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Challenges in HPC

• Increasingly large problems (107–109 unknowns)
• Increasingly parallel computers
• Heterogeneity in the computing units: CPUs, GPUs, other
accelerators

• Increasing gap between speed of computations and
communications

• Increasing power consumption

⇒ We will tackle these challenges by working with approximations
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Sources of error in computing

1. Model errors
∂u
∂t

= ∆u

2. Discretization errors

un+1
j − unj
k

=
un+1
j+1 − 2un+1

j + un+1
j−1

h2

⇒ (1 + 2r)un+1
j − run+1

j−1 − ru
n+1
j+1 = unj

⇒ Aun+1 = f(un)
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Sources of error in computing

3. Rounding errors

Floating-point numbers are represented by

x = ±m× βe−t, m ∈ [0, βt − 1]

A floating-point number system is thus charaterized by
• Base β (usually 2)
• Precision t
• Exponent range: e ∈ [emin, emax]

which are encoded with a finite number of bits assigned to the
mantissa and exponent

β = 2, t = 3, [emin, emax] = [−1, 3]
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Sources of error in computing

β = 2, t = 3, [emin, emax] = [−1, 3]

The unit roundoff u = β1−t/2 (= 2−t in base 2) determines the
relative accuracy any number in the representable range can be
approximated with:

If x ∈ R belongs to [emin, emax], then fl(x) = x(1 + δ), |δ| ≤ u

Moreover the standard model of arithmetic is

fl(x op y) = (x op y)(1 + δ), |δ| ≤ u , for op ∈ {+,−,×,÷}
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Double and single precision

Number of bits
Range Unit roundoff u

Mantissa Exponent

fp64 53 11 10±308 1× 10−16

fp32 24 8 10±38 6× 10−8

Double (fp64) and single (fp32) precision both widely supported
in hardware

10−16 is tiny! Are rounding errors really significant?
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Impact of rounding errors

Consider the computation

s =
n∑
i=1

xi

In floating-point arithmetic, each addition produces a rounding
error. The overall error E is bounded by

|E| ≤ nκu, κ =

∑
|xi|

|
∑
xi|

E can be large when
• The unit roundoff u is large (low precision)
• The dimension n is large (error accumulation)
• The condition number κ is large (error amplification)
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Historical perspective

• Backward error analysis was
developed by James Wilkison in the
1960s

• At that time, n = 100 was huge!
Solving linear systems of n = O(10)
equations would take days

⇒ n was considered a “constant”

The constant terms in an error bound are the least important parts of
error analysis. It is not worth spending much effort to minimize constants
because the achievable improvements are usually insignificant.

Nick Higham, ASNA 2ed (2002)

Hence traditional error analysis has focused on error amplification
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Today: large problems and low precisions

Problems are getting larger and larger (ex: 21 million equations
solved in 4 hours for the latest TOP500 ranking) 
and
Precisions are getting lower and lower

Number of bits
Range Unit roundoff u

Mantissa Exponent

fp64 53 11 10±308 1× 10−16

fp32 24 8 10±38 6× 10−8

tfloat32 11 8 10±38 5× 10−4

fp16 11 5 10±5 5× 10−4

bfloat16 8 8 10±38 4× 10−3

fp8 (e4m3) 4 4 10±2 6× 10−2

fp8 (e5m2) 3 5 10±5 1× 10−1

• Half (16-bit) and quarter (8-bit) precision now in hardware,
driven by AI9/60



Lower precisions

sign
exponent
(8 bits)

fraction
(23 bits)

fp32
Range 10±38, u = 6× 10−8

sign
exponent
(5 bits)

fraction
(10 bits)

fp16
Range 10±5, u = 5× 10−4

sign
exponent
(8 bits)

fraction
(7 bits)

bfloat16
Range 10±38, u = 4× 10−3

sign
exponent
(8 bits)

fraction
(10 bits)

tfloat32
Range 10±38, u = 5× 10−4

sign
exp.

(5 bits)
frac.

(2 bits)

fp8 (e5m2)
Range 10±5, u = 1× 10−1

sign
exp.

(4 bits)
frac.

(3 bits)

fp8 (e4m3)
Range 10±2, u = 6× 10−2
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(Deliberately) approximate computing

Conclusion: today’s computing is already approximate!
Since errors are part of HPC, let’s embrace them
4. Approximation errors
◦ Rounding errors from use of low precision arithmetic
◦ Compression/sparsification errors
◦ Errors from unstable algorithms
◦ …

5. Silent errors (bitflips)
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Two classes of methods to solve Ax = b

Direct methods
Gaussian elimination, based on LU factorization.

A =

 5 −3 0
0 2 −5
1 0 8

 =

 1 0 0
0 1 0

0.2 0.3 1

×

 5 −3 0
0 2 −5
0 0 9.5

 = LU

L(Ux) = b solved in two steps:

(i) y = L−1

 5
1
0

 =

 5
1

−1.3

 then (ii) x = U−1y =

 1.0947368
0.1578947

−0.1368421



Iterative methods
Build a sequence of iterates x0, …, xk until ∥Axk − b∥ small enough
Example (Jacobi): x0, xk+1 = xk + D−1 × (b− Axk), D = diag(A)

x0 =

 0
0
0


In practice, require a preconditioner M−1 ≈ A−1 to converge:
solve M−1Ax = M−1b



Two classes of methods to solve Ax = b

Direct methods
Gaussian elimination, based on LU factorization.

A =

 5 −3 0
0 2 −5
1 0 8

 =

 1 0 0
0 1 0

0.2 0.3 1

×

 5 −3 0
0 2 −5
0 0 9.5

 = LU

L(Ux) = b solved in two steps:

(i) y = L−1

 5
1
0

 =

 5
1

−1.3

 then (ii) x = U−1y =

 1.0947368
0.1578947

−0.1368421



Iterative methods
Build a sequence of iterates x0, …, xk until ∥Axk − b∥ small enough
Example (Jacobi): x0, xk+1 = xk + D−1 × (b− Axk), D = diag(A)

x1 =

 1
0.5
0


In practice, require a preconditioner M−1 ≈ A−1 to converge:
solve M−1Ax = M−1b



Two classes of methods to solve Ax = b

Direct methods
Gaussian elimination, based on LU factorization.

A =

 5 −3 0
0 2 −5
1 0 8

 =

 1 0 0
0 1 0

0.2 0.3 1

×

 5 −3 0
0 2 −5
0 0 9.5

 = LU

L(Ux) = b solved in two steps:

(i) y = L−1

 5
1
0

 =

 5
1

−1.3

 then (ii) x = U−1y =

 1.0947368
0.1578947

−0.1368421



Iterative methods
Build a sequence of iterates x0, …, xk until ∥Axk − b∥ small enough
Example (Jacobi): x0, xk+1 = xk + D−1 × (b− Axk), D = diag(A)

x2 =

 1.3
−0.5
−0.125


In practice, require a preconditioner M−1 ≈ A−1 to converge:
solve M−1Ax = M−1b



Two classes of methods to solve Ax = b

Direct methods
Gaussian elimination, based on LU factorization.

A =

 5 −3 0
0 2 −5
1 0 8

 =

 1 0 0
0 1 0

0.2 0.3 1

×

 5 −3 0
0 2 −5
0 0 9.5

 = LU

L(Ux) = b solved in two steps:

(i) y = L−1

 5
1
0

 =

 5
1

−1.3

 then (ii) x = U−1y =

 1.0947368
0.1578947

−0.1368421



Iterative methods
Build a sequence of iterates x0, …, xk until ∥Axk − b∥ small enough
Example (Jacobi): x0, xk+1 = xk + D−1 × (b− Axk), D = diag(A)

x3 =

 1.3
0.187
0.162


In practice, require a preconditioner M−1 ≈ A−1 to converge:
solve M−1Ax = M−1b



Two classes of methods to solve Ax = b

Direct methods
Gaussian elimination, based on LU factorization.

A =

 5 −3 0
0 2 −5
1 0 8

 =

 1 0 0
0 1 0

0.2 0.3 1

×

 5 −3 0
0 2 −5
0 0 9.5

 = LU

L(Ux) = b solved in two steps:

(i) y = L−1

 5
1
0

 =

 5
1

−1.3

 then (ii) x = U−1y =

 1.0947368
0.1578947

−0.1368421



Iterative methods
Build a sequence of iterates x0, …, xk until ∥Axk − b∥ small enough
Example (Jacobi): x0, xk+1 = xk + D−1 × (b− Axk), D = diag(A)

x4 =

 1.1125
0.09375

−0.1625


In practice, require a preconditioner M−1 ≈ A−1 to converge:
solve M−1Ax = M−1b



Two classes of methods to solve Ax = b

Direct methods
Gaussian elimination, based on LU factorization.

A =

 5 −3 0
0 2 −5
1 0 8

 =

 1 0 0
0 1 0

0.2 0.3 1

×

 5 −3 0
0 2 −5
0 0 9.5

 = LU

L(Ux) = b solved in two steps:

(i) y = L−1

 5
1
0

 =

 5
1

−1.3

 then (ii) x = U−1y =

 1.0947368
0.1578947

−0.1368421



Iterative methods
Build a sequence of iterates x0, …, xk until ∥Axk − b∥ small enough
Example (Jacobi): x0, xk+1 = xk + D−1 × (b− Axk), D = diag(A)

x5 =

 1.05625
0.09375

−0.1390625


In practice, require a preconditioner M−1 ≈ A−1 to converge:
solve M−1Ax = M−1b



Two classes of methods to solve Ax = b

Direct methods
Gaussian elimination, based on LU factorization.

A =

 5 −3 0
0 2 −5
1 0 8

 =

 1 0 0
0 1 0

0.2 0.3 1

×

 5 −3 0
0 2 −5
0 0 9.5

 = LU

L(Ux) = b solved in two steps:

(i) y = L−1

 5
1
0

 =

 5
1

−1.3

 then (ii) x = U−1y =

 1.0947368
0.1578947

−0.1368421



Iterative methods
Build a sequence of iterates x0, …, xk until ∥Axk − b∥ small enough
Example (Jacobi): x0, xk+1 = xk + D−1 × (b− Axk), D = diag(A)

x6 =

 1.05625
0.1523438

−0.1320313


In practice, require a preconditioner M−1 ≈ A−1 to converge:
solve M−1Ax = M−1b



Two classes of methods to solve Ax = b

Direct methods
Gaussian elimination, based on LU factorization.

A =

 5 −3 0
0 2 −5
1 0 8

 =

 1 0 0
0 1 0

0.2 0.3 1

×

 5 −3 0
0 2 −5
0 0 9.5

 = LU

L(Ux) = b solved in two steps:

(i) y = L−1

 5
1
0

 =

 5
1

−1.3

 then (ii) x = U−1y =

 1.0947368
0.1578947

−0.1368421



Iterative methods
Build a sequence of iterates x0, …, xk until ∥Axk − b∥ small enough
Example (Jacobi): x0, xk+1 = xk + D−1 × (b− Axk), D = diag(A)

x7 =

 1.0914062
0.1699219

−0.1320312


In practice, require a preconditioner M−1 ≈ A−1 to converge:
solve M−1Ax = M−1b



Two classes of methods to solve Ax = b

Direct methods
Gaussian elimination, based on LU factorization.

A =

 5 −3 0
0 2 −5
1 0 8

 =

 1 0 0
0 1 0

0.2 0.3 1

×

 5 −3 0
0 2 −5
0 0 9.5

 = LU

L(Ux) = b solved in two steps:

(i) y = L−1

 5
1
0

 =

 5
1

−1.3

 then (ii) x = U−1y =

 1.0947368
0.1578947

−0.1368421



Iterative methods
Build a sequence of iterates x0, …, xk until ∥Axk − b∥ small enough
Example (Jacobi): x0, xk+1 = xk + D−1 × (b− Axk), D = diag(A)

x8 =

 1.0914062
0.1699219

−0.1320312


In practice, require a preconditioner M−1 ≈ A−1 to converge:
solve M−1Ax = M−1b



Two classes of methods to solve Ax = b

Direct methods
Gaussian elimination, based on LU factorization.

A =

 5 −3 0
0 2 −5
1 0 8

 =

 1 0 0
0 1 0

0.2 0.3 1

×

 5 −3 0
0 2 −5
0 0 9.5

 = LU

L(Ux) = b solved in two steps:

(i) y = L−1

 5
1
0

 =

 5
1

−1.3

 then (ii) x = U−1y =

 1.0947368
0.1578947

−0.1368421



Iterative methods
Build a sequence of iterates x0, …, xk until ∥Axk − b∥ small enough
Example (Jacobi): x0, xk+1 = xk + D−1 × (b− Axk), D = diag(A)

x9 =

 1.1019531
0.1589355

−0.1377441


In practice, require a preconditioner M−1 ≈ A−1 to converge:
solve M−1Ax = M−1b



Two classes of methods to solve Ax = b

Direct methods
Gaussian elimination, based on LU factorization.

A =

 5 −3 0
0 2 −5
1 0 8

 =

 1 0 0
0 1 0

0.2 0.3 1

×

 5 −3 0
0 2 −5
0 0 9.5

 = LU

L(Ux) = b solved in two steps:

(i) y = L−1

 5
1
0

 =

 5
1

−1.3

 then (ii) x = U−1y =

 1.0947368
0.1578947

−0.1368421



Iterative methods
Build a sequence of iterates x0, …, xk until ∥Axk − b∥ small enough
Example (Jacobi): x0, xk+1 = xk + D−1 × (b− Axk), D = diag(A)

x10 =

 1.0953613
0.1556396

−0.1377441


In practice, require a preconditioner M−1 ≈ A−1 to converge:
solve M−1Ax = M−1b



Two classes of methods to solve Ax = b

Direct methods
Gaussian elimination, based on LU factorization.

A =

 5 −3 0
0 2 −5
1 0 8

 =

 1 0 0
0 1 0

0.2 0.3 1

×

 5 −3 0
0 2 −5
0 0 9.5

 = LU

L(Ux) = b solved in two steps:

(i) y = L−1

 5
1
0

 =

 5
1

−1.3

 then (ii) x = U−1y =

 1.0947368
0.1578947

−0.1368421



Iterative methods
Build a sequence of iterates x0, …, xk until ∥Axk − b∥ small enough
Example (Jacobi): x0, xk+1 = xk + D−1 × (b− Axk), D = diag(A)

x11 =

 1.0933838
0.1556396

−0.1369202


In practice, require a preconditioner M−1 ≈ A−1 to converge:
solve M−1Ax = M−1b



Two classes of methods to solve Ax = b

Direct methods
Gaussian elimination, based on LU factorization.

A =

 5 −3 0
0 2 −5
1 0 8

 =

 1 0 0
0 1 0

0.2 0.3 1

×

 5 −3 0
0 2 −5
0 0 9.5

 = LU

L(Ux) = b solved in two steps:

(i) y = L−1

 5
1
0

 =

 5
1

−1.3

 then (ii) x = U−1y =

 1.0947368
0.1578947

−0.1368421



Iterative methods
Build a sequence of iterates x0, …, xk until ∥Axk − b∥ small enough
Example (Jacobi): x0, xk+1 = xk + D−1 × (b− Axk), D = diag(A)

x12 =

 1.0933838
0.1576996

−0.1366730


In practice, require a preconditioner M−1 ≈ A−1 to converge:
solve M−1Ax = M−1b



Two classes of methods to solve Ax = b

Direct methods
Gaussian elimination, based on LU factorization.

A =

 5 −3 0
0 2 −5
1 0 8

 =

 1 0 0
0 1 0

0.2 0.3 1

×

 5 −3 0
0 2 −5
0 0 9.5

 = LU

L(Ux) = b solved in two steps:

(i) y = L−1

 5
1
0

 =

 5
1

−1.3

 then (ii) x = U−1y =

 1.0947368
0.1578947

−0.1368421



Iterative methods
Build a sequence of iterates x0, …, xk until ∥Axk − b∥ small enough
Example (Jacobi): x0, xk+1 = xk + D−1 × (b− Axk), D = diag(A)

x13 =

 1.0946198
0.1583176

−0.1366730


In practice, require a preconditioner M−1 ≈ A−1 to converge:
solve M−1Ax = M−1b



Two classes of methods to solve Ax = b

Direct methods
Gaussian elimination, based on LU factorization.

A =

 5 −3 0
0 2 −5
1 0 8

 =

 1 0 0
0 1 0

0.2 0.3 1

×

 5 −3 0
0 2 −5
0 0 9.5

 = LU

L(Ux) = b solved in two steps:

(i) y = L−1

 5
1
0

 =

 5
1

−1.3

 then (ii) x = U−1y =

 1.0947368
0.1578947

−0.1368421



Iterative methods
Build a sequence of iterates x0, …, xk until ∥Axk − b∥ small enough
Example (Jacobi): x0, xk+1 = xk + D−1 × (b− Axk), D = diag(A)

x14 =

 1.0946198
0.1583176

−0.1366730

 ∥Ax14 − b∥ ≈ 8.5× 10−4 (≈ 10−15 with LU)

In practice, require a preconditioner M−1 ≈ A−1 to converge:
solve M−1Ax = M−1b



• Direct methods
◦ Robust, black box solvers
◦ High time and memory cost for factorization of A

⇒ Need fast factorization

• Iterative methods
◦ Low time and memory per-iteration cost
◦ Convergence is application dependent

⇒ Need good preconditioner

⇒ Approximate factorizations…
◦ as approximate fast direct methods, if

• low accuracy is sufficient, or
• matrix is structured (data sparsity)

◦ as high quality preconditioners otherwise
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• Direct methods
◦ Robust, black box solvers
◦ High time and memory cost for factorization of A
⇒ Need fast factorization

• Iterative methods
◦ Low time and memory per-iteration cost
◦ Convergence is application dependent
⇒ Need good preconditioner

⇒ Approximate factorizations…
◦ as approximate fast direct methods, if

• low accuracy is sufficient, or
• matrix is structured (data sparsity)

◦ as high quality preconditioners otherwise
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• Direct methods
◦ Robust, black box solvers
◦ High time and memory cost for factorization of A
⇒ Need fast factorization

• Iterative methods
◦ Low time and memory per-iteration cost
◦ Convergence is application dependent
⇒ Need good preconditioner

⇒ Approximate factorizations…
◦ as approximate fast direct methods, if

• low accuracy is sufficient, or
• matrix is structured (data sparsity)

◦ as high quality preconditioners otherwise
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LU factorization

A = LU⇔ ∀i, j aij =
∑min(i,j)

k=1 ℓikukj

for k = 1: n do
ukk = akk (ℓkk = 1)
for i = k+ 1: n do

ℓik = aik/ukk and uki = aki
end for
for i = k+ 1: n/b do

for j = k+ 1: n/b do
aij ← aij − ℓikukj

end for
end for

end for
2n3/3 flops for unsymmetric A
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Seismic imaging in geophysics
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(3D EAGE/SEG overthrust
model)

(credits: SEISCOPE project)

=⇒

Frequency domain FWI (Full-Wave
Inversion)

Helmholtz equations

Complex Unsym. sparse matrix A
Multiple (very) sparse B
Required accuracy < 10−4

freq flops LU Factor Storage Peak memory

2 Hz 9.0E+11 3 GB 4 GB
4 Hz 1.6E+13 22 GB 25 GB
8 Hz 5.8E+14 247 GB 283 GB
10 Hz 2.7E+15 728 GB 984 GB

Higher frequency leads to refined model
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Seismic imaging in geophysics
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Pump from nuclear reactor

A RIS pump (circuit d’injection de
sécurité) under internal pressure

Real sym. indefinite sparse matrix A
One dense right-hand side b
Required accuracy > 10−9

n nnz flops LU LU Storage

5.4E+6 2.1E+8 1.8E+13 56 GB

Number of delayed pivots = 79k
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TOP500 ranking

Since the 1990s, the TOP500 list ranks the world’s most powerful
supercomputers based on how fast they can solve a dense linear
system of equations Ax = b

June 2022:
Frontier achieves
1.1 ExaFLOPS

Jack Dongarra
(Turing Award 2021)
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Benefits of lowering the precision

• Storage, data movement and communications are all
proportional to total number of bits (mantissa + exponent)
lower precision⇒ lighter computations

• Speed of computations also generally proportional
On most computers, fp32 is twice faster than fp64 ( why?)
lower precision⇒ faster computations

• Power consumption is proportional to the square of the
number of mantissa bits. Thus:
◦ fp16 and tfloat32 (11 bits) consume 5× less energy than fp32 (24

bits)
◦ bfloat16 (8 bits) consumes 2× less energy than fp16/tfloat32 and

9× less than fp32!

lower precision⇒ greener computations

21/60



CELL processor

A notable exception: CELL processor (2006–2008)
1 CELL = 1 PPE + 8× SPE
PPE peak (GFLOPS): 6.4 (fp64) → 25.6 (fp32) 4× speedup!
SPE peak (GFLOPS): 1.8 (fp64) → 25.6 (fp32) 14× speedup!!
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Paper from 2008:  Kurzak et al (2008)

Condor Cluster (peak: 500 TFLOPS)
Made of 1760 PS3s !

IBM Roadrunner (peak: 1.7 PFLOPS)
1st on TOP500 ranking in 2008
First computer to surpass 1 PFLOP on
LINPACK benchmark!
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NVIDIA GPUs

The exception is becoming the rule for
half precision on modern hardware
NVIDIA Tesla GPUs

Peak performance (TFLOPS)
fp64 fp32 tfloat32 fp16 bfloat16 fp8

Pascal 2016 5 9 – 19 – –
Volta 2018 8 16 – 125 – –
Ampere 2020 10 19 156 312 312 –
Hopper 2022 30 60 500 1000 1000 2000
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NVIDIA GPU tensor cores

Tensor cores units available on NVIDIA GPUs V100 carry out a
4× 4 matrix multiplication in 1 clock cycle:

D = A B + C
× × × ×
× × × ×
× × × ×
× × × ×


︸ ︷︷ ︸
fp16 or fp32

=


× × × ×
× × × ×
× × × ×
× × × ×


︸ ︷︷ ︸

fp16


× × × ×
× × × ×
× × × ×
× × × ×


︸ ︷︷ ︸

fp16

+


× × × ×
× × × ×
× × × ×
× × × ×


︸ ︷︷ ︸
fp16 or fp32

Element-wise multiplication of matrix A and B is performed with at least single
precision. When .ctype or .dtype is .f32, accumulation of the intermediate values is
performed with at least single precision. When both .ctype and .dtype are
specified as .f16, the accumulation is performed with at least half precision.
The accumulation order, rounding and handling of subnormal inputs is unspecified.

On A100, support for bfloat16 and tfloat32 was added
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Other similar units

MXUs (matrix units) from Google
TPUs (Tensor Processing Units)
carry out a MAC (Multiply and Ac-
cumulate) on 256 × 256 or 128 ×
128 matrices using bfloat16

ARMv8-A CPUs have vector in-
structions for bfloat16 with fp32
accumulation

Intel Cooper Lake CPUs have
scalar FMAs with bfloat16 input
and fp32 ouptut
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Block FMA: a general framework

We consider the following framework  Blanchard et al. (2020)

• A ∈ Rb1×b, B ∈ Rb×b2 , and C ∈ Rb1×b2 ,

D︸︷︷︸
ulow or uhigh

= C︸︷︷︸
ulow or uhigh

+ A︸︷︷︸
ulow

B︸︷︷︸
ulow

• AB is computed internally in precision uhigh

|D̂− D| ≲ (b+ 1)uhigh(|C|+ |A||B|)

• Why “block FMA” ?
◦ If uhigh = 0, generalizes FMA to block of entries
◦ With uhigh  ̸= 0, it ressembles an FMA (no internal error to order
O(ulow))
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Examples of block FMA units

Year Device b1 b b2 ulow uhigh

2016 Google TPU v2 128 128 128 bfloat16 fp32
2017 Google TPU v3 128 128 128 bfloat16 fp32
2020 Google TPU v4i 128 128 128 bfloat16 fp32
2017 NVIDIA V100 4 4 4 fp16 fp32
2018 NVIDIA T4 4 4 4 fp16 fp32
2020 NVIDIA A100 8 8 4 fp16 fp32
2020 NVIDIA A100 8 8 4 bfloat16 fp32
2020 NVIDIA A100 8 4 4 tfloat32 fp32
2020 NVIDIA A100 2 4 2 fp64 fp64
2019 ARMv8.6-A 2 4 2 bfloat16 fp32
2020 Intel Cooper Lake 1 1 1 bfloat16 fp32

More to come!
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Matrix multiplication with block FMA

This algorithm computes C = AB using a block FMA, where
A,B,C ∈ Rn×n, and returns C in precision uhigh

Ã← fllow(A) and B̃← fllow(B) (if necessary)
for i = 1: n/b1 do

for j = 1: n/b2 do
Cij = 0
for k = 1: n/b do

Compute Cij = Cij + ÃikB̃kj using a block FMA
end for

end for
end for
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Matrix multiplication: error analysis

First, we convert A and B to low precision:

Ã = fllow(A) = A+∆A, |∆A| ≤ ulow|A|,
B̃ = fllow(B) = B+∆B, |∆B| ≤ ulow|B|.

Second, we compute the product:

Ĉ = ÃB̃+∆C, |∆C| ≲ nuhigh|Ã||B̃|,
= AB+∆AB+ A∆B+∆A∆B+∆C

= AB+ E, |E| ≲
(

2ulow︸ ︷︷ ︸
Conversion

+ nuhigh︸ ︷︷ ︸
Accumulation

)
|A||B|

Evaluation method Bound

Standard in precision ulow nulow
Standard in precision uhigh nuhigh
Block FMA 2ulow + nuhigh
⇒ reduction by a factor min

(
n/2,ulow/uhigh

)
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Matrix multiplication with tensor cores

104 105 106 107

10−7

10−5

10−3

10−1

101

Matrix size: n

B
a
ck
w
a
rd

er
ro
r

fp16
tensor cores

fp32

Warning! NVIDIA tensor cores do not conform to the IEEE
standard, and exhibit the following special behaviors (not
documented by NVIDIA!)  Fasi et al. (2021)

• The additions in the product AB are performed with the
round-towards-zero rounding mode.

• The order of the additions is variable and starts with the largest
element.

• Tensor cores are non-monotonic!
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Solving Ax = b

Standard method to solve Ax = b:

1. Factorize A = LU, where L and U are lower and upper triangular

2. Solve Ly = b and Ux = y

An algorithm to refine the solution: iterative refinement (IR)
Solve Ax1 = b as above at precision ulow
for i = 1: nsteps do

ri = b− Axi at precision uhigh
Solve Adi = ri via di = U−1(L−1ri) at precision ulow
xi+1 = xi + di at precision uhigh

end for

• Most of the flops in precision ulow (only O(n2) in precision uhigh)
• Convergence to uhigh accuracy guaranteed as long as
κ(A)ulow < 1
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IR with fp32 LU (CELL processor)

 Langou et al (2006)
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LU factorization (Gaussian elimination)

• Objective: given A ∈ Rn×n, compute lower and upper triangular
matrices L and U such that A = LU

• ∀i, j aij =
∑min(i,j)

k=1 ℓikukj

for k = 1: n do
ukk = akk (ℓkk = 1)
for i = k+ 1: n do

ℓik = aik/ukk and uki = aki
end for
for i = k+ 1: n/b do

for j = k+ 1: n/b do
aij ← aij − ℓikukj

end for
end for

end for
• 2n3/3 flops
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Block LU factorization

with block FMA

• Block version to use matrix–matrix operations

• With a block FMA: A ∈ Rn×n is given in precision uhigh, and L
and U are returned in precision uFMA

for k = 1: n/b do
Factorize LkkUkk = Akk (with unblocked alg.)
for i = k+ 1: n/b do

Solve LikUkk = Aik and LkkUki = Aki for Lik and Uki
end for
for i = k+ 1: n/b do

for j = k+ 1: n/b do

L̃ik ← fllow(Lik) and Ũki ← fllow(Uki)

Aij ← Aij − L̃ikŨkj

using a block FMA

end for
end for

end for

• O(n3) part of the flops done with block FMA
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LU factorization with tensor cores

Error analysis for LU follows from matrix multiplication analysis
and gives same bounds to first order  Blanchard et al. (2020)

Standard fp16 Tensor cores Standard fp32

nu16 2u16 + nu32 nu32
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Impact on iterative refinement

Results from  Haidar et al. (2018)

• TC accuracy boost can be critical!
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• LU factorization is traditionally a compute-bound operation…
• With Tensor Cores, flops are 8× faster
• Matrix is stored in fp32⇒ data movement is unchanged !
⇒ LU with tensor cores becomes memory-bound !
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• Idea: store matrix in fp16
• Problem: huge accuracy loss, tensor cores accuracy boost
completely negated
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Reducing data movement

Two ingredients to reduce data movement with no accuracy loss:

1. Mixed fp16/fp32 representation

2. Right-looking→ left-looking factorization

Matrix after 2 steps:

fp16

fp32

O(n3) fp32 + O(n2) fp16→ O(n2) fp32 + O(n3) fp16
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Experimental results
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Nearly 50 TFLOPS without significantly impacting accuracy
 Lopez and M. (2020)
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The HPL-AI benchmark

• Standard TOP500 ranking based on the LINPACK benchmark:
solve Ax = b, with A a dense unsym. matrix with no limitation
of size, by using LU factorization, with all computations in
64-bit arithmetic

• The HPL-AI benchmark: solve Ax = b to 64-bit accuracy, but
use of lower precisions in intermediate computations is allowed

The HPL-AI benchmark seeks to highlight the emerging convergence
of high-performance computing (HPC) and artificial intelligence (AI)
workloads

• Most implementations rely on fp16 or bfloat16 LU followed by
IR in fp64
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The HPL-AI benchmark
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The HPL-AI benchmark

With mixed precision, exascale was reached in 2020!
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IR for industrial problems

Matrix time (s) memory (GB)
fp64 fp32→fp64 fp64 fp32→fp64

ElectroPhys10M 265.2 154.0 272.0 138.0
Bump_2911 205.4 129.3 135.7 68.4
DrivAer6M 91.8 67.6 81.6 41.7
Queen_4147 284.2 165.2 178.0 89.8
tminlet3M 294.5 136.2 241.1 121.0
perf009ar 46.1 57.5 55.6 28.9
elasticity-3d 156.7 — 153.0 —
lfm_aug5M 536.2 254.5 312.0 157.0
Long_Coup_dt0 67.2 46.6 52.9 26.7
CarBody25M 62.9 — 77.6 —
thmgaz 97.6 65.4 192.0 97.7

• Up to 2× time and memory reduction
• Convergence can be slow or impossible for ill-conditioned
problems
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Sparse matrices


4 0 0 0
0 7 0 3
−2 0 0 0
0 0 5 0

 ⇒

ROW_IND COL_IND VAL
1
2
4
5




1
2
4
1
3




4
7
3
−2
5


Gaussian elimination: aij ← aij − aikakj
⇒ aij becomes nonzero if aik and akj are nonzero: fill-in

Interest of
permuting
a matrix:


X X X X X
X X 0 0 0
X 0 X 0 0
X 0 0 X 0
X 0 0 0 X

 1↔ 5


X 0 0 0 X
0 X 0 0 X
0 0 X 0 X
0 0 0 X X
X X X X X


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Sparse matrices

Example: dwt_592.rua, structural computing on a submarine.

Original matrix Factorized matrix

0 100 200 300 400 500

0

100

200

300

400

500

nz = 5104
0 100 200 300 400 500

0

100

200

300

400

500

nz = 58202

Computational savings from sparsity heavily dependent on matrix
structure and permutation.
However, for regular 3D problems (e.g. PDE discretized on a
cube): Flops: O(n3)→ O(n2), Storage: O(n2)→ O(n4/3)
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Dropping approximations (sparsification)

Dropping: replace with zero any value sufficiently small

|aij| ≤ ϵ∥A∥ ⇒ aij ← 0

sparse A

drop−−−→

sparser A

LU factors

drop−−−→
 

incomplete LU
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Dropping approximations (sparsification)

Dropping: replace with zero any value sufficiently small{
|ℓijujj| ≤ ϵ∥A∥ ⇒ ℓij ← 0
|uij| ≤ ϵ∥A∥ ⇒ uij ← 0
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Incomplete LU factorization

for k = 1: n do
for j = k : n do

ukj = akj −
∑k−1

i=1 ℓkiuij
if |ukj| ≤ ϵ∥A∥ then ukj = 0

end for
for i = k+ 1: n do

ℓik = (aik −
∑k−1

j=1 ℓijujk)/ukk
if |ℓikukk| ≤ ϵ∥A∥ then ℓik = 0

end for
end for

• Incomplete factorization: drop entries < ε from LU factors
• Alternatively, do not update aij ← aij − aikakj if aij is zero (i.e.,
enforce same sparsity pattern for LU as for A)
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Data sparsity

Take a dense matrix B of size b× b. Compute its SVD B = XSY:
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Data sparsity

Take a dense matrix B of size b× b. Compute its SVD B = XSY:

k = min {k ≤ b;σk+1 ≤ ε} is the numerical rank at accuracy ε

B̃ = X1S1Y1 is a low-rank approximation to B: ∥B− B̃∥2 ≤ ε

Storage savings: b2/2bk = b/2k
Similar flops savings when used in most linear algebra kernels

In practice SVD is too expensive⇒ use other methods, e.g.,
randomized, comm avoiding

49/60



Data sparse matrices

Data sparse matrices generalize numerically sparse matrices:
approximate entire blocks rather than single entries

σ

τ

hig
h r

an
k

low rank

complete domain

A block B represents the interaction
between two subdomains σ and τ .

Large distance⇔ low numerical rank,
even for small ε!
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Data sparse matrices

Many different block partitionings possible

BLR matrix H-matrix

• Simple, flat structure
• O(n3)→ O(n2) flops
(dense→ data sparse)

• O(n2)→ O(n4/3) flops
(sparse→ sparse+data sparse)

• Complex, hierarchical structure
• O(n3)→ O(n log2 n) flops
(dense→ data sparse)

• O(n2)→ O(n) flops
(sparse→ sparse+data sparse)
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Standard BLR factorization

• Adapt blocked LU algorithm to exploit low-rank blocks
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Standard BLR factorization

+

• Adapt blocked LU algorithm to exploit low-rank blocks
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Challenges with data sparse algorithms

b

b

→ b

r b

• Low granularities: low-rank matrices have much smaller
granularities (r≪ b), making computations inefficient (BLAS-2
→ BLAS-3, less data reuse)

• Memory/communication-boundness: multiplying two b× b
dense matrices costs 2b3 flops, whereas multiplying two b× b
rank-r matrices costs 4br2 flops. Hence
◦ Flops ratio: 1

2 ·
(b
r

)2
Ex: r = b/10⇒ 50× less flops

◦ BUT storage ratio: 1
2 ·

b
r Ex: r = b/10⇒ 5× less storage

⇒ relative weight of memory/communications much higher
than for dense computations!
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Right-looking Vs. Left-looking BLR

FR time BLR time
RL LL RL LL

Update 338 336 110 67
Total 424 421 221 175

read once

written at each step

RL factorization

read at each step

written once

LL factorization

⇒ Lower volume of memory transfers in LL
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Low-rank update accumulation (LUA)

+

Outer Product benchmark
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Impact of machine properties on BLR: roofline model

specs time (s) for
peak bw BLR factorization

(GF/s) (GB/s) RL LL LUA

grunch (28 threads) 37 57 248 228 196
brunch (24 threads) 46 102 221 175 167

Arithmetic Intensity in BLR:
• LL > RL (lower volume of
memory transfers)

• LUA > LL (higher
granularities⇒ more efficient
cache use)

56/60



Impact of machine properties on BLR: roofline model

specs time (s) for
peak bw BLR factorization

(GF/s) (GB/s) RL LL LUA

grunch (28 threads) 37 57 248 228 196
brunch (24 threads) 46 102 221 175 167

Arithmetic Intensity in BLR:
• LL > RL (lower volume of
memory transfers)

• LUA > LL (higher
granularities⇒ more efficient
cache use)

Arithmetic Intensity
RL LL LUA

G
F

/s

0

10

20

30

40

50
brunch

grunch

56/60



Impact of machine properties on BLR: roofline model

specs time (s) for
peak bw BLR factorization

(GF/s) (GB/s) RL LL LUA

grunch (28 threads) 37 57 248 228 196
brunch (24 threads) 46 102 221 175 167

Arithmetic Intensity in BLR:
• LL > RL (lower volume of
memory transfers)

• LUA > LL (higher
granularities⇒ more efficient
cache use)

Arithmetic Intensity
RL LL LUA

G
F

/s

0

10

20

30

40

50
brunch

grunch

56/60



Impact of machine properties on BLR: roofline model

specs time (s) for
peak bw BLR factorization

(GF/s) (GB/s) RL LL LUA

grunch (28 threads) 37 57 248 228 196
brunch (24 threads) 46 102 221 175 167

Arithmetic Intensity in BLR:
• LL > RL (lower volume of
memory transfers)

• LUA > LL (higher
granularities⇒ more efficient
cache use)

Arithmetic Intensity
RL LL LUA

G
F

/s

0

10

20

30

40

50
brunch

grunch

56/60



Impact on industrial applications
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Structural mechanics
Matrix of order 8M
Required accuracy: 10−9

Seismic imaging
Matrix of order 17M
Required accuracy: 10−3

Electromagnetism
Matrix of order 30M
Required accuracy: 10−7

Results on 900 cores:

factorization time (s) memory/proc (GB)
application before after ratio before after gain

structural 289.3 104.9 2.5 7.9 5.9 25%
seismic 617.0 123.4 4.9 13.3 10.4 22%
electromag. 1307.4 233.8 5.3 20.6 14.4 30%
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Conclusions

• Today’s computing is full of errors⇒ today’s HPC should be
approximate
◦ Low precisions, iterative refinement
◦ Data sparsisty, low-rank approximations
◦ We will see how to combine them in AFAE

• Fundamental to develop rigorous underlying theory to know
what and when to approximate! (more on this in AFAE)

• But also fundamental to go all the way to the end-user
application to assess the true potential of the methods

⇒ Approximate HPC is a challenging but exciting field!
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Sujets de stages et thèses

• Sujet 1: méthodes itératives préconditionnées en précision
mixte (LIP6, Paris)
◦ Quel choix de préconditionneur?
◦ Comment mélanger les précisions?
◦ Analyse théorique d’erreur pour répondre à ces questions
◦ Evaluation sur applications industrielles d’IFP Energies Nouvelles

• Sujet 2: formats BLR pour la taille extrême (LIP6, Paris)
◦ Du fait de sa complexité superlinéaire, le BLR atteint ses limites

pour des problèmes de taille extrême (∼100M)
◦ Représentations multiniveaux et/ou partagées pour aller plus loin
◦ Développement et optimisation de ces nouveaux formats dans un

logiciel libre mondialement reconnu (MUMPS)
◦ Evaluation sur applications industrielles de Mumps Technologies

• Sujet 3: approximations de rang faible randomisées en
précision mixte (IRIT, Toulouse)

Sujet de stages détaillés:
https://bit.ly/stagesHPC
Contact: theo.mary@lip6.fr60/60
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