Accelerating Linear Systems Solution by Exploiting Low-Rank Approximations to Factorization Error

Theo Mary, joint work with Nick Higham University of Manchester, School of Mathematics

IMA Conference on Numerical Linear Algebra and Optimization, Birmingham, 27-29 June 2018

Context

Objective

- Compute solution to linear system Ax = b
- $A \in \mathbb{R}^{n \times n}$ is ill conditioned

LU-based preconditioner

- 1. Compute approximate factorization $A = \widehat{L}\widehat{U} + \Delta A$
 - Half-precision factorization
 - Incomplete LU factorization
 - $\circ~$ Structured matrix factorization: Block Low-Rank, \mathcal{H}_{r} HSS,...
- 2. Solve $\prod_{LU}Ax = \prod_{LU}b$ with $\prod_{LU} = \hat{U}^{-1}\hat{L}^{-1}$ via some iterative method
 - Convergence to solution may be slow or fail

> Objective: accelerate convergence

Matrix lund_a (n = 147, $\kappa(A) = 2.8e+06$)

- Often, A is ill conditioned due to a small number of small singular values
- Then, A^{-1} is numerically low-rank

Key idea

Factorization error might be low-rank?

Let the error
$$E = \widehat{U}^{-1}\widehat{L}^{-1}A - I = \widehat{U}^{-1}\widehat{L}^{-1}(\widehat{L}\widehat{U} + \Delta A) - I$$

= $\widehat{U}^{-1}\widehat{L}^{-1}\Delta A \approx A^{-1}\Delta A$

Does *E* retain the low-rank property of A^{-1} ?

A novel preconditioner

Consider the preconditioner

$$\Pi_{E_k} = (I + E_k)^{-1} \Pi_{LU}$$

with E_k a rank-k approximation to E.

- If $E = E_k$, $\Pi_{E_k} = A^{-1}$
- If $E \approx E_k$ for some small k, Π_{E_k} can be computed cheaply

Preprint

N. J. Higham and T. Mary, A New Preconditioner that Exploits Low-Rank Approximations to Factorization Error, MIMS EPrint 2018.10.

Problem statement

Low-rank gap

$$\varepsilon_k(A) = \min_{W_k} \left\{ \frac{\|A - W_k\|}{\|A\|} : \operatorname{rank}(W_k) \le k \right\}$$

Eckart-Young-Mirsky

$$\varepsilon_k(A) = \frac{\sigma_{k+1}(A)}{\sigma_1(A)}$$

Problem statement

Quantify worst-case reduction of the low-rank gap from A^{-1} to $E = \hat{U}^{-1}\hat{L}^{-1}\Delta A$, i.e find some β such that

$$\varepsilon_k(E) \leq \beta \varepsilon_k(A^{-1})$$

Bound on the low-rankness of E

Theorem

$$\varepsilon_k(E) \leq \frac{\beta_1 \beta_2 \varepsilon_k(A^{-1})}{\beta_1 \beta_2 \varepsilon_k(A^{-1})}$$

with

$$\varepsilon_{k}(\widehat{U}^{-1}\widehat{L}^{-1}) \leq \frac{\beta_{1}}{\varepsilon_{k}}(A^{-1})$$

$$\beta_{1} = \left(1 + \|A^{-1}\Delta A\|\right) \left(1 + \|\widehat{U}^{-1}\widehat{L}^{-1}\Delta A\|\right)$$

$$\varepsilon_{k}(E) = \varepsilon_{k}(\widehat{U}^{-1}\widehat{L}^{-1}\Delta A) \leq \beta_{2}\varepsilon_{k}(\widehat{U}^{-1}\widehat{L}^{-1})$$
$$\beta_{2} = \frac{\|\widehat{U}^{-1}\widehat{L}^{-1}\| \|\Delta A\|}{\|\widehat{U}^{-1}\widehat{L}^{-1}\Delta A\|}$$

- β_1 : maximal deviation of the sing. vals. by additive perturbation
- β_2 : should be small for typical ΔA

The bound is pessimistic

Theo Mary

We did **not** specifically select matrices for which A^{-1} is low-rank!

Computing E_k

We need to build

$$\Pi_{E_k} = (I + E_k)^{-1} \Pi_{LU} = (I + E_k)^{-1} \widehat{U}^{-1} \widehat{L}^{-1}$$

where E_k is a rank-k approximation of $E = \hat{U}^{-1}\hat{L}^{-1}A - I$

E cannot be built explicitly! \Rightarrow Use **randomized** method

Algorithm 1 Randomized SVD via direct SVD of $V^{T}E$.

- 1: {Input: the error matrix $E = \hat{U}^{-1}\hat{L}^{-1}A I$, stored implicitly.}
- 2: Sample E: $S = E\Omega$, with Ω a $n \times (k + p)$ random matrix.
- 3: Orthonormalize S: V = qr(S).
- 4: Compute SVD of $V^T E$: $X \Sigma Y^T = V^T E$.
- 5: Truncate X, Σ , Y into X_k, Σ _k, Y_k.
- 6: The SVD of E_k is given by $(VX_k)\Sigma_k Y_k^T$.

Computational cost analysis

Algorithm 1 Randomized SVD via direct SVD of $V^{T}E$.

- 1: {Input: the error matrix $E = \hat{U}^{-1}\hat{L}^{-1}A I$, stored implicitly.}
- 2: Sample E: $S = E\Omega$, with Ω a $n \times (k + p)$ random matrix.
- 3: Orthonormalize S: V = qr(S).
- 4: Compute SVD of $V^T E$: $X \Sigma Y^{T} = V^T E$.
- 5: Truncate X, Σ , Y into X_k , Σ_k , Y_k .
- 6: The SVD of E_k is given by $(VX_k)\Sigma_kY_k^T$.

	$\ell = k + p$	
	setup	solve
Π_{LU}	$\frac{2}{3}n^{3}$	$2n^2$
$\Pi^{(1)}_{E_k}$	$\frac{2}{3}n^3 + \frac{8n^2\ell}{\ell} + O(n\ell^2)$	$2n^2 + O(nk)$

Computational cost analysis

Algorithm 1 Randomized SVD via direct SVD of $V^{T}E$.

- 1: {Input: the error matrix $E = \hat{U}^{-1}\hat{L}^{-1}A I$, stored implicitly.}
- 2: Sample E: $S = E\Omega$, with Ω a $n \times (k + p)$ random FFT matrix.
- 3: Orthonormalize S: V = qr(S).
- 4: Compute SVD of $V^T E$: $X \Sigma Y^{T} = V^T E$.
- 5: Truncate $X_i \Sigma_i$ Y into $X_{k_i} \Sigma_{k_i} Y_{k_i}$.
- 6: The SVD of E_k is given by $(VX_k)\Sigma_kY_k^T$.

$\ell = k + p$							
	setup	solve					
Π_{LU}	$\frac{2}{3}n^3$	$2n^2$					
$\Pi^{(1)}_{E_k}$	$\frac{2}{3}n^3 + 8n^2\ell + O(n\ell^2)$	$2n^2 + O(nk)$					
$\Pi_{E_k}^{(2)}$	$\frac{2}{3}n^3 + 6n^2\ell + 4n^2\log\ell + O(n\ell^2)$	$2n^2 + O(nk)$					

Computational cost analysis

Algorithm 1 Randomized SVD via row extraction.

- 1: {Input: the error matrix $E = \hat{U}^{-1}\hat{L}^{-1}A I$, stored implicitly.}
- 2: Sample E: $S = E\Omega$, with Ω a $n \times (k + p)$ random FFT matrix.
- 3: Orthonormalize S: V = qr(S).
- 4: Compute ID of V: $V = (I_k \ W)^T V_{(K,:)}$.
- 5: Extract $E_{(K,:)}$ and compute a QR factorization $E_{(K,:)}^{T} = QR$.
- 6: Compute SVD of $(I_k \ W)^T R^T$: $X \Sigma Y^T = (I_k \ W)^T R^T$.
- 7: Truncate X, Σ_{i} Y into $X_{k_{i}}$ $\Sigma_{k_{i}}$ $Y_{k_{i}}$.
- 8: The SVD of E_k is given by $(VX_k)\Sigma_k Y_k^T$.

$\ell = k + p$							
	setup	solve					
Π_{LU}	$\frac{2}{3}n^3$	$2n^2$					
$\Pi^{(1)}_{E_k}$	$\frac{2}{3}n^3 + 8n^2\ell + O(n\ell^2)$	$2n^2 + O(nk)$					
$\Pi_{E_k}^{(2)}$	$\frac{2}{3}n^3 + 6n^2\ell + 4n^2\log\ell + O(n\ell^2)$	$2n^2 + O(nk)$					
$\Pi_{E_k}^{(3)}$	$\frac{2}{3}n^3 + 2n^2\ell + 4n^2\log\ell + O(n\ell^2)$	$2n^2 + O(nk)$					

- Three types of approximate LU factorization:
 - Half-precision
 - $\circ~$ Incomplete LU with drop tolerance $10^{-5} \leq \tau \leq 10^{-1}$
 - $\circ~$ Block Low-Rank with low-rank threshold $10^{-9} \leq \tau \leq 10^{-1}$

- Three types of approximate LU factorization:
 - Half-precision
 - $\circ~$ Incomplete LU with drop tolerance $10^{-5} \leq \tau \leq 10^{-1}$
 - $\circ~$ Block Low-Rank with low-rank threshold $10^{-9} \leq \tau \leq 10^{-1}$
- Iterative solver is GMRES-based iterative refinement with three precisions
 - FP64 working precision and residual is computed in FP128
 - Max nb of GMRES iterations per IR step is 100
 - Max nb of IR steps is 10

- Three types of approximate LU factorization:
 - Half-precision
 - $\circ~$ Incomplete LU with drop tolerance $10^{-5} \leq \tau \leq 10^{-1}$
 - $\circ~$ Block Low-Rank with low-rank threshold $10^{-9} \leq \tau \leq 10^{-1}$
- Iterative solver is GMRES-based iterative refinement with three precisions
 - FP64 working precision and residual is computed in FP128
 - Max nb of GMRES iterations per IR step is 100
 - Max nb of IR steps is 10
- Large set of real-life matrices
 - $\circ~53 \leq {\it n} \leq 494$ and $10^3 \leq \kappa({\it A}) \leq 10^{14}$
 - Most are sparse, but treated as dense
 - 149 tests on 40 different matrices

- Three types of approximate LU factorization:
 - Half-precision
 - $\circ~$ Incomplete LU with drop tolerance $10^{-5} \leq \tau \leq 10^{-1}$
 - $\circ~$ Block Low-Rank with low-rank threshold $10^{-9} \leq \tau \leq 10^{-1}$
- Iterative solver is GMRES-based iterative refinement with three precisions
 - $\circ~$ FP64 working precision and residual is computed in FP128
 - Max nb of GMRES iterations per IR step is 100
 - Max nb of IR steps is 10
- Large set of real-life matrices
 - $\circ~53 \leq {\it n} \leq 494$ and $10^3 \leq \kappa({\it A}) \leq 10^{14}$
 - Most are sparse, but treated as dense
 - 149 tests on 40 different matrices
- MATLAB code running on laptop
 - We measure nb of iterations and flops
 - Time is only estimated, not measured

Parameter tuning: oversampling p

Performance profile: ρ is the percentage of problems solved for less than $\alpha \times$ the cost of the best choice \Rightarrow higher is better

A New Preconditioner based on Low-Rank Error

Parameter tuning: oversampling p

Performance profile: ρ is the percentage of problems solved for less than $\alpha \times$ the cost of the best choice \Rightarrow higher is better

Parameter tuning: oversampling p

Performance profile: ρ is the percentage of problems solved for less than $\alpha \times$ the cost of the best choice \Rightarrow higher is better

Need to set oversampling *p* differently depending on preconditioner variant

Parameter tuning: ε threshold ($||E - E_k|| \le \varepsilon$)

Performance profile: ρ is the percentage of problems solved for less than $\alpha \times$ the cost of the best choice \Rightarrow higher is better

Similar trend for low-rank threshold ε

Black-box setting: use $\Pi_{E_k}^{(3)}$ with p = 10 and $\varepsilon = 10^{-7}$

13/15

A New Preconditioner based on Low-Rank Error

Black-box setting: use $\Pi_{E_k}^{(3)}$ with p = 10 and $\varepsilon = 10^{-7}$

13/15

A New Preconditioner based on Low-Rank Error

Black-box setting: use $\Pi_{E_k}^{(3)}$ with p = 10 and $\varepsilon = 10^{-7}$

Application to large-scale, sparse matrices

P. R. Amestoy, A. Buttari, J.-Y. L'Excellent, and T. Mary, *Performance and Scalability of the Block Low-Rank Multifrontal Factorization on Multicore Architectures*.

Application to BLR-MUMPS sparse multifrontal solver BLR threshold = 10^{-2} , iterate until converged to accuracy 10^{-9}

Matrix	n	Π_{LU}		Π_{E_k}	
		lter.	Time	lter.	Time
audikw_1	1.0M	691	1163	331	625
Bump_2911	2.9M	-	-	284	1708
Emilia_923	0.9M	174	304	136	267
Fault_639	0.6M	_	-	294	345
Ga41As41H72	0.3M	_	_	135	143
Hook_1498	1.5M	417	902	356	808
Si87H76	0.2M	-	-	131	116

Good potential to improve low-precision, low-memory BLR solvers

14/15

A New Preconditioner based on Low-Rank Error

Conclusion

Summary

- Ill-conditioned matrices often have a numerically low-rank inverse
- Theoretical justification of why the error $E = \hat{U}^{-1}\hat{L}^{-1}A I$ retains this property
- Novel preconditioner based on a low-rank approximation to the error to accelerate linear systems solution

Future work

- High-performance implementation for FP16 and ILU
- Well suited for GPUs (FP16 $8 \times$ faster than FP32!)

Slides and paper available here

http://personalpages.manchester.ac.uk/staff/theo.mary/

Backup slides

Ingredient 1: $\widehat{U}^{-1}\widehat{L}^{-1}$ is low-rank if A^{-1} is

Lemma

$$\sigma_i(X + \Delta X) \le \sigma_i(X) \left(1 + \|X^{-1} \Delta X\| \right)$$

Apply lemma twice:

$$X = \widehat{L}\widehat{U} \text{ and } \Delta X = \Delta A \quad \Rightarrow \quad \sigma_i(A) \leq \sigma_i(\widehat{L}\widehat{U}) \underbrace{\left(1 + \|\widehat{U}^{-1}\widehat{L}^{-1}\Delta A\|\right)}_{\text{Maximum shrinkage}}$$

$$X = A \text{ and } \Delta X = -\Delta A \quad \Rightarrow \quad \sigma_i(\widehat{L}\widehat{U}) \leq \sigma_i(A) \underbrace{\left(1 + \|A^{-1}\Delta A\|\right)}_{\text{Maximum shrinkage}}$$

Theorem

$$\varepsilon_{k}(\widehat{U}^{-1}\widehat{L}^{-1}) \leq \beta_{1}\varepsilon_{k}(A^{-1})$$

with
$$\beta_{1} = \left(1 + \|A^{-1}\Delta A\|\right) \left(1 + \|\widehat{U}^{-1}\widehat{L}^{-1}\Delta A\|\right)$$

V

Bound β_1 is pessimistic

Ingredient 2: $\widehat{U}^{-1}\widehat{L}^{-1}\Delta A$ is low-rank if $\widehat{U}^{-1}\widehat{L}^{-1}$ is

Theorem

with

$$\varepsilon_{k}(\widehat{U}^{-1}\widehat{L}^{-1}\Delta A) \leq \beta_{2}\varepsilon_{k}(\widehat{U}^{-1}\widehat{L}^{-1})$$
$$\beta_{2} = \frac{\|\widehat{U}^{-1}\widehat{L}^{-1}\| \|\Delta A\|}{\|\widehat{U}^{-1}\widehat{L}^{-1}\Delta A\|}$$

Corollary

$$\varepsilon_k(E) \leq \beta_1 \beta_2 \varepsilon_k(A^{-1})$$

Theorem

$$\beta_2 \leq \bar{\beta}_2 = \frac{\sigma_{n+1-k}(\widehat{L}\widehat{U})}{\sigma_n(\widehat{L}\widehat{U})} \frac{\|\Delta A\|}{\|P_k \Delta A\|}$$

with $P_k = X_k X_k^T$ and X_k the last k left singular vectors of $\widehat{L}\widehat{U}$.

Bound β_2 is also pessimistic

Theo Mary