

LARGE-SCALE 3D CSEM MODELING WITH A BLR MUMPS SOLVER

Sebastien de la Kethulle de Ryhove, Piyoosh Jaysaval & Daniil V. Shantsev EMGS R&D, Norway

MUMPS Users Days, Grenoble, France June 1-2, 2017

Our Story

- 2013 MUMPS Users Days (guests)
- 2014-2015 MUMPS EMGS research project
- 2017 Geophys. J. Intl. article
- 2017 MUMPS Users Days again
- 2014 ... Use of MUMPS in EMGS for research / production

Geophysical Journal International

doi: 10.1093/gji/ggx106

Geophys. J. Int. (2017) **209**, 1558–1571 Advance Access publication 2017 March 15 GJI Geomagnetism, rock magnetism and palaeomagnetism

Large-scale 3-D EM modelling with a Block Low-Rank multifrontal direct solver

Daniil V. Shantsev,^{1,2} Piyoosh Jaysaval,^{2,3} Sébastien de la Kethulle de Ryhove,¹ Patrick R. Amestoy,⁴ Alfredo Buttari,⁵ Jean-Yves L'Excellent⁶ and Theo Mary⁷

Outline

- Marine Controlled-source EM (CSEM) method
- CSEM forward & inverse problems
- MUMPS-BLR for CSEM problems
- Air effects
- Conclusions

Marine CSEM survey

2D grid, typically ~100 receivers

EMGS

- 2-4 vessels
- ~ 200 employees
- ~1000 surveys
- ~ 100,000 km² data library (10-20% area of France)
- R&D group: ~10 people

emgs

CSEM Forward & Inverse problems

Forward problem

Can be the preferred choice for very large number of RHSs

Equation to solve: (without displacement current)

$$\nabla \times \nabla \times \mathbf{E} - i\omega\mu_0\sigma\mathbf{E} = i\omega\mu_0 J_{\text{source}}$$

This study:

- VTI
- Finite-difference based on Yee grid
- Unknowns: E_x , E_y , E_z
- 13 non-zero elements in each row of *A*
- Symmetric A

CSEM data

Number of receivers: $N_r \sim 100$ Number of source positions: $N_s \sim 10,000$

Data from one receiver at one frequency

- ~200 datapoints per line (for 100 m sampling, 20 km line)
- ~5 source lines for each receiver
- Amplitude + phase
- 3-5 frequencies
- 2 4 field components (E_x, E_y)
- ~100 receivers
- Total: a few millions of data samples

Inversion algorithm

Inversion algorithm

Inversion example

Inversion algorithm

Inversion algorithm

emgs

80

40

0

-10

10

5

-5

0

5

 10^{-12}

 10^{-14}

-10

-5

0

Offset [km]

Spot the difference.

10

Inversion algorithm

🔤 emgs

Quasi-Newton and Gauss-Newton inversion

- $\varepsilon(\mathbf{m}) = \varepsilon_{\text{data}}(\mathbf{m}) + \lambda \varepsilon_{\text{reg}}(\mathbf{m}) = \sum_{k=1}^{N} r_k r_k^* + \lambda \varepsilon_{\text{reg}}(\mathbf{m})$ Cost function to be minimized: ۲
- Model update $\Delta \mathbf{m}$ is found from: $(H_{\text{data}} + \lambda H_{\text{reg}})\Delta \mathbf{m} = -\mathbf{g}$
- The Hessian matrix is $H_{data} \approx J^{\dagger}J + c.c.$ ۲

Gradient vector

Jacobian (sensitivity) matrix

Hessian H Number of RHSs in forward problem Quasi-Newton (e.g. BFGS) approximated using successive gradients g $\sim N_r$ ~ 100 computed from Jacobian $H_{\text{data}} \approx J^{\dagger}J + \text{c. c.}$ **Gauss-Newton** $\sim N_{\rm s} + N_r \sim 10,000$

Gauss-Newton is better

- Gauss Newton is more expensive, but a much powerful method ۲
- It will take over in the future: ٠
 - 2008: Launch BFGS

1500.0

2250.0

0.000 Depth

3750.0

4500.0

5250.0

6000.0

emgs

Ξ

2016: Launch Gauss-Newton

SEG 2016:

Comparing large-scale 3D Gauss-Newton and BFGS CSEM inversions. Anh Kiet Nguyen, Janniche Iren Nordskag, Torgeir Wiik, Astrid Kornberg Bjørke, Linus Boman, Ole Martin Pedersen, Joseph Ribaudo, and Rune Mittet (2016) Comparing large-scale 3D Gauss-Newton and BFGS CSEM inversions. SEG Technical Program Expanded Abstracts 2016: pp. 872-877. doi: 10.1190/segam2016-13858633.1

Gauss-Newton 3D inv

X [m]

emgs

MUMPS for CSEM

MUMPS for CSEM: previous studies

		Number of unknowns
Streich	Geophysics 2009	0.9 millions
da Silva et al.	Geophysics 2012	4.2 millions
Puzyrev et al.	Comp & Geos. 2016	7.8 millions

<u>Goals of the present study</u> :

- Use **BLR** for factorization of CSEM matrices
- Test problems with >20 millions unknowns
- Compare MUMPS vs Iterative solver

Models and Matrices

Half-space + Target H-model											
Grid	Matrix	$\mathbf{d}\mathbf{x} = \mathbf{d}\mathbf{y}$	dz	$N_x = N_y$		Nz	Number of unknowns	Number of non- zero elements			
<i>G</i> 1	H1	400	200	64		74	909,312	11,658644			
<i>G</i> 2	H3 / D3	200	200	114		114		74	2,885,112	37,148,644	
G3	H17	100	100	214		127	17,448,276	225,626,874			
SEAM S-model											
Grid	Matrix	$\mathbf{d}\mathbf{x} = \mathbf{d}\mathbf{y}$	dz	N _x	Ny	Nz	Number of unknowns	Number of non- zero elements			
<i>G</i> 4	S 3	480	80	98	87	130	3,325,140	42,836,538			
<i>G</i> 5	S21	240	40	181	160	237	20,590,560	266,361,112			

SEAM model:

- Created by SEG Advanced Modelling
- Salt body
- Representative for Gulf of Mexico

Block-low-rank (BLR) algorithm

Input: a symmetric matrix **A** of $p \times p$ blocks **Output:** the factors matrices **L**, **D**

for
$$k = 1$$
 to p do
Factor: $\mathbf{L}_{kk} \mathbf{D}_{kk} \mathbf{L}_{kk}^{T} = \mathbf{A}_{kk}$
for $i = k + 1$ to p do
Solve: $\mathbf{L}_{ik} = \mathbf{A}_{ik} \mathbf{L}_{kk}^{-T} \mathbf{D}_{kk}^{-1}$
Compress: $\mathbf{L}_{ik} \approx \mathbf{Y}_{ik} \mathbf{Z}_{ik}^{T}$
for $j = k + 1$ to i do
Update: $\mathbf{A}_{ij} = \mathbf{A}_{ij} - \mathbf{L}_{ik} \mathbf{D}_{kk} \mathbf{L}_{jk}^{T}$
 $\approx \mathbf{A}_{ij} - \mathbf{Y}_{ik} (\mathbf{Z}_{ik}^{T} \mathbf{D}_{kk} \mathbf{Z}_{jk}) \mathbf{Y}_{jk}^{T}$
end for
end for

end for

BLR format is used to compress fronts

- The compression accuracy is controlled by the BLR threshold ϵ that varied from 10^-4 to 10^-16
- Block size: 256 (or 416 for largest matrix, S21)

BLR-compressed matrix structure. Block darkness = Compression rate Figures from Amestoy et al. 2015

emgs

Spot the difference.

BLR savings

Weak dependence:

- Choice of the BLR threshold is not critical
- Large gains even for strict accuracy requirements

BLR savings

emgs

Hardware:

- EOS supercomputer
- 90 MPI tasks × 10 threads

Hardware details:

CALMIP supercomputer EOS – a BULLx DLC system, 612 nodes, each composed of two Intel Ivybridge processors with 10 cores (total 12 240 cores) running at 2.8 GHz per node and 64 GB/node, <u>https://www.calmip.univ-toulouse.fr/</u>

NB:

Memory reduction due to storage savings has not yet been implemented for these tests, hence, the potential gains in run-time are even larger

Scalability

Robust BLR-gains independent of the number of cores

emgs

Air effects

Air-wave

In marine CSEM variations of properties (resistivity is extreme)

- Air has almost infinite resistivity
- EM waves propagate there fast (speed of light) and without attenuation
- Air effectively connects distant parts of the model

Shallow-water & Deep-water models

The number of cells is the same for both models, i.e. the matrices have identical structure

BLR & Full Rank (FR) flops

emgs

BLR - Shallow

BLR - Deep

0.25 Ωm	
0.25 Ωm	Water
	Formation
1 - 100	Ωm

 $14 \cdot 10^{12}$

9%

Flops complexity

• 3D Seismic: m = 1.78Amestoy et al. SIAM J. Sci. Comput 2015

Factor storage complexity

emgs

Conclusions

Number of RHS estimates

Example CSEM survey over the SEAM model

- $N_r = 11 \times 11 = 121$ receiver
- 22 towlines
- each towline has 150 shot points (30 km / 200 m)
- Source positions in total: $N_s = 22 \times 150 = 3300$
- Field components: $N_{fields} = 4$ (Ex, Ey, Hx, Hy)

BFGS inversion:

$$N_{RHS} = N_r \times N_{fields} \times 2 = 986$$

Gauss-Newton inversion:

$$N_{RHS} = N_s + N_r \times N_{fields} = 3784$$

MUMPS-BLR vs Iterative solver

Inversion	Number of RHS	FR solver times (sec)				BLR solver times (sec)				Iterative solver
		Analysis	Factoriz	Solution	Total	Analysis	Factoriz	Solution	Total	Total
BFGS	968	87	2803	965	3856	103	1113	965	2181	803
Gauss- Newton	3784	87	2803	3772	6663	103	1113	3772	4988	3141

- Iterative solver always wins for BFGS inversion (<1000 RHSs) •
- Iterative solver always wins for full-rank MUMPS
- Thanks to the MUMPS team!! Gauss-Newton: due to BLR factorization became faster than iterative solver!
- MUMPS solution time (1 sec / RHS) is currently slower than iterative solver \mathfrak{S} ۲
- BLR can also be applied to the solution phase, and MUMPS may win at the end \odot

SPOT THE DIFFERENCE

Thank you