
MIXED PRECISION ITERATIVE REFINEMENT FOR
LOW-RANK MATRIX AND TENSOR APPROXIMATIONS∗

MARC BABOULIN† , OGUZ KAYA† , THEO MARY‡ , AND MATTHIEU ROBEYNS† ,§

Abstract. We present a new mixed precision algorithm to compute low-rank matrix and ten-
sor approximations, a fundamental task in numerous applications in scientific computing and data
analysis. Our algorithm is reminiscent of the iterative refinement framework for linear systems: we
first compute a low-rank approximation in low precision and then refine its accuracy by iteratively
updating it. We carry out an error analysis of our algorithm which proves that we can reach a high
accuracy while performing most of the operations in low precision. We measure the computational
cost of the algorithm, which depends on the numerical rank of the input (matrix or tensor) as well
as the speed ratio between low and high precision arithmetic. We identify two situations where our
method has a strong potential : when the hardware provides fast low precision matrix multiply–
accumulate units, and when the numerical rank of the input is small at low accuracy levels. We
confirm experimentally the potential of our algorithm for computing various low-rank matrix and
tensor decompositions such as SVD, QR, Tucker, hierarchical Tucker, and tensor-train.

Key words. Matrix and tensor computations, low-rank approximations, mixed precision algo-
rithms, iterative refinement, randomized SVD, tensor decompositions.

AMS subject classifications. 65F55, 65G50, 65Y20, 15A69

1. Introduction. Low-rank approximations (LRA) are a powerful tool used in
many scientific applications to reduce the dimension of large scale data. For example,
an n×n matrix X may be approximated by a low-rank product UV T of n×r matrices
U and V , reducing the storage cost from O(n2) to O(nr). This storage cost is even
more critical for tensors [20, 6, 14], the higher dimensional generalization of matrices
: a dth order tensor X requires storage in O(nd) that is exponential in the number of
dimensions d. This curse of dimensionality can be tackled via LRA by decomposing
the full tensor as a product of tensors of lower order and lower rank. Various such
decompositions exist, such as the Tucker [28, 9], the tensor-train (TT) [27], and the
hierarchical Tucker (HT) [15, 13] formats.

However, computing matrix or tensor low-rank decompositions at a controlled
approximation accuracy ε is computationally expensive; it represents the bottleneck
of many LRA-based applications. Therefore, developing high performance algorithms
for computing LRA is an important problem that has been the object of many studies;
see, for instance, these surveys on matrices [19] and tensors [20, 14, 6].

Our work is specifically motivated by the recent and rapid emergence of low
precision arithmetics, in particular half precision floating-point arithmetics such as
the IEEE fp16 and bfloat16 formats. These low precision arithmetics provide great
computational benefits, in terms of storage, speed, and energy [17]. On modern
hardware, and in particular on Graphics Processing Unit (GPU) accelerators, low
precision arithmetics can be orders of magnitude faster than the standard single (fp32)
or double (fp64) precision arithmetics. However, using low precision also degrades
the accuracy of the computations; for example half precision arithmetics provide at
best between 3 and 4 digits of accuracy, depending on the format. This motivates

∗Version of June 2, 2023.
†University Paris-Saclay, CNRS, LISN, Gif-sur-Yvette, France,(marc.baboulin,oguz.kaya,matthieu.robeyns@universite-

paris-saclay.fr)
‡Sorbonne Université, CNRS, LIP6, Paris, France, (theo.mary@lip6.fr)
§Corresponding author.

1

mailto:marc.baboulin,oguz.kaya,matthieu.robeyns@universite-paris-saclay.fr
mailto:marc.baboulin,oguz.kaya,matthieu.robeyns@universite-paris-saclay.fr
mailto:theo.mary@lip6.fr

the need for mixed precision algorithms, which combine multiple precision formats
with the goal of achieving the high performance of the low precision while preserving
the high accuracy of the higher precision. The emergence of low precision on modern
hardware has generated much recent interest in mixed precision algorithms, with many
successful examples in numerical linear algebra; see the survey [17] for an overview of
this field.

In this paper, we seek to develop mixed precision algorithms for computing LRA.
Contrary to other linear algebra routines such as the solution of linear systems, there
has been relatively little work on designing mixed (or even low) precision algorithms
for LRA. Amestoy et al. [2] describe a mixed precision matrix LRA that partitions the
low-rank factors into several block columns stored in different precisions depending
on the singular values of the matrix; this approach can make use of low precisions
for matrices with rapidly decaying singular values. A similar approach is proposed
by Ooi et al. [23] for H-matrices. Connolly et al. [7] perform the rounding error
analysis of the randomized singular value decomposition (SVD) for matrix LRA, in
particular for the adaptive algorithm of Martinsson and Voronin [22] which builds an
LRA by increasing its rank until the prescribed accuracy is reached. The analysis in
[7] reveals that lower precision can be used when the norm of the approximation error
becomes small enough; this once more corresponds to the case where the matrix has
rapidly decaying singular values. Finally, a recent paper of Ootomo and Yokota [25]
also proposes a mixed precision randomized SVD; their approach stores the random
projection matrix in half precision while keeping the input matrix in single precision,
and obtains speedup by emulating single precision computations with GPU tensor
cores [11, 24]. There have also been very few attempts to develop mixed precision
LRA for tensors. We can mention a recent work by Yang et al. [30] that proposes an
iterative CP decomposition using mixed precision stochastic gradient descent. In a
context different from LRA, the recent work of Agullo et al. [1] is worth mentioning:
they consider the solution of linear systems Ax = b via GMRES, where A can be
approximated under tensor format [8]. This approach can then benefit from a mixed
precision implementation of GMRES.

In this paper, we propose a new method for computing LRA in mixed precision
arithmetic. Our approach is applicable to basically any LRA algorithm, involving
either matrices or tensors. It is reminiscent of the iterative refinement framework
used for solving linear systems: the idea is to first compute an LRA in low precision,
then evaluate the error (or residual) from this first LRA, and re-apply the same LRA
kernel to this error term to obtain a correction term that is used to refine the accuracy
of the LRA. This can be repeated iteratively to reach any level of desired accuracy.
The refined LRA is obtained as the sum of the original low precision LRA and the
correction term, and is thus of larger yet still of low-rank. In order to contain the
rank growth and maintain the optimal rank throughout the iterations, our method
employs a “recompression” strategy that is performed in high precision but whose
cost stays asymptotically smaller than that of LRA.

We carry out an error analysis of our method which proves that it can reach a
high accuracy while performing most of the operations in low precision. In particular,
we show that the precision used for the LRA kernel—which is the computational
bottleneck of the whole method—only affects the convergence speed of the process,
but not its attainable accuracy. In order to assess under which conditions we can
expect our method to be beneficial, we perform a complexity analysis that measures
the cost of the method as a function of the numerical rank of the input as well as the
speed ratio between the low and high precision arithmetic. We identify two situations

2

where our method has a strong potential. The first is when the hardware provides
fast low precision matrix multiply–accumulate units, also called block FMA units [4],
which allow for computing the low precision LRA at very high speed. The second is
when the numerical rank of the input is small at low accuracy levels, which means
that the singular values of the matrix or tensor are rapidly decaying; in this case, the
first iterations of our method becomes inexpensive.

We apply our method to various low-rank matrix and tensor decompositions :
SVD, QR, Tucker, HT, and TT. We perform some MATLAB experiments to confirm
that our method is able to compute an LRA at any desired level of accuracy, while
mostly using the low precision arithmetic.

The rest of this paper is organized as follows. In section 2, we describe our
main algorithm of iterative refinement for LRA and provide the corresponding error
and complexity analysis. Then we apply this method to various LRA algorithms for
matrices and tensors in section 3 and section 4, respectively. We validate our method
experimentally in section 5. Finally, we provide concluding remarks in section 6.

1.1. Notations. We denote as X the object of interest, a matrix or a tensor,
and as F its low-rank factors that we seek to compute. If X ∈ Rm×n is a matrix, then
F = UV T is usually implicitly represented by the product of two matrices U ∈ Rm×r,
V ∈ Rn×r of smaller dimensions, where r is the rank of F . Similarly, if X ∈ Rn1×...×nd

is a tensor of order d, its low-rank factors F are represented using a number of matrices
and/or tensors of smaller order; the precise expression of F depends on the chosen
format. In particular, in this article we will consider three different low-rank tensor
decompositions:

• the Tucker format [9], which uses d matrices U (1) ∈ Rn1×r1 , . . ., U (d) ∈
Rnd×rd , where ri ≤ ni, and a dth-order core tensor G ∈ Rr1×...×rd ;

• the TT format [27], which uses d 3rd-order tensors U (1) ∈ Rr0×n1×r1 , U (2) ∈
Rr1×n2×r2 , . . ., U (d) ∈ Rrd−1×nd×rd , where r0 = rd = 1;

• the HT format [15, 13], which recursively applies the Tucker format to the
core tensor G to obtain a binary tree of tensors. Leaf nodes of the tree are
matrices U (1) ∈ Rn1×rd−1 , . . ., U (d) ∈ Rnd×r2d−2 and the rest are 3rd-order
tensors G(1) ∈ Rr0×r1×r2 , . . . , G(d−1) ∈ Rrd×r2d−3×r2d−2 , where G(1) is the
root and r0 = 1.

Note that our main iterative refinement method described in the next section does not
require any specific knowledge or property of the tensor decomposition, and simply
denotes its low-rank factors as F .

To control the accuracy of the LRA, we will distinguish two types of parameters,
denoted as ε and u. The truncation threshold ε controls the low-rank truncation error
and thus the accuracy of the LRA in exact arithmetic. The unit roundoff u controls
the rounding errors and thus the additional loss of accuracy incurred by the use of
finite precision arithmetic. Actually, in our iterative refinement method, we will have
four parameters ε, u, ε`, and u`, where ε` and u` denote the truncation threshold and
unit roundoff used by the low precision LRA, whereas ε and u denote the truncation
threshold and unit roundoff used by the rest of the operations performed in high
precision, and correspond to the final target accuracy.

For a matrix X, we denote by Rank(X, ε) the numerical rank of X at accuracy
ε, which is the smallest integer rε such that there exists low-rank factors F of rank
rε satisfying a relative accuracy ε, that is, ‖X − F‖ ≤ ε‖X‖ for a given choice of
norm. This definition of the numerical rank extends to the Tucker, TT, and HT
representations of tensors by defining Rank(X, ε) as the vector of length d̄ whose

3

coefficients correspond to the “inner” dimensions connecting the underlying matrices
and/or tensors in the decomposition. The length d̄ depends on both d and the type
of decomposition:

d̄ =

d (Tucker)
d− 1 (TT)
2d− 2 (HT)

. (1.1)

Technically, the rank vector is determined by a vector of error tolerances εi, i = 1: d̄,
whose sum yields the target accuracy ε =

∑d̄
i=1 εi. In practice, the truncation error

is uniformly distributed by setting εi = ε/d̄ [27, 29, 13].

2. Iterative refinement for low-rank approximation. In this section, we
propose a mixed precision algorithm to compute LRA at high accuracy while per-
forming most of the computations in low precision.

We consider the problem of computing low-rank factors F of a matrix or tensor
X satisfying a relative accuracy ε, that is, ‖X − F‖ ≤ ε‖X‖. In finite precision
arithmetic, we must carefully select the precision in order to achieve this accuracy. In a
uniform precision context (where we perform all computations in the same precision),
we must use a precision whose unit roundoff u is safely smaller than ε, that is, u = θε,
with θ ≤ 1 some parameter. Indeed, we may then expect the computed factors F̂ to
satisfy

‖X − F̂‖ ≤ (ε+ cu)‖X‖ = (1 + cθ)ε‖X‖
for some constant c, where the term cθ accounts for the effect of rounding errors and
can be made as small as needed by decreasing θ (decreasing u, that is, increasing the
precision).

For applications requiring relatively high accuracy (small values of ε), this uniform
precision approach therefore cannot make use of lower precisions. This motivates
us to propose a mixed precision method, outlined below, which uses low precision
to compute a first approximate set of factors F0, and then refines them into more
accurate factors F1 as follows.

1. Compute low-rank factors F0 of X at low accuracy ε` and in low precision
u` = θε`.

2. Compute the error E = X − F0 in high precision u.
3. Compute low-rank factors FE of E at low accuracy ε` and in low precision

u` = θε`.
4. Update the low-rank factors of X to F1 = F0 + FE in high precision u.

This approach is based on the observation that, while the first factors F0 will
achieve a low accuracy ε` relative to ‖X‖,

‖X − F0‖ ≤ ε`‖X‖,

the factors FE of the error E will achieve a low accuracy ε` relative to ‖E‖,

‖E − FE‖ ≤ ε`‖E‖.

Neglecting for now the effect of rounding errors, we can expect to have ‖E‖ ≈ ε`‖X‖,
and therefore the combined factors F0 + FE will satisfy an accuracy of about ε2` :

‖X − F1‖ . ε2`‖X‖.

This idea is reminiscent of the iterative refinement for linear systems Ax = b,
where step 1 corresponds to computing an initial solution x0, step 2 corresponds to

4

computing the residual r = b−Ax0, and step 3 corresponds to solving another linear
system Ad = r for a correction term d, which is used to update x1 = x0 + d (our step
4). We therefore baptize this approach “iterative refinement” for LRA.

One of the crucial insights that makes this method effective is that the error E
has a low numerical rank whenever X has one too, since it is the sum of X and F0,
which is low-rank by construction. To be specific, we will prove in subsection 2.2
that Rank(E, ε`) is at most 2Rank(X, ε2`) and, for the same reason, the rank of
the refined factors F1 is bounded by 3Rank(X, ε2`). The factors F1 can then be
cheaply recompressed into factors of optimal rank Rank(X, ε2`) in high precision u
by exploiting their (suboptimal) low-rank structure.

If accuracy higher than ε2` is needed, we can apply the method again on F1 to ob-
tain an accuracy of ε3` , and so on; we obtain Algorithm 2.1, which repeats this process
until the desired accuracy is achieved. Algorithm 2.1 is described within a general
iterative refinement framework that uses an arbitrary LRA algorithm: Lra(X, ε) re-
turns low-rank factors F of X at accuracy ε. We also require a Decompress kernel
which transforms low-rank factors F back to a full-size object, and a Recompress
kernel which takes low-rank factors F and ε as input, and computes their optimal
LRA at accuracy ε.

Algorithm 2.1 Iterative refinement for LRA.
Input: X, the matrix or tensor of interest;

ε, the desired relative accuracy for the approximation;
nit, the maximum number of iterations;
Lra, a low-rank approximation algorithm;
Decompress, Recompress: decompression and recompression algorithms.

Output: F , the low-rank factors X.
1: Compute F = Lra(X, ε`) in precision u`.
2: for i = 1 to nit do
3: Compute E = X −Decompress(F) in precision u.
4: Compute α = ‖E‖ in precision u.
5: If α ≤ ε‖X‖, exit.
6: Scale E ← α−1E in precision u.
7: Compute FE = Lra(E, ε`) in precision u`.
8: Scale back FE ← αFE in precision u.
9: Compute F = Recompress(F + FE , ε) in precision u.

10: end for

Algorithm 2.1 incorporates two additional steps to make the method effective.
First, the error E is scaled by the inverse of its norm (Line 6) before computing its
low-rank factors FE , and then scaled back after (Line 8). This is done to prevent the
elements of E from underflowing when converted to the lower precision, in the case
where the arithmetic uses not only a reduced number of bits in the significand but also
in the exponent, such as is the case for the IEEE half precision fp16 arithmetic. Sec-
ond, the factors F are recompressed (Line 9) to their optimal low-rank representation
to avoid the rank growing out of control during the iterations. Indeed, as mentioned
above, the rank of F is bounded by 3Rank(X, ε2`) after one iteration. Therefore, in
absence of recompression, the rank would grow as 3k Rank(X, ε2`) after k iterations,
and would quickly make the method unaffordable. Fortunately, this recompression
can be performed inexpensively for most LRA algorithms of interest.

5

Algorithm 2.1 has four parameters that control its accuracy: ε, ε`, u, and u`.
• ε indicates the target accuracy for the final factors, and is prescribed by the

user as input to Algorithm 2.1.
• u is the unit roundoff of the high precision, which should be taken to be the

lowest possible such that u is still safely smaller than ε: u = θε, θ ≤ 1.
• u` is the unit roundoff of the low precision, which is used to perform the most

expensive parts of the computation, the calls to Lra. Its choice depends
on both the available arithmetics on the target hardware, and the target
accuracy ε. Indeed, lowering the precision makes each iteration faster but
requires more of them.

• Finally, ε` is the tolerance used by the Lra kernel; since Lra is performed
in precision u`, ε` should be set such that u` is safely smaller than ε`, that
is, ε` = u`/θ`, θ` ≤ 1. We note that this is necessary because using an ε` too
close to u` prevents most Lra algorithms to reliably detect the correct rank,
due to the noise introduced by rounding errors.

In the rest of this section, we first perform an error analysis to determine the
attainable accuracy and convergence rate of Algorithm 2.1. We then perform a com-
plexity analysis to determine under which conditions the algorithm can be expected to
be faster than a standard uniform precision Lra performed entirely in high precision
u.

2.1. Error analysis. In order to carry out the error analysis of Algorithm 2.1,
we will use the standard model of floating-point arithmetic [16, sect. 2.2]. In addition,
we also need to make the following three assumptions on the numerical behavior of
the Lra, Decompress, and Recompress kernels. First, we assume that computing
F = Lra(X, ε`) in precision u` yields computed factors F̂ satisfying

‖X − F̂‖ ≤ (ε` + b1u`)‖X‖ = (1 + b1θ`)ε`‖X‖. (2.1)

Second, we assume that computing F = Decompress(F) in precision u yields com-
puted factors F̂ satisfying

‖F − F̂‖ ≤ b2u‖F‖ = b2θε‖F‖. (2.2)

Third, we assume that computing F = Recompress(F, ε) in precision u yields com-
puted factors F̂ satisfying

‖F − F̂‖ ≤ (ε+ b3u)‖F‖ = (1 + b3θ)ε‖F‖. (2.3)

For simplicity, we ignore any rounding errors associated with the scaling by α = ‖E‖,
which are negligible and can in fact be prevented by rounding α to the nearest power
of two (in binary floating-point arithmetic).

We are now ready to prove the following result.
Theorem 2.1. If Algorithm 2.1 is applied to X with Lra, Decompress, and

Recompress kernels satisfying (2.1)–(2.3), then after k iterations, the computed
factors F̂ satisfy

‖X − F̂‖ ≤ (φk+1 + ξ +O(ε`ε))‖X‖, (2.4)
with φ = (1 + b1θ`)ε` + (b2 + 1)θε and ξ =

(
1 + (b2 + b3 + 2)θ

)
ε.

Proof. Defining F̂i as the computed factors after i iterations, our goal is to obtain
a bound of the form

‖X − F̂i+1‖ ≤ φ‖X − F̂i‖+ ξ‖X‖, φ < 1,

6

which will allow us to conclude that the error contracts by a factor φ at each iteration,
until it converges to its maximum attainable accuracy ξ.

Given F̂i, the first step is to decompress it and compute E at Line 3; by (2.2),
the computed Ê satisfies

‖X − F̂i − Ê‖ ≤ θε
(
(b2 + 1)‖F̂i‖+ ‖X‖

)
, (2.5)

with an extra term θε(‖F̂i‖+ ‖X‖) on the right-hand side coming from the rounding
error incurred by the subtraction. Using the triangle inequality ‖F̂i‖ ≤ ‖X − F̂i‖ +
‖X‖, we can rearrange (2.5) as

‖X − F̂i − Ê‖ ≤ θε
(
(b2 + 1)‖X − F̂i‖+ (b2 + 2)‖X‖

)
. (2.6)

Then we compute Lra(Ê, ε`) at Line 7; by (2.1) the computed F̂E satisfies

‖Ê − F̂E‖ ≤ (1 + b1θ`)ε`‖Ê‖. (2.7)

By using (2.6) and the triangle inequality, we rearrange (2.7) as

‖Ê − F̂E‖ ≤ (1 + b1θ`)ε`
(
‖X − F̂i‖+ ‖X − F̂i − Ê‖

)
(2.8)

= (1 + b1θ`)ε`‖X − F̂i‖+O(ε`ε), (2.9)

where we do not keep track explicitly of high order terms in O(ε`ε) for the sake
of readability. Finally, we obtain the next iterate Fi+1 by recompressing F̂i + F̂E

at Line 9; by (2.3), the computed F̂i+1 satisfies

‖F̂i + F̂E − F̂i+1‖ ≤ (1 + b3θ)ε‖F̂i + F̂E‖. (2.10)

By using (2.6), (2.9), and the triangle inequality, we rearrange (2.10) as

‖F̂i + F̂E − F̂i+1‖ ≤ (1 + b3θ)ε
(
‖X − F̂i − Ê‖+ ‖Ê − F̂E‖+ ‖X‖

)
(2.11)

= (1 + b3θ)ε‖X‖+O(ε`ε). (2.12)

Using the triangle inequality together with (2.6), (2.9), and (2.12), we obtain

‖X − F̂i+1‖ = ‖X − F̂i − Ê + Ê − F̂E + F̂i + F̂E − F̂i+1‖ (2.13)

≤ ‖X − F̂i − Ê‖+ ‖Ê − F̂E‖+ ‖F̂i + F̂E − F̂i+1‖ (2.14)

≤ φ‖X − F̂i‖+ ξ‖X‖+O(ε`ε), (2.15)

with
φ = (1 + b1θ`)ε` + (b2 + 1)θε (2.16)

and
ξ =

(
1 + (b2 + b3 + 2)θ

)
ε. (2.17)

Noting that the first factors F̂0 computed at Line 1 satisfy by (2.1)

‖X − F̂0‖ ≤ (1 + b1θ`)ε`‖X‖ ≤ φ‖X‖ (2.18)

concludes the proof.
7

Theorem 2.1 states that the approximation error ‖X − F̂‖ contracts by a factor
φ = O(ε`) at each iteration, until it reaches its maximum attainable accuracy ξ =
O(ε). Thus, after k iterations, the error is of order εk+1

` + ε, which means that we
can actually estimate in advance approximately how many iterations are needed to
achieve the desired accuracy ε (up to constants):

nit = log(ε)/ log(ε`)− 1. (2.19)

It is worth noting that, unlike iterative refinement for linear systems, there is
no dependence on the condition number of X and thus the only condition for Algo-
rithm 2.1 to converge is that φ < 1, which should always be the case as long as θ`
is sufficiently small. Therefore, the algorithm is extremely general, can be applied to
any matrix or tensor of low numerical rank, and can make use of potentially very low
precisions.

From a numerical perspective, Algorithm 2.1 is therefore quite appealing. We next
discuss under which conditions it is also attractive from a computational perspective.

2.2. Complexity analysis. The cost of Algorithm 2.1 will mainly depend on
two factors: the relative speed for computing in different precisions on the target
hardware, and the numerical ranks of the objects encountered during the iterations
(X, E, and F).

We begin by bounding these ranks solely as a function of the numerical ranks of
X at given accuracies. In order to do so, we will need to bound the numerical rank of
A+B as a function of that of A and B by using the following lemma. In what follows,
recall that when X is a tensor, Rank(X, ε) is a vector (see subsection 1.1) and all
the (in)equalities involving this quantity should be interpreted componentwise.

Lemma 2.2.

Rank(A+B, ε) ≤ Rank(A,
ε‖A+B‖
2‖A‖

) + Rank(B,
ε‖A+B‖
2‖B‖

). (2.20)

Proof. For the purpose of this proof only, we introduce an alternative definition
of numerical rank that measures accuracy in an absolute sense, rather than a relative
one. Let Rankabs(X, ε) be the the smallest integer rε such that there exists F of
rank rε satisfying ‖X − F‖ ≤ ε. The Rankabs operator satisfies

Rankabs(X, ε‖X‖) = Rank(X, ε)

and
Rankabs(A+B, ε) ≤ Rankabs(A, ε/2) + Rankabs(B, ε/2).

Therefore, we have that

Rank(A+B, ε) = Rankabs(A+B, ε‖A+B‖)
≤ Rankabs(A, ε‖A+B‖/2) + Rankabs(B, ε‖A+B‖/2)
= Rank(A, ε‖A+B‖/2‖A‖) + Rank(B, ε‖A+B‖/2‖B‖).

Let us consider the ith iteration of Algorithm 2.1. Using (2.20), we can bound
the rank of E = X − F as

Rank(E, ε`) ≤ Rank(X, ε`‖E‖/2‖X‖) + Rank(F). (2.21)
8

Since F is the low-rank factorization of X after i iterations, it achieves an accuracy
of εi` and so

Rank(F) = Rank(X, εi`) (2.22)

(we assume here that εi` ≤ ε as otherwise the method would be stopped). After i
iterations, ‖E‖ ≤ εi`‖X‖ and so overall (2.21) becomes

Rank(E, ε`) ≤ Rank(X, εi+1
` /2) + Rank(X, εi`). (2.23)

Since Rank(X, ε′) ≤ Rank(X, ε) for ε ≤ ε′, assuming that ε ≤ εi+1
` /2, we can obtain

a simpler but weaker version of (2.23),

Rank(E, ε`) ≤ 2Rank(X, ε). (2.24)

Thus, the rank of E at any iteration is at most twice as large as the numerical rank
of X at accuracy ε.

With a similar argument, the rank of the refined factors F + FE is bounded by

Rank(F + FE) ≤ Rank(F) + Rank(FE) (2.25)
= Rank(F) + Rank(E, ε`) (2.26)
≤ Rank(X, εi+1

` /2) + 2Rank(X, εi`), (2.27)

where (2.27) follows from (2.22) and (2.23). Again, a simpler but weaker bound is

Rank(F + FE) ≤ 3Rank(X, ε), (2.28)

showing that at any iteration the rank of the factors before recompression is at most
three times the numerical rank of X at accuracy ε.

Now that we have bounded the ranks of the objects appearing in Algorithm 2.1,
we are ready to analyze its cost. We denote as p and s the product and the sum
of the dimensions of X, respectively. Thus, if X ∈ Rm×n is a matrix, p = mn and
s = m + n; if X ∈ Rn1×···×nd is a tensor of order d, p =

∏
ni and s =

∑
ni. For

readability, we only report the dominant term for the cost of each assumption/line,
and assume a large scale setting, so that p� s.

We make the following assumptions on the flops cost of the different kernels:

Flops Lra(X, ε) = c1pRank(X, ε)1 + o(p), (2.29a)
Flops Decompress(F) = c2pRank(F)1 + o(p), (2.29b)

Flops Recompress(F, ε) = o(p). (2.29c)

For tensors, the cost of Lra and Decompress depends on the order in which the
dimensions are treated (see section 4). Here we assume they are treated in the natural
order, without loss of generality since the dimensions can be arbitrarily reordered. In
this case, the dominant cost of Lra and Decompress is proportional to the first
coefficient of the rank vectors, denoted as Rank(X, ε)1. Note that for matrices, the
rank is a scalar so that Rank(X, ε)1 = Rank(X, ε).

Let us now measure the flops cost of the ith iteration of Algorithm 2.1.
• Line 3: c2pRank(X, εi`)1 flops.
• Line 4: 2p flops (for the Frobenius norm).
• Line 6: p flops.
• Line 7: c1p

(
Rank(X, εi+1

` /2)1 + Rank(X, εi`)1
)

flops.
9

• Line 8: o(p) flops.
• Line 9: o(p) flops.

The dominant steps are the calls to Lra (Line 7), which is performed in low
precision, and to Decompress (Line 3), which is performed in high precision. The
computation of α and the scaling by α (Lines 4 and 6) could also be significant if the
ranks are very small.

Summing the costs of these dominant steps across all nit iterations, plus the cost
of the initial Lra (Line 1), gives a total flops cost of

Flops IR = c1pRank(X, ε`)1 + p

nit∑
i=1

(
c1 Rank(X, εi+1

` /2)1

+ c1 Rank(X, εi`)1 + c2 Rank(X, εi`)1 + 3
)
.

(2.30)

Since some of these flops are performed in low precision and some in high precision, we
must account for the different speeds of different arithmetics. To do so, we ponderate
the low precision flops by a weight ω` < 1 which indicates the relative performance
ratio between the low and the high precision. We obtain

Time IR ∝ ω`c1pRank(X, ε`)1 + p

nit∑
i=1

(
ω`c1 Rank(X, εi+1

` /2)1

+ ω`c1 Rank(X, εi`)1 + c2 Rank(X, εi`)1 + 3
)
,

(2.31)

where the “Time” formula should be taken as a rough estimator of the time perfor-
mance of the algorithm, although in practice the actual execution time depends on a
number of other complex factors such as the arithmetic intensity of the operations,
the data locality, and the parallelism.

This cost is to be compared with the cost of simply computing Lra(X, ε) in the
high precision u, given by

Time Ref. ∝ c1pRank(X, ε)1. (2.32)

This complexity analysis reveals two situations where Algorithm 2.1 can outper-
form the uniform precision approach.

Numerical ranks Rank(X, εi`) rapidly decreasing as ε` increases. The first situa-
tion is when the numerical ranks of X at accuracy lower than the final target ε are
much smaller than Rank(X, ε). This can certainly be the case in some applications.
For example, in the case of matrices, the numerical rank of X at any given accuracy
is determined by its singular values. If the singular values decay rapidly, Rank(X, ε`)
will in general be significantly smaller than Rank(X, ε). The most extreme exam-
ple is a matrix with one large singular value and all the remaining Rank(X, ε) − 1
singular values just above ε‖X‖. In this extreme case, all the iterations except the
last will only need to compute on rank-1 matrices, so the overall cost of the method
will be dominated by that of the last iteration, which is roughly ω`c1pRank(X, ε),
and so is always smaller than (2.32). In a more realistic setting where the singular
values decay exponentially, we may still expect (2.31) to be smaller than (2.32) even
for reasonably traditional values of ω`.

This situation also extends to tensors, although we do not have such a simple
characterization as one based on singular values. Essentially, if the underlying ma-
trices used in the tensor representation exhibit rapidly decaying singular values, then
the rank vectors Rank(X, ε`) will take much smaller values than Rank(X, ε) when
ε` � ε.

10

Very fast low precision arithmetic (or very slow high precision arithmetic). The
second situation is when the low precision arithmetic is much faster than the high
precision one, that is, when ω` � 1. This is becoming increasingly common for
low precisions on modern hardware, especially accelerators. For example, the fp16
and bfloat16 arithmetics can be up to 16 times faster than fp32 arithmetic on recent
NVIDIA GPUs. Similarly, fp16 arithmetic can be up to 8 times faster than fp32 on
the AMD Instinct MI250X GPUs. In this situation, the time cost (2.31) can indeed
be lower than (2.32), even in the worst case scenario where the ranks of all objects
throughout the iterations attain their upper bound of 2Rank(X, ε) for E. Indeed, in
this case, (2.31) becomes

pRank(X, ε)1
(
ω`c1(2nit + 1) + nitc2

)
+ 3p. (2.33)

Neglecting the 3p term, (2.33) is smaller than (2.32) if

ω`(2nit + 1) + nitc2/c1 ≤ 1. (2.34)

For most LRA algorithms of interest, the cost of compressing (Lra kernel) a full
object is higher than the cost of decompressing it (Decompress kernel), that is,
c1 > c2. Therefore (2.34) can certainly be satisfied for sufficiently small ω`.

Moreover, we now describe a case where the Decompress kernel can also be
performed in low precision. Indeed, while Algorithm 2.1 requires the Decompress
kernel Line 3 to be performed in high precision, this kernel has the particularity of
taking as input the factors F , which are stored in low precision. Therefore, what we
really need is to compute in high precision with low precision numbers; this happens
to be an easier task than the more general problem of computing in high precision with
high precision numbers. In fact, an increasing range of modern hardware provides the
capability to perform this task inexpensively. For example, the NVIDIA GPUs are
equipped with so-called tensor core units that can carry out matrix multiplication with
half precision (16-bit) matrices at the accuracy of single precision (fp32) arithmetic
but at the much higher speed of half precision arithmetic. Similar instructions are
available on several other architectures, which have been analyzed by Blanchard et
al. [4] under a common framework called block FMA.

In our context, assuming the Decompress kernel can make use of these block
FMA units changes the cost analysis quite significantly since all the dominant oper-
ations are then performed at the speed of the low precision. Even under the same
worst case scenario where the ranks of all objects throughout the iterations attain
their upper bound, (2.34) now becomes

ω`(2nit + 1 + nitc2/c1) ≤ 1. (2.35)

Thus, if block FMA hardware can be exploited, even the ratio c2/c1 need not be
necessarily small for Algorithm 2.1 to be effective.

Clearly, the two situations discussed above are not exclusive, so in practice it is
very possible that we have both smaller ranks and a fast low precision. To further
assess under which condition Algorithm 2.1 can outperform the standard approach,
we now specialize it to specific matrix or tensor algorithms in section 3 and section 4.

3. Application to matrix low-lank approximation. In this section we spe-
cialize Algorithm 2.1 to the case where X ∈ Rm×n is a matrix.

For any unitarily invariant norm, the optimal LRA algorithm for matrices is to
compute their singular value decomposition (SVD) and truncate it to the desired

11

accuracy, a result known as Eckart–Young theorem [10]. Specifically, given the SVD
X = UΣV T , the optimal rank-k approximation of X is

arg min
M∈Rm×n

Rank(M)=k

‖X −M‖ = UkΣkV
T
k ,

where UkΣkV
T
k is the truncated SVD of X, formed by the first k singular vectors and

values only.
While the truncated SVD provides the best accuracy, it is expensive due to the

need to compute the full SVD before truncating it: it requires O(mn2) flops. For this
reason, low-rank matrix approximations are often computed using slightly less accu-
rate but cheaper alternatives. In this paper, we focus on two widely popular choices:
the truncated QR decomposition with column pivoting (QRCP, subsection 3.1), and
the randomized SVD (subsection 3.2). For each algorithm, we discuss their use as
Lra kernel in our mixed precision iterative refinement approach (Algorithm 2.1): in
particular, we check that the algorithm satisfies the assumptions (2.1)–(2.3) of the er-
ror analysis and the assumptions (2.29a)–(2.29c) of the complexity analysis. We also
explain how to perform the Recompress kernel based on the specific Lra choice.

3.1. Truncated QRCP decomposition. Our first choice of Lra algorithm is
a truncated QRCP decomposition. QRCP decomposes the original matrix X ∈ Rm×n

as
XP = QR

where Q ∈ Rm×n is a matrix with orthonormal columns, R ∈ Rn×n is an upper
triangular matrix, and P ∈ Rn×n is a permutation matrix. Thanks to pivoting, the
QRCP decomposition can be used as a rank-revealing algorithm because the norm
of the trailing submatrix at each step k of the QR factorization, ‖XP − QkRk‖, is
monotonically decreasing. Therefore, we can stop the QR factorization as soon as
this norm becomes smaller than the target tolerance ε`. We obtain

X ≈ QkV
T
k , Qk ∈ Rm×k, Vk = PRT

k ∈ Rn×k, (3.1)

where k = Rank(X, ε`). To avoid the need to apply the permutation P each time we
need to apply X, we form and store Vk = PRT

k .
We can implement a suitable Recompress algorithm using this truncated QRCP

decomposition. Several versions are possible; we describe in Algorithm 3.1 the one
that we will use in this article. Given a (non-optimal) truncated QRCP decomposition
QinV

T
in, Algorithm 3.1 recompresses it into an optimal LRA as follows. First, a thin

QR factorization QR of Vin is computed. Then, the product QinR
T is formed and a

truncated QRCP decomposition QoutV
T is computed at the desired target accuracy

ε. This yields the recompressed left factor Qout; the recompressed right factor Vout is
obtained by forming QV .

We now check that the assumptions (2.1)–(2.3) of the error analysis are satisfied
for truncated QRCP and determine the value of the constants in the error bounds.
For (2.1), we can analyze the truncated QRCP by separating the truncation and
rounding errors. As explained above, we can control the size of the truncation error
by stopping the QRCP decomposition once the approximation error falls below the
desired threshold ε`, so that in exact arithmetic we obtain

QkRk = XP + E, ‖E‖ ≤ ε`‖X‖.
12

Algorithm 3.1 Recompress algorithm using truncated QRCP decomposition.
Input: a truncated QRCP decomposition QinV

T
in of the form (3.1);

ε, the target accuracy.
Output: a recompressed QRCP decomposition QoutV

T
out.

1: Compute the thin QR factorization QR = Vin.
2: Compute the truncated QRCP decomposition QoutV

T = QinR
T .

3: Vout ← QV

To account for the rounding errors, we use standard analysis of QR decomposition [16,
p. 361], which shows that the computed QR factors satisfy the backward error bound

Q̂kR̂k = XP +∆X + E, ‖∆X‖ ≤
√
kγ̃mk‖X‖, (3.2)

where γ̃mk = cmku`/(1−cmku`) ' cmku`, for a modest constant c independent of the
dimensions of the problem. Note that this bound is valid even with column pivoting,
since computing the QRCP decomposition XP = QR of X is equivalent to computing
the unpivoted QR decomposition of XP . Assumption (2.1) is thus satisfied with
b1 ' cmk

√
k. The Decompress kernel is a standard matrix multiplication between

the low-rank factors Q and V hence assumption (2.2) is satisfied with b2 = k by [16,
p. 71]. Finally, to bound the error introduced by the Recompress kernel we must
analyze Algorithm 3.1. Since the algorithm simply consists of standard QR, QRCP,
and matrix multiplication operations, this analysis is straightforward and relies on
standard error bounds from the literature. Although we omit it here for the sake of
conciseness, we have performed this analysis and found that (2.3) is satisfied with
b3 ' cn(k3/2 + k̃3/2)+ k, where k is the rank of QinV

T
in before recompression and k̃ is

the rank of QoutV
T
out after recompression.

Finally, we discuss the cost of Algorithm 2.1 when using truncated QRCP de-
composition. The truncated QRCP decomposition (3.1) can be computed in 4mnk+
o(mnk) flops [12], so that assumption (2.29a) is satisfied with c1 = 4. The Decompress
kernel is a matrix multiplication which requires 2mnk flops, so that assumption (2.29b)
is satisfied with c2 = 2. For the Recompress kernel, Algorithm 3.1 requires (6m +
2n)k2 + o(mk2 + nk2) flops, so that assumption (2.29c) is satisfied since (m+ n)k2 =
o(mn).

3.2. Randomized SVD decomposition. Our second choice of LRA algorithm
is the randomized SVD decomposition. Several variants have been proposed; in this
article we use the one described in Algorithm 3.2, which was was proposed by Mar-
tinsson and Voronin [22].

The algorithm consists of two phases. The first phase (Lines 3 to 11) iteratively
builds a QB decomposition of the matrix such that ‖X − QB‖ ≤ ε`‖X‖, where
Q ∈ Rm×k has orthonormal columns and where the dimension k is hopefully close
to Rank(X, ε`). To do so, a random Gaussian matrix Ω ∈ Rn×b is drawn for a
given block size b and used to sample the matrix Y = XΩ (Line 5). Then Y is
added to the basis Q while preserving the orthonormality: this can for example be
accomplished using the Gram–Schmidt algorithm (Line 6). This process is repeated
until the columns of Q are a sufficiently good approximation of the column space of
X, that is, until ‖X −QQTX‖ is small. In order to efficiently compute this quantity,
the matrix B = QTX is formed block by block (Line 7). Then, in the second phase
(Lines 12 and 13), a truncated SVD of X can easily be obtained by computing the

13

Algorithm 3.2 Randomized SVD decomposition.
Input: X ∈ Rm×n, a target accuracy ε`, and a block size b.
Output: a truncated SVD UΣV T decomposition of X.

1: Initialize Q and B to empty matrices.
2: nX = ‖X‖
3: repeat
4: Draw a random Gaussian matrix Ω ∈ Rn×b.
5: Y = XΩ
6: Qb = qr(Y −Q(QTY))
7: Bb = QT

b X
8: Q← [Q Qb]

9: B ←
[

B
Bb

]
10: X ← X −QbBb

11: until ‖X‖ ≤ ε`nX

12: Compute the truncated SVD decomposition B ≈ UΣV T at accuracy ε`.
13: U = QU

truncated SVD of the lower dimensional matrix B ∈ Rk×n: if B = UΣV T , then
X = UΣV T with U = QU .

We chose to use this specific randomized SVD variant because it presents several
advantages. It is blocked, which allows for an efficient implementation on modern
hardware. Moreover it provides a cheap yet reliable error estimation. Thanks to
blocking and error estimation, Algorithm 3.2 can adaptively reveal the numerical
rank of the matrix at the requested accuracy ε`; no a priori knowledge on the rank is
thus necessary. Finally, we have experimentally observed Algorithm 3.2 to be more
accurate than other randomized SVD variants that we have tested.

In order to perform the Recompress operation using randomized SVD, Algo-
rithm 3.2 needs to be slightly adapted. The algorithm takes as input a (non-optimal)
low-rank matrix X = UΣV T and seeks to recompress it, without forming the full
X. Lines 5 and 7 of Algorithm 3.2 are matrix products and can thus exploit the low-
rank structure of X. Line 10 is a subtraction between two low-rank matrices, which
requires no operations (the low-rank factors can simply be concatenated). The only
difficulty lies on Line 11, which requires to compute ‖X‖ to control the error and stop
the algorithm. In order to compute ‖X‖ without forming X, we orthonormalize one
of the two low-rank factors and compute the norm of the other one.

We now check if the assumptions (2.1)–(2.3) of the error analysis are satisfied for
the randomized SVD. To do so, we rely on the error analysis of Connolly, Higham,
and Pranesh [7], which determines error bounds for Algorithm 3.2 in floating-point
arithmetic. By [7, Corollary 2.4], assumption (2.1) is satisfied with b1 '

√
nmk.

Assumption (2.2) is satisfied with b2 = k + 1 since decompressing UΣV T can be
achieved with a matrix–matrix product and a scaling. Finally, the analysis of [7] does
not directly apply to the Recompress version of the algorithm discussed above, but
we expect its numerical behavior to be similar to the original algorithm.

Finally, we discuss the cost of Algorithm 3.2. If X is a full m × n matrix, Al-
gorithm 3.2 costs 6mnk + o(mnk) flops [22, Eqn. (25)], so that assumption (2.29a)
is satisfied with c1 = 6. It is easy to extend [22, Eqn. (25)] to the case where
X = UΣV T is represented under low-rank form to check that the Recompress vari-

14

ant of Algorithm 3.2 described above has a cost in O((m + n)k2) = o(mn) flops, so
that assumption (2.29c) is indeed satisfied. Finally, assumption (2.29b) is satisfied
with c2 = 2 since the Decompress kernel is simply a matrix–matrix product.

4. Application to tensor low-rank approximation. In this section, we ex-
plore the application of our method to three different tensor decompositions, namely
Tucker [29], TT [27], and HT [13]. All three decompositions provide direct methods
for the Lra and Recompress kernels that can guarantee a prescribed accuracy ε, as
well as fast Decompress routines, rendering them amenable to Algorithm 2.1. We
first give a brief description of these decompositions as well as their corresponding
Lra, Recompress, and Decompress kernels, then provide an error and complexity
analysis with respect to the assumptions (2.1)–(2.3) and (2.29a)–(2.29c).

4.1. Tucker, TT, and HT decompositions. The Tucker decomposition rep-
resents a tensor X ∈ Rn1×···×nd with a core tensor G ∈ Rr1×···×rd and with factor ma-
trices U = {U (i)} with orthonormal columns, where U (i) ∈ Rni×ri for i ∈ {1, . . . , d}.
Each element of a Tucker tensor is given by

Xi1,...,id =

r1,...,rd∑
α1,...,αd

Gα1,...,αd
U

(1)
i1,α1

. . . U
(d)
id,αd

. (4.1)

The TT format consists of a sequence of 3rd-order tensors G(i) linked by the first
and third dimensions that correspond to ranks. Each element of a TT tensor is given
by

Xi1,...,id =

r0,...,rd∑
α0,...,αd

G
(1)
α0,i1,α1

. . . G
(d)
αd−1,id,αd

. (4.2)

The HT decomposition represents X as a binary tree of tensors whose leaves are
matrices U (i) ∈ Rni×ri and the rest are 3rd order tensors. Each element of an HT
tensor is given by

Xi1,...,id =

r0,...,r2d−2∑
α0,...,α2d−2

G(1)
α0,α1,α2

. . . G(d−1)
αd−2,α2d−3,α2d−2

U
(1)
i1,αd−1

. . . U
(d)
id,α2d−2

. (4.3)

We illustrate these decompositions in Figure 4.1 using a tensor network dia-
gram [5] where each circle represents a tensor and each edge corresponds to a di-
mension. For each decomposition, the corresponding Lra method yields a network
of core tensors (or just “cores”), whose contraction/multiplication along the inner
dimensions (of size ri, i = 1: d̄) yields the full tensor. The outer dimensions (of size
ni, i = 1: d) correspond to dimensions of the full tensor X.

The HOSVD [29], TTSVD [27], and HTSVD [13] algorithms can be used as Lra
kernels to compute the Tucker, TT, and HT decompositions of a given full tensor X,
respectively. All three are direct methods that can achieve any prescribed accuracy
ε in exact arithmetic. To the best of our knowledge, the effect of rounding errors on
these methods in finite precision arithmetic has not been analyzed in the literature.
While these methods are therefore not known to be stable, empirical experiments
suggest that they still reliably achieve an accuracy of order ε when run in a finite
precision with a unit roundoff u sufficiently smaller than ε. Formally proving this
result is an open problem that deserves a dedicated study.

We provide a high level pseudo-code that encapsulates these methods in Algo-
rithm 4.1. In essence, all three algorithms perform d̄ (defined in (1.1)) successive SVDs

15

X

n1n2

n3

n4

nd

HOSVD

TTSVD

HTSVD

G

r
1

U (1)

n1

r 2

U (2)

n2

r3
U (3)n3

r
4

U (4)

n4

rd
U (d) nd

G(1)

n1

r1

G(2)

n2

r2

G(3)

n3

r3
...

...
rd−1

G(4)

nd

G(1)

G(2) G(3)

G(d/2) G(d−1)

U (1) U (2)

.

U (d−1) U (d)

. .
. .
. .

..
..
..

n1 n2 nd−1 nd

r1 r2

rd−1 rd r2d−3 r2d−2

Fig. 4.1: A d-order tensor (left) and its representation in Tucker, TT, and HT decom-
positions (right) using tensor network diagram.

on matricizations of X to isolate each core of the decomposition and determine its
corresponding rank, as indicated on Line 4. Then, the left orthogonal component U
of the SVD is reshaped and added to the decomposition FX , and the non-orthogonal
component is reshaped into a tensor to be further factored in the subsequent itera-
tions. At the end, the decomposed tensor FX consisting of d̄+ 1 tensors is returned.

As the Lra kernel isolates the cores through a series of d̄ SVDs on X, the
Decompress kernel performs successive tensor contractions on neighboring cores of
FX through the inner dimensions that link them to obtain the full tensor X. In Algo-
rithm 4.2, we provide a generic Decompress kernel that performs these contractions

16

Algorithm 4.1 Lra algorithm for a tensor.
Input: a tensor X and a target accuracy ε.
Output: FX : a low-rank tensor decomposition of X.

1: ε̄← ε/d̄
2: FX ← []
3: for i = 1 to d̄ do
4: [U, Y]← Svd(Matricize(X), ε̄)
5: FX ← [FX ,Reshape(U)]
6: X ← Reshape(Y)
7: end for
8: FX ← [FX ,Reshape(X)]

Algorithm 4.2 Decompress algorithm for a tensor decomposition.
Input: a low-rank tensor decomposition FX .
Output: the full tensor X corresponding to FX .

1: X ← FX [1]
2: for i = d̄ to 1 in reverse order do
3: X ← X ×{ri} FX [i+ 1]
4: end for

in the reverse order of SVDs in Algorithm 4.1 for simplicity. This is done on Line 3
where ×{ri} represents the contraction/multiplication across the inner dimension of
size ri. In practice, these contractions could be performed in an arbitrary order among
the d̄ inner dimensions as tensor contraction is associative.

Finally, the Recompress kernel of the TT decomposition consists of an orthog-
onalization and a rank pruning phase [27]. The goal of the orthogonalization phase is
to “sweep” all non-orthogonal components in FX into a single (the first or the last)
core. To do this, a QR factorization is performed on a matricization of the core at
the opposite end. The orthogonal component Q is reshaped to replace the treated
core, and the non-orthogonal component R is passed over to the next core through
a tensor–matrix contraction. This process is repeated d̄ times until all cores except
one become orthogonal, which finalizes the orthogonalization phase. Next, the rank
pruning phase performs an SVD on a matricization of the non-orthogonal core to
reduce the size of an inner dimension. The orthogonal part U obtained from the SVD
is kept as the pruned core whereas the non-orthogonal part ΣV T is integrated into
the next core to be truncated through tensor-matrix contraction, thereby still keep-
ing all cores except one orthogonal. The process is similarly repeated on all d̄ inner
dimensions in the reverse order of orthogonalization, which finalizes the rank pruning
phase. The standard Recompress kernel in the HT format [13] similarly sweeps all
non-orthogonal components into a single core (the root of the tree) with a sequence
of QR factorizations followed by matrix multiplies through a bottom-up traversal of
the tree. However, in the rank pruning phase, it processes inner cores level-by-level
starting from the root, and performs the rank truncation on the matricization of the
tensor sub-network involving all tensors in the path from the root down to the inner
core that is being truncated. Though this variant remains efficient (thanks to the
re-use of partial tensor contractions from the previous level through memorization)
and provides more coarse-grain parallelism (with respect to TTSVD for instance, as
each node in a tree level can be truncated independently), it requires to form a Gram

17

matrix to remain efficient when performing rank truncation (otherwise the size of the
matricized tensor explodes, yet its Gramian stays compact). We observed that this
method greatly suffers from numerical instability due to this inherent limitation, par-
ticularly when soliciting a high precision in Recompress, as it squares the condition
number of the matricized tensor. We instead devised an alternative Recompress
kernel, reminiscent of that of the TT decomposition, for HT and Tucker decomposi-
tions. This variant similarly involves an orthogonalization and rank pruning through
d̄ QRs and SVDs followed by matrix multiplies, albeit with no Gram matrix form-
ing, and proved to be much more robust numerically yet still efficient. We defer the
detailed presentation of these algorithms and their numerical and cost analysis to a
future work. Due to these intricacies, we do not provide a high level Recompress
kernel encapsulating all three decompositions; however, for the purposes of this pa-
per, we only use the fact that all three decompositions provide a Recompress kernel
performing d̄ QR and SVD computations followed by matrix multiplies on its cores,
which suffices for our analysis in the next section.

4.2. Error and complexity analysis. For the error analysis, as previously
mentioned the stability of tensor computations in finite precision arithmetic is an
open problem that deserves a dedicated study. However, we may mention that the
Reshape and Matricize operations do not introduce any error as they merely in-
volve data shuffling, nor do they have any impact on the Frobenius norm of the
successive matricizations. Moreover, the Lra kernel is based on a chain of SVDs, the
Decompress kernel is based on a chain of matrix multiplies, and the Recompress
kernel on a chain of QRs, SVDs, and matrix multiplies. All of these basic linear
algebra building blocks have stable implementations and so we can reasonably ex-
pect the numerical behavior of the overall tensor computation to satisfy assumptions
(2.1)–(2.3).

For the complexity analysis of the Lra step, we assume that the first SVD re-
duces the size of the tensor significantly, that is, to o(p), which renders the cost of
subsequent SVDs negligible. In this case, we can use the same constant c1 = 6 as
in the case of randomized SVD in subsection 3.2. With the same assumption, the
cost of Decompress in Algorithm 4.2 will also be dominated by the last contraction,
which is essentially a matrix multiplication on permuted tensors across the first inner
dimension. Thus, we can similarly use the constant c2 = 2 as in subsection 3.2, since
the cost of the previous contractions is in o(p) in this case as well. Even without this
assumption, we can find constants c1 = 6t and c2 = 2t with the same t > 1, since
intermediate tensor sizes in each SVD and contraction steps in Algorithm 4.1 and Al-
gorithm 4.2 stay the same. This keeps the cost ratio of these two steps constant across
all d̄ dimensions yielding the same t for c1 and c2; we skip further details for brevity.
Finally, the cost of Recompress remains in o(p) as it involves QRs and SVDs on the
matricizations of 2nd or 3rd order cores in the decomposition, whose size is in o(p)
by the low-rank assumption. Therefore, we satisfy the assumptions (2.29a)–(2.29c) of
the complexity analysis in the tensor case.

5. Numerical experiments.

5.1. Experimental setting. We now test our iterative refinement approach
experimentally. We developed a MATLAB code that implements Algorithm 2.1 and
can use as Lra kernel any of the matrix and tensor LRA algorithms discussed in the
previous two sections: QRCP, randomized SVD, HOSVD, TTSVD, and HTSVD.

For the matrix algorithms (QRCP and randomized SVD), we use our own imple-
18

mentation. For the tensor algorithms (HOSVD, TTSVD, and HTSVD), we rely on the
implementations from the libraries described in [3], [26], and [21], respectively, with
some adjustments. We use MATLAB version R2019a throughout the experiments.

In the experiments, the high precision u is set to double precision (fp64 arithmetic,
with unit roundoff u = 2−53 ≈ 1× 10−16) and the use of various low precisions u` is
simulated with the chop library of Higham and Pranesh [18]: single precision (fp32
arithmetic, with unit roundoff u` = 2−24 ≈ 6 × 10−8) and half precision (fp16 and
bfloat16 arithmetics, with unit roundoff u` = 2−11 ≈ 5×10−4 and u` = 2−8 ≈ 4×10−3,
respectively).

For the low-rank truncation thresholds, we set ε = 10−13 and ε` = θ`u`, where
θ` ≤ 1 is a scaling factor necessary to control the effect of rounding errors on the
ability of the LRA to detect the correct numerical rank. We analyze in detail the role
of this parameter θ` in subsection 5.3; based on the conclusions of this analysis, we
have set θ` = 2−1 for all LRA kernels except randomized SVD and QRCP, for which
we have used θ` = 2−2 and θ` = 2−3, respectively.

To test the algorithms, we use randomly generated matrices and tensors with
various singular value distributions. More precisely, we compare three types of distri-
butions for the singular values σi:

σi = max(σ̂i, 10
−16), σ̂i =

1/i (linear)
i−10 (power)
e−i (exponential)

. (5.1)

These three distributions are illustrated in Figure 5.1. We generate the matrices as
Q1ΣQ2 where Q1, Q2 are random orthogonal matrices and Σ is a diagonal matrix
with the specified singular values as coefficients. For the tensor experiments involving
Tucker and TT decompositions, we generate the low-rank tensor in the Tucker format
with Q(1), …, Q(d) random orthonormal matrices and a dth-order core tensor G whose
coefficient Gi1,...id is given by σmax(i1,...,id) in (5.1). For the experiments involving the
HT format, we generate the low-rank tensor in the HT format whose leaf nodes are
matrices with orthogonal columns, and each element G

(t)
i,j,k of its internal cores is set

to σmax(i,j,k).

5.2. Experimental results. In the first experiment, we analyze the behavior
of Algorithm 2.1 for the matrix case, which is provided in Figure 5.2. We consider
three types of matrices based on their singular value distribution (linear, power, and
exponential) and two Lra kernels (QRCP and randomized SVD). In each case, we
plot the relative error

ηi =
‖X − Fi‖
‖X‖

(5.2)

where Fi is the computed low-rank factor of X after i refinement steps (F0 is thus a
standard LRA of X in precision u`). The number next to each marker indicates the
rank of Fi after recompression.

Figure 5.2 shows that for all three matrices and for both QRCP and randomized
SVD, Algorithm 2.1 behaves as expected: the error ηi is roughly equal to εi+1

` =
(θu`)

i+1 after i refinement steps. Thus, using single precision as the low precision u`,
we can achieve an accuracy close to double precision with only one refinement step.
Naturally, since for QRCP θ = 2−3 is relatively small, (u`/θ)

2 is noticeably larger
than the accuracy achieved by a standard double precision LRA; the refined factors
are thus not completely as accurate as if computed directly in double precision. This

19

0 20 40 60 80 100

10
-15

10
-10

10
-5

10
0 Exponential

Power

Linear

Fig. 5.1: Three types of singular value distributions used in the experiments.

gap can be filled by performing a second refinement step, although this would likely
be unnecessary in most practical scenarios.

Similar results are obtained using half precision as the low precision format (fp16
or bfloat16 arithmetics). An error close to the single precision accuracy can be
achieved in just one or a few steps. Moreover, we can even reach double precision
accuracy if needed, which illustrates an attractive property of Algorithm 2.1: it can
reach an accuracy essentially as high as desired while performing most of its operations
in a precision as low as desired.

Finally, we discuss the rank behavior of Fi across IR steps. We see that it is
roughly equal to Rank(X, ηi), the numerical rank of X at accuracy ηi. Thus, for ma-
trices with rapidly decaying singular values such as the exponential case in Figure 5.1,
these ranks tend to be much smaller at the early steps in low precision. Reflecting on
the cost of the algorithm, we can expect the use of low precision plus refinement to
be particularly cost efficient for such matrices.

Figure 5.3 shows similar plots for the tensor decompositions (TTSVD, HOSVD,
and HTSVD). The results for tensors follow the same trend, and lead to the same
conclusion as for matrices. The main difference is that the rank of Fi (text labels) is
now a vector instead.

Overall, our experiments confirm that Algorithm 2.1 is able to rapidly converge
to a high accuracy, while using low precision for the LRA kernel. This observation is
valid for all types of matrices and tensors in our test set, and all five Lra kernels that
we tested, which shows that Algorithm 2.1 is robust and can work in a wide variety
of settings.

5.3. Role of θ`. There is a tradeoff in choosing the scaling factor θ`: the larger
it is, the faster the convergence (since the error is reduced by a factor roughly equal to
θ`u` at each refinement step), but if it is too large, the rank will no longer be correctly
detected and this will lead to a significant rank growth.

We illustrate this in Table 5.1 and Table 5.2, where we compare the convergence
of Algorithm 2.1 for different values of θ`. Table 5.1 is for the TTSVD kernel and Ta-
ble 5.2 is for the QRCP kernel; fp16 arithmetic is used as the low precision u` in both
cases. The tables show that the method converges faster as θ` increases, as expected:

20

0 2 4 6 8 10
10

-15

10
-10

10
-5

10
0

50

14

26

30

6

10

16

22

27

30

4

6

10

13

17

20

23

27

30 30

(a) QRCP (exponential).

0 2 4 6 8
10

-15

10
-10

10
-5

10
0

30

14

28

30

7

12

19

25

30

5

8

12

16

20

24

29

30

(b) Randomized SVD (exponential).

0 2 4 6 8 10
10

-15

10
-10

10
-5

10
0

56

30

37

38

21

26

32

36

38

38

17

19

24

29

32

35

36

41

38
38

(c) QRCP (power).

0 2 4 6
10

-15

10
-10

10
-5

10
0

38

30

38

19

28

34

37

38

14

22

28

32

35

37

38

(d) Randomized SVD (power).

0 2 4 6 8 10
10

-15

10
-10

10
-5

10
0

39

39

39

39

58

39

39

39

40

39

57

39

39

39

39

39

42

45

44

39

(e) QRCP (linear).

0 2 4 6
10

-15

10
-10

10
-5

10
0

39

39

39

39

39

39

39

39

39

39

39

39

39

39

39

39

(f) Randomized SVD (linear).

Fig. 5.2: Convergence of Algorithm 2.1 for three types of matrices (with different
singular value distributions, see Figure 5.1) and for two different Lra kernels (QRCP
or randomized SVD).

21

0 2 4 6
10

-15

10
-10

10
-5

10
0

30,30,30

14,14,14

27,27,27

30,30,30

7,7,6

12,12,12

19,19,19

26,26,26

30,30,30

4,4,4

8,8,8

13,13,13

18,18,18

22,22,22

27,27,27

30,30,30

(a) TTSVD (exponential).

0 2 4 6
10

-15

10
-10

10
-5

10
0

28,28,28,28

14,14,14,14

27,27,27,27
28,28,28,28

6,6,6,6

12,12,12,12

19,19,19,19

26,26,26,26

28,28,28,28

4,4,4,4

8,8,8,8

13,13,13,13

18,18,18,18

22,22,22,22

27,27,27,27

28,28,28,28

(b) HOSVD (exponential).

0 2 4 6
10

-15

10
-10

10
-5

10
0

39,39,39

28,28,28

38,38,38

39,39,39

14,14,14

26,26,26

33,33,33

37,37,37

39,39,39

8,8,7

18,19,19

27,27,27

32,32,32

36,36,36

38,38,38

39,39,39

(c) TTSVD (power).

0 2 4 6
10

-15

10
-10

10
-5

10
0

38,38,38,38

28,28,28,28

38,38,38,38

13,13,13,13

26,26,26,26

33,33,33,33

37,37,37,37

38,38,38,38

7,7,7,7

18,18,18,18

27,27,27,27

32,32,32,32

37,37,38,36

48,46,48,45

38,38,38,38

(d) HOSVD (power).

0 2 4 6
10

-15

10
-10

10
-5

10
0

40,472,40

40,40,40

40,40,40

27,27,24

40,40,40

40,40,40

40,40,40

40,40,40

7,7,6

36,37,37

40,40,40

40,40,40

40,40,40

40,40,40

40,40,40

(e) TTSVD (linear).

0 2 4 6 8
10

-15

10
-10

10
-5

10
0

40,40,40,40

40,40,40,40

40,40,40,40

16,15,15,15

40,40,40,40

40,40,40,40

40,40,40,40

40,40,40,40

5,5,5,5

36,36,36,36

40,40,40,40

41,40,40,40

46,49,50,52

61,67,71,80

40,40,40,40

40,40,40,40

(f) HOSVD (linear).

Fig. 5.3: Convergence of Algorithm 2.1 for three types of tensors (depending on the
singular value distribution, see Figure 5.1) and with TTSVD or HOSVD as Lra
kernel.

22

0 2 4 6
10

-15

10
-10

10
-5

10
0

9,9,28,28,28,28

4,4,13,13,13,13

9,9,27,27,27,27
9,9,28,28,28,28

2,2,7,7,7,7

4,4,12,12,12,12

6,6,19,19,19,19

8,8,25,25,25,25

9,9,28,28,28,28

2,2,4,4,4,4

2,2,8,8,8,8

4,4,13,13,13,13

6,6,17,17,17,17

7,7,22,22,22,22

9,9,27,27,27,27

9,9,28,28,28,28

(a) HTSVD (exponential).

0 2 4 6
10

-15

10
-10

10
-5

10
0

21,21,38,38,38,38

6,6,27,27,27,27

20,20,38,38,38,38

2,2,14,14,14,14

5,5,25,25,25,25

12,12,33,33,33,33

18,18,37,37,37,37

21,21,38,38,38,38

2,2,8,8,8,8

3,3,17,17,17,17

5,5,26,26,26,26

11,11,32,32,32,32

16,16,35,35,35,35

20,20,38,38,38,38

21,21,38,38,38,38

(b) HTSVD (power).

0 2 4 6
10

-15

10
-10

10
-5

10
0

40,40,40,40,40,40

5,5,40,40,40,40

40,40,40,40,40,40

2,2,27,27,27,27

4,4,40,40,40,40

13,13,40,40,40,40

40,40,40,40,40,40

40,40,40,40,40,40

1,1,7,7,7,7

2,2,34,34,34,34

5,5,40,40,40,40

10,10,40,40,40,40

26,26,40,40,40,40

40,40,40,40,40,40

40,40,40,40,40,40

(c) HTSVD (linear).

Fig. 5.4: Convergence of Algorithm 2.1 for three types of tensors (depending on the
singular value distribution, see Figure 5.1) and with HTSVD as Lra kernel.

the error ηi is smaller for larger values of θ`. For TTSVD (Table 5.1), this faster con-
vergence is achieved without compromising the correct rank detection, which remains
contained throughout the iterations and for all values of θ` ≤ 1. Thus, in this case,
a large value of θ` is recommended. The situation is different for QRCP (Table 5.2),
for which a too large value of θ` (here θ` ≥ 2−2) prevents the rank to be correctly
detected, thus leads to a rank explosion.

We therefore conclude that the optimal choice of θ` depends on the LRA algo-
rithm, and more specifically, on its sensitivity to rounding errors when detecting the
numerical rank. Empirically, we have observed QRCP to be the most sensitive of the
LRA kernels, and to a lesser extent the randomized SVD kernel; the other kernels be-
haved well even for large θ`. For this reason, in our experiments we have set θ` = 2−1

for all kernels except QRCP and randomized SVD, for which we have set θ` = 2−3

and θ` = 2−2, respectively. This setting allows to keep the ranks contained except for
a few sporadic cases when using half precision.

6. Conclusion. We have presented a new mixed precision iterative refinement
algorithm for computing low-rank matrix and tensor approximations. The algorithm
first computes a low-rank approximation in low precision, and then computes another
low-rank approximation of the error term, also in low precision, to refine the accuracy

23

Table 5.1: Relative error ηi and Rank(Fi) at different steps i and for different values
of θ`, for TTSVD (using fp16 as u` and exponential distribution of singular values).

Relative error ηi Rank(Fi)

i \ θ` 20 2−1 2−2 2−3 2−4 20 2−1 2−2 2−3 2−4

0 6e-04 8e-04 9e-04 2e-03 5e-03 23,39,16 07,07,06 06,06,06 05,05,05 04,04,04
1 3e-07 1e-06 4e-06 1e-05 9e-05 14,14,15 12,12,12 11,11,11 10,10,10 08,08,08
2 2e-10 1e-09 8e-09 7e-08 6e-07 21,21,21 19,19,19 17,17,17 15,15,15 13,13,13
3 9e-14 8e-13 2e-11 4e-10 4e-09 29,29,29 26,26,26 23,23,23 20,20,20 18,18,18
4 6e-14 6e-14 1e-12 4e-11 28,28,28 28,28,28 26,26,26 22,22,22
5 6e-14 3e-13 28,28,28 27,27,27
6 6e-14 28,28,28

Table 5.2: Relative error ηi and Rank(Fi) at different steps i and for different values of
θ, for QRCP decomposition (using fp16 as u` and exponential distribution of singular
values).

Relative error ηi Rank(Fi)

i \ θ` 20 2−1 2−2 2−3 2−4 20 2−1 2−2 2−3 2−4

0 2e-03 2e-03 2e-03 2e-03 3e-03 13 9 9 7 6
1 2e-05 1e-05 1e-05 5e-05 1e-04 25 18 13 10 9
2 5e-08 8e-08 7e-08 1e-07 1e-06 72 43 20 16 14
3 2e-10 2e-10 4e-10 8e-10 8e-09 95 86 36 21 19
4 2e-12 2e-12 3e-12 2e-12 4e-11 27 27 29 27 24
5 7e-13 7e-13 7e-13 7e-13 1e-12 28 28 28 28 27
6 7e-13 28

of the approximation. The process can be repeated to further refine the accuracy,
and we ensure the rank of the approximation remains bounded by using inexpensive
recompression operations. We have performed the error analysis of this algorithm,
which proves that the low precision determines the convergence speed, whereas the
attainable accuracy only depends on the high precision. Therefore, any desired level
of accuracy can be attained, even though most of the operations are performed in
low precision. This makes the algorithm computationally attractive, and we have
performed a complexity analysis to determine specific conditions under which we can
expect it to be cheaper than simply computing a low-rank approximation directly in
high precision. We have applied our algorithm to various matrix and tensor low-rank
approximations algorithms, and performed MATLAB experiments that confirm its
robustness and convergence in a wide range of settings.

This paper lays the theoretical and algorithmic foundations for a mixed precision
iterative refinement framework for matrix and tensor low-rank approximations. In
future work, we will develop high performance implementations of these algorithms
to tackle the low-rank approximation of large scale matrices and tensors on modern
parallel architectures, especially those equipped with GPU accelerators, which provide
extremely fast low precision arithmetic.

7. Acknowledgements. This work was performed thanks to generous grants
from ANR (JCJC SELESTE, ANR-20-CE46-008-01) and Paris Ile-de-France Region
(DIM RFSI RC-TENSOR No 2021-05).

24

REFERENCES

[1] E. Agullo, O. Coulaud, L. Giraud, M. Iannacito, G. Marait, and N. Schenkels, The
backward stable variants of GMRES in variable accuracy, (2022), https://inria.hal.science/
hal-03776837.

[2] P. Amestoy, O. Boiteau, A. Buttari, M. Gerest, F. Jézéquel, J.-Y. L’Excellent, and
T. Mary, Mixed Precision Low Rank Approximations and their Application to Block Low
Rank LU Factorization, IMA J. Numer. Anal., (2022), https://doi.org/10.1093/imanum/
drac037.

[3] B. W. Bader and T. G. Kolda, Algorithm 862: MATLAB tensor classes for fast algorithm
prototyping, ACM Trans. Math. Software, 32 (2006), pp. 635–653, https://doi.org/10.1145/
1186785.1186794.

[4] P. Blanchard, N. J. Higham, F. Lopez, T. Mary, and S. Pranesh, Mixed precision block
fused multiply-add: Error analysis and application to GPU tensor cores, SIAM J. Sci.
Comput., 42 (2020), pp. C124–C141, https://doi.org/10.1137/19M1289546.

[5] A. Cichocki, N. Lee, I. Oseledets, A.-H. Phan, Q. Zhao, and D. P. Mandic, Tensor
networks for dimensionality reduction and large-scale optimization: Part 1 low-rank tensor
decompositions, Foundations and Trends® in Machine Learning, 9 (2016), pp. 249–429,
https://doi.org/http://dx.doi.org/10.1561/2200000059.

[6] P. Comon, Tensors: a brief introduction, IEEE Signal Processing Magazine, 31 (2014),
pp. 44–53, https://doi.org/10.1109/MSP.2014.2298533.

[7] M. P. Connolly, N. J. Higham, and S. Pranesh, Randomized low rank matrix approximation:
Rounding error analysis and a mixed precision algorithm, MIMS EPrint 2022.5, Manchester
Institute for Mathematical Sciences, The University of Manchester, UK, July 2022, http:
//eprints.maths.manchester.ac.uk/2884/. Revised March 2023.

[8] O. Coulaud, L. Giraud, and M. Iannacito, A robust gmres algorithm in tensor train format,
arXiv preprint arXiv:2210.14533, (2022), https://doi.org/10.48550/arXiv.2210.14533.

[9] L. De Lathauwer, B. De Moor, and J. Vandewalle, A multilinear singular value decom-
position, SIAM J. Matrix Anal. Appl., 21 (2000), pp. 1253–1278, https://doi.org/10.1137/
S0895479896305696.

[10] C. Eckart and G. Young, The approximation of one matrix by another of lower rank,
Psychometrika, 1 (1936), pp. 211–218, https://doi.org/10.1007/BF02288367.

[11] M. Fasi, N. J. Higham, F. Lopez, T. Mary, and M. Mikaitis, Matrix multiplication in
multiword arithmetic: Error analysis and application to GPU tensor cores, SIAM J. Sci.
Comput., 45 (2023), pp. C1–C19, https://doi.org/10.1137/21m1465032.

[12] G. H. Golub and C. F. Van Loan, Matrix computations, JHU press, 2013, https://doi.org/
10.1137/1028073.

[13] L. Grasedyck, Hierarchical singular value decomposition of tensors, SIAM J. Matrix Anal.
Appl., 31 (2010), pp. 2029–2054, https://doi.org/10.1137/090764189.

[14] L. Grasedyck, D. Kressner, and C. Tobler, A literature survey of low-rank tensor approx-
imation techniques, GAMM-Mitteilungen, 36 (2013), pp. 53–78, https://doi.org/10.1002/
gamm.201310004.

[15] W. Hackbusch and S. Kühn, A new scheme for the tensor representation, Journal
of Fourier analysis and applications, 15 (2009), pp. 706–722, https://doi.org/10.1007/
s00041-009-9094-9.

[16] N. J. Higham, Accuracy and Stability of Numerical Algorithms, Society for Industrial and
Applied Mathematics, Philadelphia, PA, USA, second ed., 2002, https://doi.org/10.1137/
1.9780898718027.

[17] N. J. Higham and T. Mary, Mixed precision algorithms in numerical linear algebra, Acta
Numerica, 31 (2022), pp. 347–414, https://doi.org/10.1017/s0962492922000022.

[18] N. J. Higham and S. Pranesh, Simulating low precision floating-point arithmetic, SIAM J.
Sci. Comput., 41 (2019), pp. C585–C602, https://doi.org/10.1137/19M1251308.

[19] N. Kishore Kumar and J. Schneider, Literature survey on low rank approximation of ma-
trices, Linear and Multilinear Algebra, 65 (2017), pp. 2212–2244, https://doi.org/10.1080/
03081087.2016.1267104.

[20] T. G. Kolda and B. W. Bader, Tensor decompositions and applications, SIAM Rev., 51
(2009), pp. 455–500, https://doi.org/10.1137/07070111X.

[21] D. Kressner and C. Tobler, htucker—a MATLAB toolbox for tensors in hierarchical tucker
format, Mathicse, EPF Lausanne, (2012).

[22] P.-G. Martinsson and S. Voronin, A randomized blocked algorithm for efficiently computing
rank-revealing factorizations of matrices, SIAM J. Sci. Comput., 38 (2016), pp. S485–S507,
https://doi.org/10.1137/15M1026080.

25

https://inria.hal.science/hal-03776837
https://inria.hal.science/hal-03776837
https://doi.org/10.1093/imanum/drac037
https://doi.org/10.1093/imanum/drac037
https://doi.org/10.1145/1186785.1186794
https://doi.org/10.1145/1186785.1186794
https://doi.org/10.1137/19M1289546
https://doi.org/http://dx.doi.org/10.1561/2200000059
https://doi.org/10.1109/MSP.2014.2298533
http://eprints.maths.manchester.ac.uk/2884/
http://eprints.maths.manchester.ac.uk/2884/
https://doi.org/10.48550/arXiv.2210.14533
https://doi.org/10.1137/S0895479896305696
https://doi.org/10.1137/S0895479896305696
https://doi.org/10.1007/BF02288367
https://doi.org/10.1137/21m1465032
https://doi.org/10.1137/1028073
https://doi.org/10.1137/1028073
https://doi.org/10.1137/090764189
https://doi.org/10.1002/gamm.201310004
https://doi.org/10.1002/gamm.201310004
https://doi.org/10.1007/s00041-009-9094-9
https://doi.org/10.1007/s00041-009-9094-9
https://doi.org/10.1137/1.9780898718027
https://doi.org/10.1137/1.9780898718027
https://doi.org/10.1017/s0962492922000022
https://doi.org/10.1137/19M1251308
https://doi.org/10.1080/03081087.2016.1267104
https://doi.org/10.1080/03081087.2016.1267104
https://doi.org/10.1137/07070111X
https://doi.org/10.1137/15M1026080

[23] R. Ooi, T. Iwashita, T. Fukaya, A. Ida, and R. Yokota, Effect of mixed precision computing
on H-matrix vector multiplication in BEM analysis, in Proceedings of the International
Conference on High Performance Computing in Asia-Pacific Region, 2020, pp. 92–101,
https://doi.org/10.1145/3368474.3368479.

[24] H. Ootomo and R. Yokota, Recovering single precision accuracy from tensor cores while
surpassing the FP32 theoretical peak performance, Int. J. High Perform. Comput. Appl.,
36 (2022), pp. 475–491, https://doi.org/10.1177/10943420221090256.

[25] H. Ootomo and R. Yokota, Mixed-precision random projection for RandNLA on tensor
cores, 2023, https://arxiv.org/abs/2304.04612.

[26] I. Oseledets, TT-Toolbox v2.2.2, 2023, https://github.com/oseledets/TT-Toolbox.
[27] I. V. Oseledets, Tensor-train decomposition, SIAM J. Sci. Comput., 33 (2011), pp. 2295–2317,

https://doi.org/10.1137/090752286.
[28] L. R. Tucker, Some mathematical notes on three-mode factor analysis, Psychometrika, 31

(1966), pp. 279–311, https://doi.org/10.1007/BF02289464.
[29] N. Vannieuwenhoven, R. Vandebril, and K. Meerbergen, A new truncation strategy

for the higher-order singular value decomposition, SIAM J. Sci. Comput., 34 (2012),
pp. A1027–A1052, https://doi.org/10.1137/110836067.

[30] Z. Yang, J. Shan, and Z. Zhang, Hardware-efficient mixed-precision CP tensor decomposition,
arXiv preprint arXiv:2209.04003, (2022), https://doi.org/10.48550/arXiv.2209.04003.

26

https://doi.org/10.1145/3368474.3368479
https://doi.org/10.1177/10943420221090256
https://arxiv.org/abs/2304.04612
https://github.com/oseledets/TT-Toolbox
https://doi.org/10.1137/090752286
https://doi.org/10.1007/BF02289464
https://doi.org/10.1137/110836067
https://doi.org/10.48550/arXiv.2209.04003

	Introduction
	Notations

	Iterative refinement for low-rank approximation
	Error analysis
	Complexity analysis

	Application to matrix low-lank approximation
	Truncated QRCP decomposition
	Randomized SVD decomposition

	Application to tensor low-rank approximation
	Tucker, *tt, and *ht decompositions
	Error and complexity analysis

	Numerical experiments
	Experimental setting
	Experimental results
	Role of

	Conclusion
	Acknowledgements
	References

