smaller than min(m,n). Such a low-rank approximation (LRA) is a powerful
tool to reduce the costs for storing A and performing computations with it.

Among the many possible methods to compute LRA, randomized ones have
encountered much success due to their ability to mainly rely on efficient matrix–
matrix products. In this article, we focus on randomized LRA based on Gaus-
sian sampling [6], as outlined in Algorithm 1. This method generates a random
Gaussian matrix Ω ∈ Rn×` and projects the matrix A onto it by computing the
matrix–matrix product B = AΩ (line 2). The dimension ` is equal to k + p,
where p is a small oversampling parameter (typically, p ≤ 10). Then, the matrix
B is orthonormalized via a QR factorization (line 3), yielding a matrix Q that
satisfies A ≈ QQTA. We can therefore obtain a rank-k approximation of A by
setting X and Y to the first k columns of Q and QTA, respectively (lines 5 and
6); the latter is computed via a second matrix–matrix product (line 4).

We note that many alternative variants of Algorithm 1 are possible; for exam-
ple the sampling may be performed differently (e.g., via a fast Fourier transform),
or we may compute specific types of LRA (e.g., SVD) by further decomposing
QTA. In addition, while Algorithm 1 is a fixed-rank algorithm, fixed-accuracy
variants have also been proposed [6], [9], in which an accuracy threshold ε is
prescribed and the rank kε is adaptively discovered by the algorithm. In this
article we focus on the simplest variant described here and refer to the extensive
survey [6] for further options.

Algorithm 1 relies on two computational kernels: matrix–matrix products
(GEMM kernel) and QR factorization (QR kernel). Importantly, the GEMM
kernel performs 4mn` flops whereas the QR kernel only performs cqrm`2 flops
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Algorithm 1: Randomized low-rank approximation.
Input : A ∈ Rm×n, the target rank k, the oversampling p.
Output : X ∈ Rm×k and Y ∈ Rn×k such that A ≈ XY T .

1 Ω ← randn(n, k + p)
2 B ← AΩ
3 Q← qr(B)

4 Y ← ATQ
5 X = Q( : , 1: k)
6 Y = Y ( : , 1: k)

(where cqr is a small constant that depends on the specific QR factorization
method that is used). Therefore, the performance of the overall method should
be guided by the GEMM kernel, which can be performed very efficiently on
modern computer architectures and especially on GPU accelerators.

2.2 Related work on mixed precision randomized LRA

It is natural to seek to exploit the high-speed low precision arithmetic available
on such GPU hardware to accelerate randomized LRA. However, the literature
on these methods has mainly focused on either exact arithmetic or fixed precision
arithmetic, where all the operations are performed in the same precision. To
the best of our knowledge, only three recent papers depart from an exact or
fixed arithmetic context to propose mixed precision variants of randomized LRA:
Connolly, Higham, and Pranesh [4], Ootomo and Yokota [11], and Baboulin et
al. [2].

Connolly, Higham, and Pranesh [4] propose a mixed precision variant of the
adaptive randomized SVD algorithm of Martinsson and Voronin [9]. This variant
relies on the observation that the norm of the matrix deflated with the current
LRA may rapidly decrease, which makes it possible to switch the computation
to lower precision. This observation is linked to the decay of the singular values
of the matrix, which is also exploited by Amestoy et al. [1]. In this article, we
do not consider adaptive (fixed-accuracy) variants of randomized LRA and do
not assume any decay of the singular values of the matrix.

Ootomo and Yokota [11] propose a mixed precision variant of fixed-rank
randomized SVD, which is very similar to Algorithm 1 (with simply one extra
step to compute the SVD of QTA). This variant relies on the observation that
the random Gaussian matrix Ω can be represented in fp16 arithmetic without
endangering the stability of the computation. As a result, the GEMM B =
AΩ can be efficiently performed using GPU tensor cores by computing B =
A1Ω + A2Ω, where A ≈ A1 + A2 and both A1 and A2 are stored in fp16.
This approach exploits multiword arithmetic to emulate fp32 arithmetic using
fp16 computations, see also Fasi et al. [5] for further details about multiword
arithmetic.
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Baboulin et al. [2] propose a general iterative refinement framework for com-
puting LRA that can be applied to any LRA method. We describe in Algorithm 2
the specialization of this iterative refinement method to the case where the LRA
is computed via Algorithm 1. The idea is to first compute a rank-k approximation
A ≈ X1Y

T
1 by applying Algorithm 2 in low precision (line 1), then computing

the error E = A − X1Y
T
1 in high precision (line 2), and finally reapplying Al-

gorithm 2 on E to compute a rank-2k approximation E ≈ X2Y
T
2 (line 3). This

is based on the observation that if A has rank approximately k, then E should
have at most rank approximately 2k. Hence, the final result of this method is a
rank-3k approximation XY T given as the concatenation of the factors [X1, X2]
and [Y1, Y2] (lines 4 and 5).

Algorithm 2: Randomized LRA with iterative refinement.
Input : A ∈ Rm×n, the target rank k, the oversampling p.
Output : X ∈ Rm×3k and Y ∈ Rn×3k such that A ≈ XY T .

1 [X1, Y1] = randLRA(A, k, p) // in low precision
2 E = A−X1Y

T
1 // in high precision

3 [X2, Y2] = randLRA(E, 2k, p) // in low precision
4 X = [X1, X2]
5 Y = [Y1, Y2]

Connolly et al. [4] and Baboulin et al. [2] are not concerned with the high
performance implementation of their methods and only provide MATLAB ex-
periments. Our method proposed in the next section and its GPU implemen-
tation should therefore be most directly compared to the method of Oootomo
and Yokota [11]. As explained, their method does not reduce the accuracy of
the LRA thanks to the emulation of fp32 arithmetic in the first GEMM and
the use of fp32 arithmetic in the remaining kernels (QR and second GEMM).
However, this limits the maximum speedup obtainable by this approach, since a
large part of the computations is still executed in fp32 arithmetic; Ootomo and
Yokota [11] thus report a speedup of 1.28× compared with randomized SVD en-
tirely in fp32 arithmetic. In contrast, our approach is more performance-driven:
we use tensor core arithmetic in both GEMM kernels (without emulating fp32
arithmetic), obtaining speedups of up to 8× at the price of a lesser accuracy; we
then implement the iterative refinement method of Baboulin et al. [2] on GPUs
to improve the accuracy while retaining speedups of up to 2.2×.

3 Mixed precision randomized LRA on GPU tensor cores

In this section, we propose a mixed precision variant of randLRA, the randomized
LRA method outlined in Algorithm 1, and describe its GPU implementation. As
mentioned, randLRA relies primarily on two kernels: the matrix–matrix product
(GEMM kernel) and the QR factorization (QR kernel).
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3.1 GEMM kernel

The GEMM kernel C = AB can be executed up to 16× faster using GPU
tensor core units. However, these units require the input matrices A and B to
be represented in fp16 which necessitates a conversion when they are originally
stored in fp32. We can distinguish several variants depending on which matrices
are converted (A and B only, or also C), and on whether these conversions are
handled explicitly or implicitly. Indeed, a first option is to handle conversions
implicitly by keeping the matrices in the input fp32 format and letting cuBLAS
itself perform the conversions to fp16; the advantage of this approach lies in the
simplicity of the code and the efficiency of the conversion which is handled by
the optimized library. In the explicit approach, on the other hand, we convert the
input matrices to fp16 ourselves before calling the cuBLAS tensor core GEMM;
even though our own conversion routine might be less efficient, the advantage of
this approach is that matrices that were already converted to fp16 can be reused
in other calls to tensor core GEMM without the need for further conversions
(note that this however requires extra storage to store the explicitly converted
matrix).

In summary, we evaluate three variants of the GEMM kernel. We denote these
variants as tgemm (to indicate the use of tensor cores) and use the subscripts
“32|32”, “16|16”, “16|32” to indicate the precision type of the input (A and B)
and output (C). Note that if the input type is fp32, an implicit conversion to
fp16 is performed, whereas, if the output type is fp32, no conversion to fp16 is
required because tensor cores have the ability to accumulate directly in fp32 [3].

– tgemm32|32: A, B, C are all stored in fp32; the GEMM implicitly converts A
and B to fp16 during the computation but keeps C in fp32.

– tgemm16|16: A, B, C are all explicitly converted from fp32 to fp16 before to
the computation of the GEMM, which does not need any conversions.

– tgemm16|32: A and B are explicitly converted to fp16 but C is kept in fp32;
the GEMM accumulates the computation in C in fp32 arithmetic and thus
requires no further conversions.

We will compare the performance–accuracy tradeoff achieved by each of these
three variants in our benchmarks in the next section.

3.2 QR kernel

The second main kernel of randLRA is the QR factorization kernel. Several meth-
ods exist that achieve different tradeoffs between efficiency and stability, for
example, classical or modified Gram–Schmidt, or Householder QR. The most
stable approach is the Householder QR factorization, which is implemented in
GPU libraries such as MAGMA and CuSolver. Unfortunately, Householder QR
is also inefficient on GPUs due to its limited parallelism, and current imple-
mentations do not exploit tensor core arithmetic. As a result, in the context of
randLRA on GPU tensor cores, even though the GEMM kernel requires in theory
an asymptotically dominant number of flops, in practice the QR kernel becomes
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the performance bottleneck. This is because the GEMM kernel strongly benefits
from GPUs and especially mixed precision tensor core units, whereas the QR
kernel is less efficient on GPUs and cannot exploit tensor core units.

Motivated by these observations, we propose to use instead the Cholesky
QR factorization, a much faster variant of QR which mainly relies on matrix–
matrix products and can thus exploit GPUs much more efficiently. Cholesky
QR orthononormalizes a tall–skinny matrix A by computing the Gram matrix
B = ATA, computing its Cholesky factorization RTR = B, and obtaining the
orthonormal factor by the triangular solve Q = AR−1. Unfortunately, the con-
dition number of the Gram matrix κ(B) = κ(A)2 is large even for moderately
ill-conditioned A, which makes Cholesky QR unstable due to the possible break-
down of the Cholesky factorization of B if B is singular in the working precision.

In fp32 arithmetic such breakdowns are expected to occur when κ(A) & 104.
In order to address this issue, we switched the Cholesky QR factorization from
fp32 to fp64 arithmetic; in this case, breakdowns can only occur when κ(A) &
108. Since in the context of randLRA the input matrix is stored in fp32 arithmetic,
breakdowns should thus never occur with Cholesky QR in fp64 arithmetic. The
resulting algorithm is outlined in Algorithm 3. We note that the final triangular
solution step (line 4) could be performed in fp32 without affecting stability [12];
this is an improvement that we will investigate in future work.

Algorithm 3: Cholesky QR kernel implementation on GPU.
Input : A32 ∈ Rm×n.
Output : Orthonormal factor Q32 ∈ Rm×n of A32.

1 A64 = fp64(A32)

2 B64 = AT
64A64

3 R64 = chol(B64)

4 Q64 = A64R
−1
64

5 Q32 = fp32(Q64)

3.3 Randomized LRA
Having discussed the implementation of the GEMM and QR kernels on GPUs,
we can now present the implementation of randLRA, outlined in Algorithm 4.

Depending on the GEMM variant used, randLRA takes different forms; in
Algorithm 4, we describe the case where tgemm16|32 is used, which allows for
explicitly converting A to fp16 only once (line 3) and reusing it in both GEMM
calls (lines 3 and 6). The QR kernel (line 4) can be either standard Householder
QR in fp32 arithmetic, or the mixed precision Cholesky QR kernel presented
previously (Algorithm 3).

Finally, we describe in Algorithm 5 our implementation of the iterative re-
finement approach of Baboulin et al. [2] on GPU tensor cores, using Algorithm 4
as the low precision randLRA method.
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Algorithm 4: Mixed precision randLRA on GPU tensor cores.
Input : A32 ∈ Rm×n, the target rank k, the oversampling p.
Output : X16 ∈ Rm×k and Y16 ∈ Rn×k such that A32 ≈ X16Y

T
16.

1 Ω16 = randn(n, k + p) // in fp16
2 A16 = fp16(A32)
3 B32 = tgemm16|32(A16, Ω16) // with fp16/fp32 tensor cores
4 Q32 = qr(B32)
5 Q16 = fp16(Q32)

6 Y32 = tgemm16|32(A
T
16, Q16) // with fp16/fp32 tensor cores

7 X16 = fp16(Q32( : , 1: k))
8 Y16 = fp16(Y32( : , 1: k))

Algorithm 5: Mixed precision randLRA on GPU tensor cores, with
iterative refinement.

Input : A32 ∈ Rm×n, the target rank k, the oversampling p.
Output : X32 ∈ Rm×k and Y32 ∈ Rn×k such that A32 ≈ X32Y

T
32.

1 [X16, Y16] = randLRA(A32, k, p)

2 E32 = A32 − tgemm16|32(X16, Y
T
16)

3 [X ′
16, Y

′
16] = randLRA(E32, 2k, p)

4 X16 = [X16, X
′
16]

5 Y16 = [Y16, Y
′
16]

4 Experiments

4.1 Experimental setting

All experiments have been carried out on the Jean Zay supercomputer located at
IDRIS7. Each node is equipped with 2 Intel Cascade Lake 6240R processors and
8 NVIDIA A100 PCIe 40 GB GPUs, for a total memory of 768 GB. Although
each node has several GPUs, we use a single GPU for these experiments. On
both architectures, we use CUDA 12.0.0. The CUDA package provides access to
the libraries cuBLAS, cuSOLVER and cuRAND.

The matrices used in our experiments are randomly generated. Given the
specified rank k, we generate two random Gaussian matrices X ∈ Rm×k and Y ∈
Rn×k and define A = XY T . In all experiments we do not use any oversampling
(p = 0).

We measure the performance of our algorithms in TFLOPS (number of Tera
floating-point operations per second), that is,

Performance =
Nflops

1012 · time
.

To measure the “effective” performance of the algorithms, we use the same ref-
erence number of flops Nflops for all of them, regardless of their actual number
7 http://www.idris.fr/eng/jean-zay/index.html
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of flops. Specifically we use

Nflops = 4mnk + 2nk2 − 2

3
k3 +O(mn),

which corresponds to the number of flops of the baseline version, which performs
only two GEMMs and one QR factorization.

4.2 Performance and accuracy of kernels

In this section, we evaluate the performance of the building blocks of our randLRA
algorithm: the GEMM and QR kernels.

GEMM kernel We begin by comparing in Figure 1a the performance of the
standard GEMM in fp32 arithmetic (sgemm) with the three tgemm variants that
use the tensor cores described previously. The figure shows the performance for
computing C = AB where A ∈ Rm×n and B ∈ Rn×k, where m = n = 35840 are
fixed and where k varies from 8 to 1024. (This shape of matrices corresponds to
the two GEMMs performed by randLRA).

For the tgemm16|16 and tgemm16|32 variants, we plot their performance both
with and without including the time taken by the explicit conversion of the ma-
trices to fp16. For the tgemm32|32 the implicit conversion is always performed and
thus always included. The figure shows that, as expected, the implicit conversion
performed by tgemm32|32 is more efficient than the explicit one performed by our
own implementation, so that this variant is faster than tgemm16|16 and tgemm16|32
if we include the time for explicit conversion. Interestingly, the relative cost of
the conversion decreases as the dimension k increases, so that the performance
of tgemm16|16 and tgemm16|32 including the conversion eventually becomes com-
parable to that of tgemm32|32 for a sufficiently large k. More importantly, if we
do need to perform this conversion (because the input matrix is already stored
in fp16), then the tgemm16|16 and tgemm16|32 variants become significantly faster
than the tgemm32|32 one.

We will investigate the difference in accuracy of these three variants directly
in the context of their use in randLRA.

QR kernel We now turn to the performance of the QR kernel, reported in
Figure 1b. The figure compares the performance for orthonormalizing a matrix
B ∈ Rn×k where n = 35840 is fixed and where k varies from 8 to 1024. (Again,
this corresponds to the shape of matrix arising in the QR kernel in randLRA).

We compare the classical Householder QR algorithm implemented in cu-
SOLVER using fp32 arithmetic (sgeqrf) with the Cholesky QR algorithm, using
either fp32 or fp64 arithmetic (scholQR and dcholQR, the latter corresponding
to Algorithm 3). At the time of these experiments, the only GPU implementa-
tion of Cholesky QR that we found is the one available in the MAGMA library.
However, we found MAGMA’s implementation not to be efficient for the target
sizes in our context and therefore we made our own implementation.
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Fig. 1. Performance of the GEMM and QR kernels.

Regarding the risk of Cholesky breaking down, in experiments with randLRA
using Cholesky QR in fp32 (not shown), we found a significant fraction (about
14%) of breakdowns, which disappeared by using fp64 arithmetic instead. In
comparison, Householder QR is robust (even in fp32 arithmetic), but extremely
slow, as expected. Overall, our implementation of Cholesky QR in fp64 can be
more than 20× faster than Householder QR in fp32.

4.3 Mixed precision randomized LRA

We now evaluate the performance and accuracy of randomized LRA, without
iterative refinement to begin. We compare eight different variants. Two of them
correspond to Algorithm 1 with the GEMM in standard fp32 arithmetic (sgemm),
and with either fp32 Householder QR (sgeqrf) or fp64 Cholesky QR (dcholQR).
The other six variants correspond to Algorithm 4, using one of the three tgemm
variants for GEMM and again either fp32 Householder QR or fp64 Cholesky
QR. Figure 2a plots the performance of these eight variants, and Figure 2b plots
their relative accuracy, measured as ‖A − XY T ‖/‖A‖, where ‖ · ‖ denotes the
Frobenius norm.

As a general preliminary observation, note that the use of Householder or
Cholesky QR does not impact the accuracy for any of the variants (and so the
latter is preferable since it is faster).

Let us first analyze the baseline variant using sgemm (fp32 arithmetic without
tensor cores). This is the most accurate variant, with an average error of order
10−4. However, this is also the slowest variant since it does not benefit from
tensor cores: its performance is almost constant as soon as k ≥ 256 and is
limited to only 14 TFLOPS with Householder QR. The use of Cholesky QR
slightly improves its performance but still remains limited to only 17 TFLOPS.

Then, let us now analyze the variants using tgemm (mixed precision GEMMs
with tensor cores). Regardless of the choice of tgemm variant, using Householder
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Fig. 2. Performance and accuracy of randLRA without refinement. (In (b), tgemm32|32
and tgemm16|32 completely overlap both for Householder QR and Cholesky QR).

QR limits the attainable performance to at best 50 TFLOPS. In this case, the
GEMM performs well, but performance is limited by the performance of House-
holder QR, which is extremely slow as previously analyzed, and thus becomes
the bottleneck, even though it requires an asymptotically negligible number of
flops compared with GEMM. Therefore, for these tgemm variants, using Cholesky
QR significantly improves performance by moving the bottleneck back to the
GEMM.

Let us finally compare the three different tgemm variants to determine which
is preferable. We can see in Figure 2b that tgemm16|16 is much less accurate than
both tgemm32|32 and tgemm16|32, with an average error of order 10−1 instead of
10−2. This comes from C being stored in fp16: indeed, even though the tensor
cores accumulate the operations in fp32 arithmetic, writing them in a matrix C
stored in fp16 generates fp16 rounding errors which lead to a significant loss of
accuracy. This effect has been well characterized in the literature, see in partic-
ular Blanchard et al. [3] for an error analysis and Lopez and Mary [8] for the
consequence of this observation on LU factorization.

The choice of GEMM variant therefore comes down to which of tgemm32|32
and tgemm16|32 is faster. As Figure 2a shows, this depends on the rank k. When
k is small the relative cost of the conversion with respect to the computation is
large and so tgemm32|32 is faster than tgemm16|32. As k increases the conversion
becomes less and less costly with respect to the computation so eventually (here
for k & 256) tgemm16|32 becomes faster, reaching up to 140 TFLOPS for large
values of k. Therefore, randLRA and tgemm16|32 is up to 8× faster than randLRA
with sgemm, at the price of a lesser accuracy in this case without iterative refine-
ment.
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4.4 Iterative refinement

Finally, we conclude by evaluating the performance and accuracy of randLRA
using iterative refinement (IR). We compare the same eight variants as in the
previous section, except that the variants that exploit mixed precision tensor
cores (tgemm) now use IR (Algorithm 5); the two variants using sgemm do not
use IR, since their accuracy is already satisfactory; we keep them as a reference
point. Figure 3a plots the performance and Figure 3b plots the relative accuracy.

In terms of accuracy, Figure 3b confirms that the use of IR significantly
improves the accuracy of all mixed precision variants. Specifically, the variants
using tgemm16|16 achieve an average error of order 10−2 instead of 10−1 and, more
interestingly, the variants using tgemm32|32 or tgemm16|32 achieve an average error
of order 10−5 instead of 10−2. Thus, IR makes randLRA with these variants of
tgemm at least as accurate, and in many cases even more accurate, than the
standard randLRA with sgemm.

It remains to evaluate the impact of IR on performance. Note that the use
of IR increases the number of flops by about a factor 4 (two GEMMs with
rank k and three GEMMs with rank 2k, instead of two GEMMs of rank k).
For large values of k (for which the maximum performance is attained), the
use of IR makes randLRA with tgemm32|32 about 3.8× slower and randLRA with
either tgemm16|16 or tgemm16|32 about 3.5× slower. The fact that the relative
performance of tgemm32|32 compared with tgemm16|16 and tgemm16|32 decreases
when IR is used is explained by the fact that the relative weight of the conversions
decreases with IR. In any case, the important conclusion is that the tgemm16|32
variant with IR remains much faster than the variant with sgemm and no IR,
with a speedup of up to a factor 2.2×. We therefore have obtained a method
that is both faster and more accurate than the fp32 randLRA baseline.
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Fig. 3. Performance and accuracy of randLRA with refinement. (In (b), tgemm32|32 and
tgemm16|32 completely overlap both for Householder QR and Cholesky QR).
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5 Conclusion

We have proposed a new randomized low-rank approximation (LRA) method
that efficiently and reliably exploits mixed precision GPUs. Our method, out-
lined in Algorithm 5, combines three key ideas. First, we use the GPU tensor core
units to accelerate the matrix–matrix products (GEMM kernel) while minimiz-
ing the accuracy loss by using mixed precision arithmetic (matrices are converted
to fp16 but computations are accumulated in fp32). Second, we replace the stan-
dard Householder QR by Cholesky QR, which is much more efficient on GPU,
and we mitigate its inherent instability by performing it in fp64 arithmetic.
Third and lastly, we implement the recently proposed iterative refinement ap-
proach for LRA [2] to recover full fp32 accuracy. Overall, our method achieves an
accuracy that is at least as good and in many cases even better than a standard
randomized LRA in fp32 arithmetic, while being up to 2.2× faster.

Our work gives rise to several perspectives. The first is to enhance the
Cholesky QR algorithm using a mixed precision approach [12], which may in
particular exploit the mixed precision tensor core units for the triangular solve
while preserving the numerical stability. A second perspective concerns the de-
sign and implementation of efficient recompression methods to round the output
matrix obtained by iterative refinement, which is of rank 3k, back to the optimal
rank k.

Finally our work illustrates the convergence of approximate computing tech-
niques by combining low-rank approximations, randomization, mixed precision
arithmetic, and GPU acceleration. Our results not only highlight the effective-
ness of using mixed precision GPUs for accelerating randomized low-rank ap-
proximation while preserving a satisfying accuracy, but also pave the way toward
exploring other similar GPU-based approximate methods in linear algebra and
beyond.
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