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ABSTRACT

Wide-azimuth long-offset ocean bottom cable (OBC)/ocean
bottom node surveys provide a suitable framework to perform
computationally efficient frequency-domain full-waveform inver-
sion (FWI) with a few discrete frequencies. Frequency-domain
seismic modeling is performed efficiently with moderate compu-
tational resources for a large number of sources with a sparse mul-
tifrontal direct solver (Gauss-elimination techniques for sparse
matrices). Approximate solutions of the time-harmonic wave
equation are computed using a block low-rank (BLR) approxima-
tion, leading to a significant reduction in the operation count and
in the volume of communication during the lower upper (LU)
factorization as well as offering great potential for reduction in
the memory demand. Moreover, the sparsity of the seismic source
vectors is exploited to speed up the forward elimination step dur-
ing the computation of the monochromatic wavefields. The rel-
evance and the computational efficiency of the frequency-domain

FWI performed in the viscoacoustic vertical transverse isotropic
(VTI) approximation was tested with a real 3D OBC case study
from the North Sea. The FWI subsurface models indicate a dra-
matic resolution improvement relative to the initial model built by
reflection traveltime tomography. The amplitude errors intro-
duced in the modeled wavefields by the BLR approximation for
different low-rank thresholds have a negligible footprint in the
FWI results. With respect to a standard multifrontal sparse direct
factorization, and without compromise of the accuracy of the im-
aging, the BLR approximation can bring a reduction of the LU
factor size by a factor of up to three. This reduction is not yet
exploited to reduce the effective memory usage (ongoing work).
The flop reduction can be larger than a factor of 10 and can bring
a factor of time reduction of around three. Moreover, this reduc-
tion factor tends to increase with frequency, namely with the ma-
trix size. Frequency-domain viscoacoustic VTI FWI can be
viewed as an efficient tool to build an initial model for elastic
FWI of 4C OBC data.

INTRODUCTION

Full-waveform inversion (FWI) (Tarantola, 1984) is now rou-
tinely used in the oil industry as part of the seismic imaging work-
flow, at least in soft geologic environments, such as the North Sea
that make the acoustic parameterization of the subsurface accept-

able (for a discussion on this latter issue, see Barnes and Charara,
2009; Plessix and Perez Solano, 2015). However, it remains a com-
putational challenge due to the huge number of full-waveform seis-
mic modelings to be performed over the iterations of the FWI
optimization. Seismic modeling and FWI can be performed either
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in the time domain or in the frequency domain (e.g., Plessix, 2007;
Vigh and Starr, 2008b; Virieux and Operto, 2009). Hybrid approaches
are also possible, where seismic modeling and inversion are per-
formed in the time and frequency domain, respectively (Sirgue et al.,
2008). In these hybrid approaches, the monochromatic wavefields re-
quired to perform the inversion in the frequency domain are built on
the fly in the loop over time steps by discrete Fourier transform during
time-domain modeling (Nihei and Li, 2007). Today, most FWI codes
are fully implemented in the time domain because the good scalability
and the moderate memory demand of the initial-condition evolution
problem underlying the forward problem allow one to tackle a wide
range of applications in terms of target dimension, survey design, and
wave physics. However, the time-domain formulation also requires
significant computational resources to be efficient when thousands
or tens of thousands of (reciprocal) seismic sources are processed in
parallel.
A common parallel strategy consists of distributing these seismic

sources over processors. This embarrassing parallel strategy can be
combined with shared-memory parallelism and/or domain decompo-
sition of the computational mesh, if enough computational resources
are available. Strategies based on source subsampling (Warner et al.,
2013) or source blending with random or deterministic (i.e., plane-
wave decomposition) encoding (Vigh and Starr, 2008a; Krebs et al.,
2009) are commonly used to reduce the number of seismic modelings
per FWI iteration. However, these strategies, which reduce the data
fold or add random noise in the FWI gradient at each iteration, require
increasing the number of iterations to reach a sufficient signal-to-noise
ratio in the subsurface models. Considering a computational mesh
with n3 degrees of freedom, an acquisition with n2 seismic sources
and assuming that the number of time steps scales to n, the time com-
plexity of time-domain modeling scales to Oðn6Þ (Plessix, 2007).
Alternatively, seismic modeling and FWI can be performed in the

frequency domain (e.g., Pratt, 1999; Virieux and Operto, 2009). A
few applications of 3D frequency-domain FWI on synthetic or real
data are presented in Ben Hadj Ali et al. (2008), Plessix (2009), Pet-
rov and Newman (2014), Operto et al. (2015). Solving the time-har-
monic wave equation is a stationary boundary-value problem, which
requires solving a large and sparse complex-valued system of linear
equations with multiple right-hand sides per frequency (e.g., Marfurt,
1984). The sparse right-hand sides of these systems are the seismic
sources, the solutions are monochromatic wavefields, and the coef-
ficients of the so-called impedance matrix depend on the frequency
and the subsurface properties we want to image. This linear system
can be solved either with sparse direct methods, namely, Gauss-elimi-
nation techniques (e.g., Operto et al., 2007), iterative solvers (e.g.,
Riyanti et al., 2006; Plessix, 2007; Petrov and Newman, 2012; Li
et al., 2015), or a combination of both in the framework of domain
decomposition methods (e.g., Sourbier et al., 2011).
One pitfall of iterative methods is the design of an efficient pre-

conditioner considering that the wave-equation operator is indefinite.
More precisely, the iterative approach is competitive with the time-
domain approach in terms of operation count as long as the number of
iterations can be made independent of the frequency, i.e., the problem
size (Plessix, 2007). It seems that this objective has not yet been fully
achieved, although using a damped wave equation as a preconditioner
or as such for early arrival modeling decreases the iteration count
efficiently (Erlangga and Nabben, 2008; Petrov and Newman,
2012). Processing a large number of right sides leads us more nat-
urally toward direct methods because the computation of the solu-

tions by forward/backward substitutions is quite efficient, once a
lower upper (LU) factorization of the impedance matrix has been per-
formed. The pitfalls of the direct methods are the memory demand
and the limited scalability of the LU factorization that result from the
fill-in of the impedance matrix generated during the LU factorization.
Fill-reducing matrix orderings based on nested dissections are com-
monly used to reduce the memory complexity by one order of mag-
nitude, that is Oðn4Þ instead of Oðn5Þ (George and Liu, 1981). The
time complexity of the substitution step for n2 right-hand sides scales
to Oðn6Þ accordingly, and it is the same as the complexity of time-
domain modeling. The time complexity of one LU factorization (for
sparse matrices as those considered in this study) also scales to
Oðn6Þ. The conclusions that can be drawn about the relevancy of
the direct solver-based approach from this complexity analysis are
twofold: the identity between the time complexity of the LU factori-
zation and the solution step for n2 right-hand sides requires the num-
ber of right-hand sides to scale to n2. Moreover, the identity between
the time complexity of one LU factorization and time-domain mod-
eling for n2 right-hand sides requires us to limit the inversion to a few
discrete frequencies. Both requirements are fulfilled by wide-azimuth
long-offset acquisitions implemented with stationary-receiver geom-
etries (ocean bottom cable [OBC] or ocean bottom node [OBN]).
On the one hand, stationary-receiver geometries involve a large num-

ber of sources and associated receivers in the computational domain,
from which the LU factorization is performed. On the other hand, the
wide-azimuth long-offset coverage provided by these geometries gen-
erates a strong redundancy in the wavenumber sampling of the subsur-
face target. This multifold wavenumber coverage results from the
redundant contribution of finely sampled (temporal) frequencies and
a broad range of finely sampled scattering angles provided by dense
point-source acquisitions (Pratt and Worthington, 1990). The strategy
consisting of coarsening the frequency sampling in the data space to
remove the redundancy of the wavenumber sampling in the model
space has been referred to as efficient FWI by Sirgue and Pratt (2004).
The focus of this study is to present an up-to-date status of the

computational efficiency of 3D frequency-domain FWI based on
sparse direct solvers with a real OBC data case study from the North
Sea. We have presented a first application of 3D frequency-domain
FWI on the North Sea OBC data set in Operto et al. (2015), which is
focused on a detailed quality control of the FWI results based on
seismic modeling and source wavelet estimation. Here, we show the
benefits resulting from recent advances in the development of a mas-
sively parallel sparse direct solver for FWI applications. In this study,
we solve the linear system resulting from the discretization of the
time-harmonic wave equation with the MUMPS multifrontal mas-
sively parallel solver (Amestoy et al., 2001, 2006) that performs
the LU factorization with a multifrontal method (Duff and Reid, 1983).
Compared with the results shown in Operto et al. (2015), ob-

tained with the public release 5.0.1 of MUMPS (MUMPS team,
2015), two recent developments in this solver, which will be made
available in the next major release, provide further reduction of the
computational cost. First, we speedup the forward substitution step
by exploiting the sparsity of the right-hand sides, namely the seis-
mic source vectors, by extending the algorithmic work done for
computing selected entries of the inverse of a matrix (Amestoy et al.,
2015d). Second, we reduce the operation count of the LU factori-
zation by exploiting the existence of blockwise low-rank approxim-
ants of the elliptic partial differential operators embedded in the
time-harmonic wave equation (Amestoy et al., 2015a). The gov-
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erning idea consists of recasting the so-called frontal matrices of the
elimination tree in a block representation and compress blocks that
have low-rank properties; the effectiveness and accuracy of this com-
pression is controlled by a prescribed threshold. In the remainder of
this study, we will refer to this approach as the block low-rank (BLR)
format-based approximation. This BLR format is an alternative to
other low-rank formats, such as the hierarchically semiseparable
(HSS) format that has been proposed for seismic modeling by Wang
et al. (2011, 2012a, 2012b). Even though the theoretical complexity
of the HSS format is better than that of the BLR format, the simplicity
and flexibility of the BLR format makes it easy to use in the context
of a general purpose, algebraic multifrontal solver. Recent work has
analyzed the theoretical bounds on the complexity of the BLR format
(Amestoy et al., 2016b). In this study, we compare these theoretical
results with numerical experiments carried out with a 3D FWI appli-
cation and we illustrate the potential of the proposed format in reduc-
ing the complexity of the multifrontal solver.
This paper is organized as follows: The first section reviews the

main ingredients of the forward-modeling engine interfaced with
the frequency-domain FWI code. We first briefly review the fi-
nite-difference stencil with which the time-harmonic wave equation
is discretized. This stencil must satisfy some specifications so that
the fill-in of the impedance matrix is minimized during the LU fac-
torization. The reader is referred to Operto et al. (2014) for a more
detailed description of this finite-difference stencil. Then, we review
the basic principles of the multifrontal method, its BLR approxima-
tion and the strategy implemented to exploit the sparsity of the
source vectors. The reader is referred to Amestoy et al. (2015a)
for a more detailed description of the BLR multifrontal method.
The second section presents the application on the OBC data from
the North Sea.We first show the nature of the errors introduced by the
BLR approximation in the monochromatic wavefields and quantify
the backward errors for different frequencies. For a given BLR
threshold, the ratio between the backward errors obtained with the
BLR and the full-rank (FR) solvers decreases with frequency. This
suggests that a more aggressive threshold can be used as the fre-
quency increases, hence leading to more efficient compression as
the problem size grows. Then, we show that the modeling errors have
a negligible impact in the FWI results. The cost of the FWI in terms
of memory and time confirms that the computational saving provided
by the BLR solver relative to the FR solver increases with frequency
(namely, matrix size).We concludewith a strong and weak scalability
analysis of the FR and BLR solvers for the subsurface models and
frequencies considered in this case study.
The limited computational resources that have been used to perform

this case study and the limited computational time required to perform
the FWI in the 3.5–10 Hz frequency band using all the sources and
receivers of the survey at each FWI iteration highlights the computa-
tional efficiency of our frequency-domain approach to process station-
ary recording surveys in the viscoacoustic vertical transverse isotropic
(VTI) approximation.

METHODS

Frequency-domain modeling with block low-rank
multifrontal solvers

Finite-difference stencils for frequency-domain seismic modeling

Frequency-domain seismic modeling with direct solvers defines
some stringent specifications, whose objective is to minimize the

computational burden of the LU factorization. The first specifica-
tion aims to minimize the dependencies in the adjacency graph of
the matrix, and hence the fill-in of the impedance matrix during the
LU factorization. The second one aims to obtain accurate solutions
for a coarse discretization that is matched to the spatial resolution of
the FWI (i.e., four grid points per wavelengths according to a theo-
retical resolution of half a wavelength). The first specification can
be fulfilled by minimizing the numerical bandwidth and optimizing
the sparsity of the impedance matrix using finite-difference stencils
with compact spatial support. This precludes using conventional
high-order accurate stencils. Instead, accurate stencils are designed
by linearly combining different second-order accurate stencils that
are built by discretizing the differential operators on different coor-
dinate systems with a spreading of the mass term over the coeffi-
cients of the stencil (Jo et al., 1996; Stekl and Pratt, 1998; Min et al.,
2000; Hustedt et al., 2004; Gosselin-Cliche and Giroux, 2014).
Such stencils are generally designed for the second-order acous-
tic/elastic wave equations, by opposition to first-order velocity-
stress equations, as the second-order formulation involves fewer
wavefield components, hence limiting the dimension of the imped-
ance matrix accordingly. For the 3D viscoacoustic wave equation,
the resulting finite-difference stencil has 27 nonzero coefficients
distributed over two grid intervals and provides accurate solution
for arbitrary coarse grids provided that optimal coefficients are esti-
mated by fitting the discrete dispersion equation in homogeneous me-
dia (Operto et al., 2007; Brossier et al., 2010). The viscoacoustic 27-
point stencil was recently extended to account for VTI anisotropy
without generating significant computational overhead (Operto et al.,
2014).
The viscoacoustic VTI 27-point stencil results from the discreti-

zation of the following equations:

Ahph ¼ s 0; (1)

pv ¼ Avph þ s 0 0; (2)

p ¼ 1

3
ð2ph þ pvÞ; (3)

where ph, pv, and p are the so-called horizontal pressure, vertical
pressure, and (physical) pressure wavefields, respectively. The op-
erators Ah and Av are given by

Ah ¼ ω2

�
ω2

κ0
þ ð1þ 2ϵÞðX þ YÞ þ ffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ 2δ
p

Z
1ffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ 2δ
p

�

þ 2
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 2δ

p
Z
κ0ðϵ − δÞffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 2δ

p ðX þ YÞ;

Av ¼
1ffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ 2δ
p þ 2ðϵ − δÞκ0

ω2
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 2δ

p ðX þ YÞ; (4)

where κ0 ¼ ρV2
0, ρ is the density, V0 is the vertical wavespeed, ω is

the angular frequency, and δ and ϵ are the Thomsen’s parameters.
Differential operators X , Y, and Z are given by ∂ ~xb∂ ~x, ∂~yb∂~y, and
∂~zb∂~z, respectively, where b ¼ 1∕ρ is the buoyancy and ð~x; ~y; ~zÞ
define a complex-valued coordinate system in which perfectly
matched layers absorbing boundary condition are implemented
(Operto et al., 2007). The right side vectors s 0 and s 0 0 have the fol-
lowing expression:
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s 0ðx;ωÞ ¼ ω4sðωÞ shðxÞ
κ0ðxÞ

~δðx − xsÞ

− ω2sðωÞ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 2δðxÞ

p
Z

×
�
svðxÞ −

1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 2δðxÞp shðxÞ

�
~δðx − xsÞ; (5)

s 0 0ðx;ωÞ ¼
�
svðxÞ −

1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 2δðxÞp shðxÞ

�
~δðx − xsÞ; (6)

where ~δ denotes the Dirac delta function, xs denotes the source po-
sition, sðωÞ is the source excitation term, and sh and sv are the two
quantities that depend on the Thomsen’s parameters.
The expression of the operator Ah shows that the VTI wave equa-

tion has been decomposed as a sum of an elliptically anisotropic
wave equation (term between brackets) plus an anelliptic correcting
term involving the factor ðϵ − δÞ. The elliptic part can be easily dis-
cretized by plugging the Thomsen’s parameters δ and ϵ in the ap-
propriate coefficients of the isotropic 27-point stencil, whereas the
anelliptic correcting term is discretized with conventional second-
order accurate stencil to preserve the compactness of the overall
stencil.
The direct solver is used to solve the linear system involving the

matrix Ah (equation 1). In a second step, the vertical pressure pv is
explicitly inferred from the expression of ph, equation 2, before
forming the physical pressure wavefield p by linear combination
of ph and pv (equation 3).
The accuracy of the 27-point stencil for the viscoacoustic iso-

tropic and VTI equations is assessed in details in Operto et al.
(2007), Brossier et al. (2010), and Operto et al. (2014) and allows
for accurate modeling with a discretization rule of four grid points
per minimum wavelength.

LU factorization and solution with the multifrontal method

Solving the time-harmonic wave equation re-
quires solving a large and sparse complex-valued
system of linear equations

AX ¼ B; (7)

where B is also a large sparse matrix of so-called
right-hand sides, which correspond to the seismic
sources. To solve the system, we first factor the
matrix A (A ¼ LU) with the multifrontal method
(first introduced by Duff and Reid, 1983), and
then perform a forward step LY ¼ B followed
by a backward step UX ¼ Y.
The multifrontal method performs a sequence

of partial factorizations of dense matrices, called frontal matrices or,
simply, fronts. This sequence is established by a tree-shaped
dependency graph called the elimination tree (Schreiber, 1982),
which has a front associated with each of its nodes (Figure 1). This
graph is traversed from the bottom (the leaves) to the top (the root)
and, each time a node is visited, first the front is formed through
assembly operations, and then it is partially factorized through a
truncated dense LU reduction. Two sets of variables are associated
with each front: The fully summed (FS) variables, whose corre-

sponding rows and columns of L and U are computed within the
current front, and the nonfully summed (NFS) variables, which re-
ceive updates resulting from the elimination of the FS variables. The
structure of a front before and after the partial factorization is shown
in Figure 2. The results of the front partial factorization are the partial
factors ½L11L21� and ½U11U12�, which are stored apart and a Schur
complement, referred to as a contribution block (CB), which will
be later used in the assembly operations of the parent front before
being discarded. All the CBs are temporarily stored in a memory area
called CB stack, whose size varies throughout the tree traversal.
The computational and memory requirements for the complete

factorization strongly depend on the sparsity structure of the input
matrix. Matrix permutations are commonly applied prior to the ac-
tual factorization to reduce the fill-in (i.e., zero coefficients, which
are turned into nonzero by the factorization), which is mostly
responsible for this cost, in terms of floating-point operations
and memory consumption. Among the most commonly used tech-
niques, those based on nested dissection commonly give the best
results on large scale problems (George and Liu, 1981). The shape
of the elimination tree and the size of the fronts therein, result from
the applied matrix permutation. Although any topological-order tra-
versal of this tree gives equivalent properties in terms of factor ma-
trix size and computational cost, the size of the CB stack area can
greatly vary depending on the chosen traversal order; methods exist
to minimize the peak size of the CB stack in a sequential execution
(Guermouche et al., 2003) and to control its size in a parallel setting
where multiple branches of the tree are traversed in parallel (Agullo
et al., 2016).
In a parallel environment, the sparse matrix is distributed onto the

processors according to a mapping of the processors on the nodes of
the elimination tree. Two kinds of parallelism, referred to as tree
parallelism and node parallelism, are exploited (Figure 3). In
MUMPS, both levels of parallelism are exploited with message
passing interface (MPI). In tree parallelism, fronts in different sub-
trees are processed concurrently by different processes, whereas in
node parallelism, large enough fronts are mapped on several proc-

a) b)

Figure 1. An example of (b) elimination tree, with the ordering based on (a) a nested
dissection.

b)a)

Figure 2. A front (a) before and (b) after partial factorization.
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esses: the master process is assigned to process the FS rows and is in
charge of organizing computations; the NFS rows are distributed
following a 1D row-wise partitioning, so that each slave holds a
range of rows. Within the block row of each MPI process, node
parallelism is exploited at a finer level with multithreading.

Block low-rank multifrontal solver

A matrix A of size m × n is said to be low rank if it can be ap-
proximated by a low-rank product ~A ¼ XYT of rank kε, such that
kεðmþ nÞ ≤ mn and kA − ~Ak ≤ ε. The first condition states that
the low-rank form of the matrix requires less storage than the stan-
dard form, whereas the second condition simply states that the
approximation is of good enough accuracy. Using the low-rank
form also allows for a reduction of the number of floating-point
operations performed in many kernels (e.g., matrix-matrix multipli-
cation).
It has been shown that matrices resulting from the discretization

of elliptic partial differential equations (PDEs), such as the gener-
alization of the Helmholtz equation considered in this study, have
low-rank properties (Bebendorf, 2004). In the context of the multi-
frontal method, frontal matrices are not low rank themselves but
exhibit many low-rank subblocks. To achieve a satisfactory reduc-
tion in the computational complexity and the memory footprint,
sub-blocks have to be chosen to be as low rank as possible (e.g.,
with exponentially decaying singular values). This can be achieved
by clustering the unknowns in such a way that an admissibility
condition is satisfied. This condition states that a subblock intercon-
necting different variables will have a low rank, if these associated
variables are far away in the domain, because they are likely to have
a weak interaction. This intuition is illustrated in Figure 4a and 4b.
Diagonal blocks that represent self-interactions are always FR,
whereas the off-diagonal blocks are potentially low rank (Figure 4c).
In the framework of an algebraic solver, a graph partitioning tool is
used to partition the subgraphs induced by the FS and NFS variables

(Amestoy et al., 2015a). The blocks are com-
pressed with a truncated QR factorization with
column pivoting.
Unlike other formats, such as ℋ-matrices

(Hackbusch, 1999), HSS (Xia et al., 2009;
Xia, 2013), and HODLR (Aminfar and Darve,
2016) matrices, we use a flat, nonhierarchical
blocking of the fronts (Amestoy et al., 2015a).
Thanks to the low-rank compression, the theo-
retical complexity of the factorization is reduced
from Oðn6Þ to Oðn5.5Þ and can be further re-
duced to Oðn5 log nÞ with the best variant
of the BLR format (Amestoy et al., 2016b).
Although compression rates may not be as good
as those achieved with hierarchical formats
(hierarchical formats can achieve a complexity
in Oðn5Þ [Xia et al., 2009], and even Oðn4Þ in a
fully structured context), BLR offers a good
flexibility thanks to its simple, flat structure.
This makes BLR easier to adapt to any multi-
frontal solver without a deep redesign of the
code. The comparison between hierarchical and
BLR formats is an ongoing work, in particular
in Amestoy et al. (2016a), where the HSS-based
STRUMPACK (Ghysels et al., 2015; Rouet
et al., 2015) and the BLR-based MUMPS
(Amestoy et al., 2015a) solvers are compared.
In the following, the low-rank threshold used
to compress the blocks of the frontal matrices
will be denoted by ε.

Figure 3. Illustration of tree and node parallelism. The shaded part
of each front represents its FS rows. The fronts are row-wise par-
titioned in our implementation, but column-wise partitioning is also
possible.
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Figure 4. Illustrations of the admissibility condition for elliptic PDEs. (a) Strong and
weak interactions in the geometric domain as a function of the distance between degrees
of freedom. (b) Correlation between graph distance and rank (ε ¼ 10−8). The experiment
has been performed on the dense Schur complement associated with the top-level separator
of a 3D 1283 Helmholtz problem (from Amestoy et al., 2015a). (c) Illustration of a BLR
matrix of the top-level separator of a 3D 1283 Poisson’s problem. The darkness of a block
is proportional to its storage requirement: the lighter a block is, the smaller is its rank. Off-
diagonal blocks are those having low-rank properties (from Amestoy et al., 2015a).
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In parallel environments, the row-wise partitioning imposed by
the distribution of the front onto several processes constrains the
clustering of the unknowns. However, in practice, we manage to
maintain nearly the same flop compression rates when the number
of processes grows as discussed in the following scalability analy-
sis. The LU compression during the factorization of the fronts con-
tributes to reducing the volume of communication by a substantial
factor and to maintaining a good parallel efficiency of the solver.
Exploiting the compression of the CB matrices would further re-
duce the volume of communication and the memory footprint
(but not the operation count), but is not available in our current im-
plementation. The MPI parallelism is hybridized with thread paral-
lelism to fully exploit multicore architectures. The FR tasks (i.e., not
involving low-rank blocks) are efficiently parallelized through mul-
tithreaded basic linear algebra subroutines (BLAS; Coleman and
vanLoan, 1988) because of their large granularity. In contrast,
the low-rank tasks have a finer granularity that makes multithreaded
BLAS less efficient and the conversion of flops compression into
time reduction more challenging. To overcome this obstacle, we ex-
ploit OpenMP-based multithreading to execute multiple low-rank
tasks concurrently, which allows for a larger granularity of compu-
tations per thread (Amestoy et al., 2015b).

Exploiting the sparsity of the right-hand sides

Even though the BLR approximation has not yet been imple-
mented in the solution phase, we reduce the number of operations
performed and the volume of data exchanged during this phase by
exploiting the sparsity of the right-hand sides. Furthermore, we also
improved the multithreaded parallelism of this phase.
During the forward phase and thanks to the sparsity of the right-

hand side matrix B, equation 7, a property shown in the work of
Gilbert and Liu (1993) can be used to limit the number of operations
for computing the solution Y of LY ¼ B: for each column bj of B,
one has only to follow a union of paths in the elimination tree, each
path being defined by a nonzero entry in bj. The flop reduction
results from this property and from the fact that the nonzero entries
in each source bj have a good locality in the elimination tree, so that
only a few branches of the elimination tree per source need to be
traversed.
This is sometimes not enough to provide large gains in a parallel

context because processing independent branches of the elimination
tree is necessary to provide significant parallelism. The question is
then how to permute the columns of matrix B to reduce the number
of operations while providing parallelism. This combinatorial prob-
lem has been studied for computing selected entries of the inverse of
a matrix by Amestoy et al. (2015d), who explain how to permute
and process columns of the right-hand side matrix in a blockwise
fashion. This work has been extended to the forward step LY ¼ B
with a sparse B. In the framework of seismic imaging application,
we exploit the fact that the nonzero entries of one block of columns
of the right-hand side matrix B are well-clustered in the elimination
tree, when the corresponding sources are contiguous in the compu-
tational mesh (i.e., follow the natural ordering of the acquisition)
and when nested dissection is used for reordering the unknowns
of the problem. We exploit this geometric property of the source
distribution to choose those relevant subsets of sparse right-hand
sides that are simultaneously processed in parallel during the for-
ward elimination phase.

APPLICATION TO OBC DATA FROM
THE NORTH SEA

Acquisition geometry, geologic context,
and FWI experimental setup

The subsurface target and the data set are the same as in Operto
et al. (2015). The FWI experimental setup is also similar except that
we perform FWI with a smaller number of discrete frequencies
(6 instead of 11), and we fix the maximum number of FWI iterations
per frequency as stopping criterion of iterations. A brief review of
the target, data set, and experimental setup is provided here. The
reader is referred to Operto et al. (2015) for a more thorough
description.

Geologic target

The subsurface target is the Valhall oil field located in the North
Sea in a shallow water environment (70 m water depth; Barkved
et al., 2010; Sirgue et al., 2010). The reservoir is located at approx-
imately 2.5 km depth. The overburden is characterized by soft sedi-
ments in the shallow part. A gas cloud, whose main zone of
influence is delineated in Figure 5a, makes seismic imaging at
the reservoir depths challenging. The parallel geometry of the
wide-azimuth OBC acquisition consists of 2302 hydrophones,
which record 49,954 explosive sources located 5 m below the
sea surface (Figure 5a). The seismic sources cover an area of
145 km2 leading to a maximum offset of 14.5 km. The maximum
depth of investigation in the FWI model is 4.5 km. The seismo-
grams recorded by a receiver for a shot profile intersecting the
gas cloud and the receiver position are shown in Figure 5b.
The wavefield is dominated by the diving waves, which mainly
propagate above the gas zone, the reflection from the top of the
gas cloud (Figure 5b, white arrow), and the reflection from the res-
ervoir (Figure 5b, black arrow) (Prieux et al., 2011, 2013a, 2013b;
Operto et al., 2015). In Figure 5b, the solid black arrow points to the
precritical reflection from the reservoir, whereas the dashed black
arrow points to the critical and postcritical reflection. The discon-
tinuous pattern in the time-offset domain of this wide-angle reflec-
tion highlights the complex interaction of the wavefield with the
gas cloud.

Initial models

The vertical-velocity V0 and the Thomsen’s parameter models δ
and ϵ, which are used as initial models for FWI, were built by re-
flection traveltime tomography (courtesy of BP) (Figures 6a–6d and
7a and 7d). The V0 model describes the long wavelengths of the
subsurface except at the reservoir level, which are delineated by
a sharp positive velocity contrast at approximately 2.5 km depth
(Figure 7a and 7d). We do not smooth this velocity model before
FWI for reasons explained in Operto et al. (2015, their Figure 7).
The velocity model allows us to match the first-arrival traveltimes as
well as those of the critical reflection from the reservoir Operto et al.
(2015, their Figure 8), hence providing a suitable framework to pre-
vent cycle skipping during FWI. A density model was built from the
initial vertical velocity model using a polynomial form of the Gard-
ner law given by ρ ¼ −0.0261V2

0 þ 0.373V0 þ 1.458 (Castagna
et al., 1993) and was kept fixed over iterations. A homogeneous
model of the quality factor was used below the sea bottom with
a value of Q ¼ 200.
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FWI experimental setup

We review here the experimental setup that was used to apply
frequency-domain FWI on the OBC data set. The reader is referred
to Appendix A for some algorithmic aspects of 3D frequency-do-
main FWI because they can have a significant impact together with
the seismic modeling engine on the computational efficiency of the
inversion. The discrete frequencies, the computational resources,
and the finite-difference grid dimensions that are used to perform
FWI are reviewed in Table 1. We perform FWI for six discrete
frequencies in the 3.5–10 Hz frequency band. Only one frequency
is processed at a time, and the inversion proceeds sequentially from
the lowest frequency to the highest one following a frequency-
driven multiscale approach (Pratt, 1999). The grid interval in the
subsurface models is periodically matched to
the frequency f to minimize the computational
time and regularize the inversion by avoiding over
parameterization. We use a grid interval of 70 m
for 3.5 Hz ≤ f ≤ 5 Hz, 50 m for f ¼ 7 Hz, and
35 m for f ¼ 10 Hz. These intervals approxi-
mately lead to four grid points per wavelength
for a minimum wavespeed of 1400 m∕s. The
number of degrees of freedom in the 70, 50, and
35 m finite-difference grids are 2.9, 7.2, and
17.4 million, respectively, after adding perfectly
matched absorbing layers (Bérenger, 1996; Op-
erto et al., 2007). We perform FWI on 12, 16, and
34 computer nodes for the 70, 50, and 35 m grids,
respectively (Table 1). The computer nodes are
equipped with two 2.5 GHz Intel Xeon IvyBridge
E5-2670v2 processors with 10 cores per proces-
sor. The shared memory per node is 64 GB.
The connecting network is InfiniBand fourth data
rate (FDR) at 56 Gb∕s. The operations are per-
formed in single-precision complex arithmetic,
for which the peak performance of the machine
is 10 Gflops∕s∕core (which corresponds to a dou-
ble precision peak of 20 Gflops∕s∕core).
We launch two MPI processes per node (i.e.,

one MPI process per processor) and use 10 threads
per MPI process such that the number of MPI
processes times the number of threads is equal
to the number of cores on the node (see Appendix
A for a more thorough discussion). The number of
nodes for the three grids (12, 16, and 34) were
chosen pragmatically to find the best compromise
between the computational efficiency, the memory
use and the fast access to the computational resour-
ces according to the operating rule of the available
cluster. In the following, we present a strong and
weak scalability of the FR and BLR solvers in the
framework of this case study to provide insights on
the computational performance that could have
been achieved with more resources.
We use all the (reciprocal) shots and receivers

at each FWI iteration, whatever the grid interval
and the frequency. This implies that 4604 wave-
field solutions need to be computed for each FWI
gradient computation. Seismic modeling is per-
formed with a free surface on top of the finite-

difference grid during inversion. Therefore, free-surface multiples
and ghosts were left in the data and accounted for during FWI.
We only update V0 during inversion, whereas ρ, Q, δ, and ϵ are
kept to their initial values. We use the preconditioned steepest-
descent method implemented in the SEISCOPE toolbox (Métivier
and Brossier, 2015) to perform FWI, where the preconditioner is
provided by the diagonal terms of the so-called pseudo-Hessian
(Shin et al., 2001). No regularization and no data weighting were
used. We simultaneously process subsets of 240 (first-frequency
band), 256 (second-frequency band), and 68 (third-frequency band)
right sides during the substitution step performed by the direct
solver (see Appendix A). These numbers (denoted by Ns in Appen-
dix A) are chosen to be a multiple of the number of MPI processes

Figure 5. North Sea case study. (a) Acquisition layout. The green lines are cables. The
dot pattern shows the area covered by the 50,000 explosive sources. The black circle
shows the position of the receiver, whose records are shown in panel (b). A depth slice at
1 km depth across the gas cloud is superimposed in transparency to show the zone of
influence of this gas cloud. (b) Common receiver gather for a shot profile crosscutting
the receiver position (circle in panel [a]) and the gas cloud. The white arrow points to the
reflection from the top of the gas. The black arrows point to precritical (solid) and post-
critical (dash) reflections from the reservoir.
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(24, 32, and 68 on the 70, 50, and 35 m grids, respectively; Table 1)
because the building of the right sides of the state and adjoint problems
is distributed over MPI processes following an embarrassing parallel-
ism. A high number of right-sides is favorable to minimize the disk
traffic during data reading and optimize the multiple-right-side substi-
tution step. However, we choose to keep these numbers relatively low
because one source wavelet is averaged over the number of simulta-
neously processed sources in our current implementation.
The stopping criterion of iterations consists of fixing the maximum

iteration to 15 for the 3.5 and 4 Hz frequencies, 20 for the 4.5, 5, and
7 Hz frequencies, and 10 for the 10 Hz frequency. We use a limited
number of iterations at 3.5 and 4 Hz because of the poor signal-to-
noise ratio. Although this stopping criterion of iteration might seem

quite crude, we show that a similar convergence rate was achieved by
FWI performed with the FR and BLR solvers at the 7 and 10 Hz
frequencies, leading to very similar final FWI results. Therefore,
the FWI computational costs achieved with the FR and BLR solvers
in this study are provided for FWI results of similar quality.

Nature of the modeling errors introduced by the BLR solver

We show now the nature of the errors introduced in the wavefield
solutions by the BLR approximation. Figures 8a, 9a, and 10a show
a 5, 7, and 10 Hz monochromatic common-receiver gather com-
puted with the FR solver in the FWI models obtained after the
5, 7, and 10 Hz inversions (the FWI results are shown in the next

a) e)
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Figure 6. North Sea case study. (a-d) Depth slice extracted from the initial model at (a) 175 m, (b) 500 m, (c) 1 km, and (d) 3.35 km depths.
(e-h) Same as panels (a-d) for depth slices extracted from the FWI model obtained with the FR solver. (i-l) Same as panels (a-d) for depth slices
extracted from the FWI model obtained with the BLR solver.
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subsection). Figures 8b–8d, 9b–9d, and 10b–10d show the differ-
ences between the common-receiver gathers computed with the FR
solver and those computed with the BLR solver using ε ¼ 10−5,
10−4, and 10−3 (the same subsurface model is used to perform
the FR and the BLR simulations). These differences are shown after
multiplication by a factor 10. A direct comparison between the FR
and the BLR solutions along a shot profile intersecting the receiver
position is also shown. Three conclusions can be drawn for this case
study: For these values of ε, the magnitude of the errors generated by
the BLR approximation relative to the reference FR solutions is small.
Second, these relative errors mainly concern the amplitude of the
wavefields, not the phase. Third, for a given value of ε, the magnitude
of the errors decreases with the frequency. This last statement can be
more quantitatively measured by the ratio between the scaled residual
obtained with the BLR and the FR solver, where the scaled residual is
given by δ ¼ kAh ~ph − bk∞∕kAhk∞k ~phk∞ and ~ph denotes the com-
puted solution. We show that, for a given value of ε, δBLR∕δFR de-
creases with frequency (Table 2).

FWI results

The FWI results obtained with the FR solver are shown in Fig-
ures 6e–6h, 7b, and 7e. Comparison between the initial model and
the FWI model highlights the resolution improvement achieved by
FWI. The structures reviewed below are also described by Sirgue
et al. (2010), Barkved et al. (2010), and Operto et al. (2015) for
comparison. The depth slice at 175 m depth shows high-velocity

glacial sand channel deposits as well as small-scale low-velocity
anomalies (Figure 6e). The depth slice at 500 m depth shows linear
structures interpreted as scrapes left by drifting icebergs on the paleo
seafloor as well as a wide low-velocity zone (Figure 6f) represented
by a horizontal reflector in the vertical sections (Figure 7b and 7e,
black arrow). The depth slice at 1 km depth (Figure 6g) and the inline
vertical section at x ¼ 5575 m (Figure 7e) crosscuts the gas cloud,
whose geometry has been nicely refined by FWI. We also show a
inline vertical section at x ¼ 5250 m near the periphery of the gas
cloud (Figure 7b), which highlights some low-velocity subvertical
structures also identifiable in the 1 km depth slice (Figure 6g). The
depth slice at 3.35 km depth crosscuts the base cretaceous reflector
(Barkved et al., 2010) whose geometry is highlighted by the white
arrows in the vertical sections (Figure 7b and 7e).
The final FWI model obtained with the BLR solver (ε ¼ 10−3)

shown in Figures 6i–6l, 7c, and 7f does not show any obvious dif-
ferences from the one obtained with the FR solver (Figures 6e–6h,
7b, and 7e. This is indeed also the case when the BLR solver is used
with ε ¼ 10−4 and 10−5 (not shown here).
The data fit achieved with the BLR solver (ε ¼ 10−3) is illus-

trated in Figure 11 for the receiver, the position of which is given
in Figure 5a. The figure shows the real 5, 7, and 10 Hz monochro-
matic receiver gathers, the modeled ones computed in the FWI
model inferred from the inversion of the frequency in question
and the difference between the two. We also show a direct compari-
son between the recorded and modeled wavefields along the dip and
cross profiles intersecting the position of the receiver. The data fit is
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Figure 7. North Sea case study. (a and d) Vertical slices extracted from the initial model at (a) x ¼ 5250 m and (d) 5575 m. The slice in panel
(d) crosscuts the gas cloud, whereas the slice in panel (a) is located in its periphery (see Figure 6). (b and e) Same as panels (a and d) for the final
FWI model obtained with the FR solver. (c and f) Same as panels (b and e) for the final FWI model obtained with the BLR solver (ε ¼ 10−3).
The back arrow points to a low-velocity reflector at 500 m depth (see Figure 6f and 6j for the lateral extension of this reflector at 500 m depth,
whereas the white arrows point to the base Cretaceous reflector.
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Figure 8. North Sea case study. The BLR modeling errors. (a) 5 Hz receiver gather (real part) computed with the FR solver. (b) Difference
between the receiver gathers computed with the BLR (ε ¼ 10−5) and the (a) FR solvers. (c) Same as panel (b) for ε ¼ 10−4. (d) Same as panel
(b) for ε ¼ 10−3. Residual wavefields in panels (b-d) are multiplied by a factor of 10 before the plot. The (a) FR wavefield and (b-d) the residual
wavefields after multiplication by a factor of 10 are plotted with the same amplitude scale defined by a percentage of clip equal to 85 of the
(a) FR-wavefield amplitudes. (e-g) Direct comparison between the wavefields computed with the FR (dark gray) and the BLR solvers (light
gray) for (e) ε ¼ 10−5, (f) 10−4, and (g) 10−3 along an x profile intersecting the receiver position (dash line in panel (a)). The difference is
shown by the thin black line. Amplitudes are scaled by a linear gain with offset.

R372 Amestoy et al.

D
ow

nl
oa

de
d 

09
/1

2/
16

 to
 8

8.
20

9.
75

.8
2.

 R
ed

is
tr

ib
ut

io
n 

su
bj

ec
t t

o 
SE

G
 li

ce
ns

e 
or

 c
op

yr
ig

ht
; s

ee
 T

er
m

s 
of

 U
se

 a
t h

ttp
://

lib
ra

ry
.s

eg
.o

rg
/



very similar to the one achieved with the FR solver (not shown here,
see Operto et al. [2015], their Figures 15–17) and is quite satisfac-
tory, in particular in terms of phase. We already noted that the mod-
eled amplitudes tend to be overestimated at long offsets when the
wavefield has propagated through the gas cloud in the dip direction,
unlike in the cross direction (Figure 11b, ellipse). In Operto et al.
(2015), we interpret these amplitude mismatches as the footprint of
attenuation, whose absorption effects have been underestimated
during seismic modeling with a uniform Q equal to 200. The misfit
functions versus the iteration number obtained with the FR and
BLR (ε ¼ 10−5, 10−4, and 10−3) solvers for the six frequencies
are shown in Figure 12. The convergence curves obtained with
the FR and the BLR solvers for ε ¼ 10−4 and 10−5 are very similar.
In contrast, we show that the convergence achieved by the BLR
solver with ε ¼ 10−3 is alternatively better (4 and 5 Hz) and worse
(3.5 and 4.5 Hz) than for the three other FWI run when the inversion
jumps from one frequency to the next within the 3.5–5 Hz
frequency band. However, for the last two frequencies (7 and
10 Hz) that have the best signal-to-noise ratio, all of the four con-
vergence curves show a similar trend and reach a similar misfit
function value at the last iteration. This suggests that the crude stop-
ping criterion of iteration that is used in this study by fixing a
common maximum iteration count is reasonable for a fair compari-
son of the computational cost of each FWI run. The different con-
vergence behavior at low frequencies shown for ε ¼ 10−3 probably
reflects the sensitivity of the inversion to the noise introduced by the
BLR approximation at low frequencies (Figure 8), although this
noise remains sufficiently weak to not alter the FWI results. The
higher footprint of the BLR approximation at low frequencies dur-
ing FWI is consistent with the former analysis of the relative mod-
eling errors, which decrease as frequency increases (Table 2,
ratio δBLR∕δFR).

Computational cost

The reduction of the size of the LU factors,
operation count, and factorization time obtained
with the BLR approximation are outlined in Ta-
ble 3 for the 5, 7, and 10 Hz frequencies, respec-
tively. Compared with the FR factorization, the
size of the LU factors obtained with the BLR
solver (ε ¼ 10−3) decreases by a factor of 2.6,
3.0, and 3.5 for the 5, 7, and 10 Hz frequencies,
respectively (field FSLU in Table 3). This can be
converted to a reduction of the memory demand
(ongoing work). Moreover, the number of flops
during the LU factorization (field FLU in Table 3)

decreases by factors of 8, 10.7, and 13.3 when the BLR solver is
used. The increase of the computational saving achieved by the
BLR solver, when the problem size grows, is further supported
by the weak scalability analysis shown in the next subsection. When
the BLR solver (ε ¼ 10−3) is used, the LU factorization time is de-
creased by a factor of 1.9, 2.7, and 2.7 with respect to the FR solver
for the 5, 7, and 10 Hz frequencies, respectively (field TLU in
Table 3). The time reduction achieved by the BLR solver tends
to increase with the frequency. This trend is also due to the increase
of the workload per MPI process as the frequency increases. In-
creasing the workload per processor, which in our case was guided
by memory constraints, tends to favor the parallel performance of
the BLR solver.
As mentioned above, the BLR solver does not fully exploit the

compression potential when multithread BLAS kernels are used,
because low-rank matrices are smaller by nature than original
FR blocks. This was confirmed experimentally on the 7 Hz problem
with ε ¼ 10−3 by a computational time reduced by a factor 2.3 on
160 cores even though the flops are reduced by a factor of 11.1 (this
is not reported in the tables). Adding OpenMP-based parallelism
allows us to retrieve a substantial part of this potential, reaching
a speedup of 3.8. In comparison with the timings reported by Ames-
toy et al. (2015c), the performance gains obtained by exploiting the
sparsity of the right sides and the improved multithreading are ap-
proximately equal to a factor of 2.3. The elapsed time to compute
one wavefield once the LU factorization has been performed is
small (field Ts in Table 3). The two numbers provided in Table 3
for Ts are associated with the computation of the incident and ad-
joint wavefields. In the latter case, the source vectors are far less
sparse, which leads to a computational overhead during the solution
phase. These results in an elapsed time of, respectively, 262, 598,
and 1542 s to compute the 4604 wavefields required for the com-
putation of one FWI gradient (field Tms in Table 3). Despite the high

Table 1. North Sea case study. Problem size and computational resources (for the results of Tables 3 and 4 only); h�m�, grid
interval; nPML, number of grid points in absorbing perfectly matched layers; u�106�, number of unknowns; n, number of
computer nodes; MPI, number of MPI process; th, number of threads per MPI process; c, number of cores; and RHS, number
of right sides processed per FWI gradient.

Frequencies (Hz) HðmÞ Grid dimensions nPML u n MPI th c RHS

3.5, 4, 4.5, 5 70 66 × 130 × 230 8 2.9 12 24 10 240 4604

7 50 92 × 181 × 321 8 7.2 16 32 10 320 4604

10 35 131 × 258 × 458 4 17.4 34 68 10 680 4604

Table 2. North Sea case study. Modeling error introduced by BLR for different
low-rank threshold ε and different frequencies F. Here, δ: scaled residuals
defined as kAh ~ph − bk∞∕kAhk∞k~phk∞, for b being for one of the RHS in B.
The numbers in parentheses are δBLR∕δFR. Note that, for a given ε, this ratio
decreases as frequency increases.

FðHzÞ∕hðmÞ δðFRÞ δðBLR; ε ¼ 10−5Þ δðBLR; ε ¼ 10−4Þ δðBLR; ε ¼ 10−3Þ

5 Hz∕70 m 2.3 × 10−7ð1Þ 4.6 × 10−6ð20Þ 6.7 × 10−5ð291Þ 5.3 × 10−4ð2292Þ
7 Hz∕50 m 7.5 × 10−7ð1Þ 4.6 × 10−6ð6Þ 6.9 × 10−5ð92Þ 7.5 × 10−4ð1000Þ
10 Hz∕35 m 1.3 × 10−6ð1Þ 2.9 × 10−6ð2.3Þ 3.0 × 10−5ð23Þ 4.3 × 10−4ð331Þ
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Figure 9. North Sea case study. The BLRmodeling errors. Same as Figure 8 for the 7 Hz frequency. The simulations are performed in the same
subsurface model obtained after a 7 Hz inversion (not shown here). The same percentage of clip (85%) of the FR-wavefield amplitudes and the
same amplitude scaling of the residuals wavefields (multiplication by a factor of 10 before plot) as those used in Figure 8 are used for plot.

R374 Amestoy et al.

D
ow

nl
oa

de
d 

09
/1

2/
16

 to
 8

8.
20

9.
75

.8
2.

 R
ed

is
tr

ib
ut

io
n 

su
bj

ec
t t

o 
SE

G
 li

ce
ns

e 
or

 c
op

yr
ig

ht
; s

ee
 T

er
m

s 
of

 U
se

 a
t h

ttp
://

lib
ra

ry
.s

eg
.o

rg
/



a)

c) d)

e)

f)

g)

b)y (km)

y (km) y (km)

x 
(k

m
)

x 
(k

m
)

x 
(k

m
)

x 
(k

m
)

y (km)

Figure 10. North Sea case study. The BLR modeling errors. Same as Figure 8 for the 10 Hz frequency. The simulations are performed in the
same subsurface model obtained after a 10 Hz inversion. The same percentage of clip (85%) of the FR-wavefield amplitudes and the same
amplitude scaling of the residuals wavefields (multiplication by a factor of 10 before plot) as those used in Figure 8 are used for plot.
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Figure 11. North Sea case study. Data fit achieved with the BLR solver (ε ¼ 10−3): (a) 5, (b) 7, and (c) 10 Hz frequencies. Left (x-y) panel
shows the recorded data. Middle panel shows the modeled data computed in the FWI model inferred from the inversion of the current fre-
quency. Right panel is the difference. Bottom and right amplitude-offset panels show a direct comparison between the recorded (black) and the
modeled (gray) data (real part) along a dip and across profiles intersecting the receiver position (dash lines in (x-y) panels). Amplitudes are
corrected for geometric spreading. The ellipse delineates an offset range, for which modeled amplitudes are overestimated (see text for in-
terpretation).
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efficiency of the substitution step, the elapsed time required to com-
pute the wavefield solutions by substitution (262, 598, and 1542 s)
is significantly higher than the time required to perform the LU fac-
torization (41, 121, and 424 s with the BLR solver ε ¼ 10−3), when
all the (reciprocal) sources are processed at each FWI iteration.
However, the rate of increase of the solution step is smaller than
the linear increase of the factor size and factorization time when
increasing the frequency. In other words, the real-time complexity
of the LU factorization is higher than that of the solution phase,
although the theoretical time complexities are the same for N2 right
sides ðOðN6ÞÞ. This is shown by the decrease of the ratio Tms∕TLU

as the problem size increases (3.4, 1.86, and 1.34 for the 70, 50, and
35 m grids, respectively, when the FR solver is used). The fact that
the speedup of the factorization phase achieved by the BLR
approximation increases with the problem size, will balance the
higher complexity of the LU factorization relative to the solution
phase and help to address large-scale problems. As reported in col-

umn TgðmnÞ of Table 3, the elapsed times required to compute one
gradient with the FR solver are of the order of 9.9, 21.2, and 69 min
for the 5, 7, and 10 Hz frequencies, respectively, whereas those with
the BLR solver are of the order of 9.1, 17.1, and 49.5 min, respec-
tively. Please note that FR and BLR timings already include the
acceleration due to the exploitation of the sparsity of the right sides.
Thus, the difference between these two times reflects the computa-
tional saving achieved by the BLR approximation during the LU
factorization, because the BLR approximation is currently exploited
only during this task.
For a fair assessment of the FWI speedup provided by the BLR

solver, it is also important to check the impact of the BLR approxi-
mation on the line search, and hence the number of FWI gradients
computed during FWI (Table 4). On the 70 m grid where the impact
of the BLR errors is expected to be the largest one (as indicated in
Table 2), the inversion with the BLR solver (ε ¼ 10−3) computes
82 gradients against 77 gradients for the three other settings

a)

b)

c) f)

e)

d)

3.5 Hz

4 Hz

4.5 Hz

5 Hz

7 Hz

10 Hz

Figure 12. North Sea case study. Misfit function versus iteration number achieved with the FR (black cross) and the BLR solvers with ε ¼
10−5 (dark gray triangle), 10−4 (gray square), and 10−3 (light gray circle): (a) 3.5, (b) 4, (c) 4.5, (d) 5, (e) 7, and (f) 10 Hz inversion.
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(FR and BLR solvers with ε ¼ 10−4 and 10−5), for a total of 70 FWI
iterations. On the 7 Hz grid, the FR and the BLR solvers with
ε ¼ 10−5 compute 39 gradients against 30 gradients with the BLR
solver with ε ¼ 10−4 and 10−3 for a total of 20 FWI iterations. On
the 10 Hz grid, the four inversions compute 16 gradients for a total
of 10 FWI iterations.
The elapsed time to perform the FWI is provided for each grid in

Table 4. The entire FWI application takes 49.2, 39.4, 36, and 37.8 h
with the FR solver and the BLR solver with ε ¼ 10−5, 10−4, and
10−3, respectively. We remind that the FWI application performed
with the BLR solver with ε ¼ 10−3 takes more time than with ε ¼
10−4 because more gradients were computed on the 70 m grid. We
conclude from this analysis that, for this case study, the BLR solver
with ε ¼ 10−4 provides the best trade-off between the number of
FWI gradients required to reach a given value of the misfit function
and the computational cost of one gradient computation at low fre-
quencies. At the 7 and 10 Hz frequencies, the BLR solver with
ε ¼ 10−3 provides the smaller computational cost without impact-
ing the quality of the FWI results.

Strong and weak scalability of the block low-rank mul-
tifrontal solver

We now present a weak and strong scalability analysis of the FR
and BLR solvers using the FWI subsurface models described in the
previous sections.
For the strong scalability analysis, we use a subsurface model that

has been obtained by FWI for the 7 Hz frequency. It is reminded that
the grid spacing is 50 m leading to 7.2 million unknowns in the
linear system (Table 1). We perform seismic modeling in this model
with the FR and BLR (ε ¼ 10−3) solvers by multiplying by a factor
of two, the number of cores from one run to the next: 40, 80, 160,
320, and 640 cores (Table 5 and Figure 13). Therefore, the ideal
acceleration from one configuration to the next is two (represented

by the dashed lines in Figure 13). We obtain an average acceleration
of 1.5 and 1.4 with the FR and BLR solvers, respectively. The scal-
ability of the FR solver is satisfactory on 320 cores (speedup of 1.8
from 160 to 320 cores, Table 5). The 7 Hz matrix is, however, too
small to provide enough parallelism, and thus we only reach a
speedup of 1.4 from 320 to 640 cores. Moreover, we show in Fig-
ure 13 that the difference between the FR and BLR execution times
decreases as the number of cores increases because the BLR solver
performs fewer flops with a smaller granularity than the FR solver,
and thus the relative weight of communications and noncomputa-
tional tasks (e.g., memory copies and assembly) becomes more im-
portant in BLR. Indeed, although the elapsed time for the FR LU
factorization is 3.9 times higher than the one for the BLR LU fac-
torization when 40 cores are used, this ratio decreases to 3 on 320
cores and 2.7 on 640 cores. Therefore, the strong scalability of the
FR solver and the efficiency of the BLR solver relative to the FR
solver should be taken into account when choosing the computa-
tional resources that are used for an application. Finally, the flop
compression rate achieved by BLR is provided in Figure 13 on
top of each point. It has the desirable property to remain roughly
constant, when the number of processes grows; i.e., the BLR com-
pression does not degrade on higher core counts.
Aweak scalability analysis is shown in Table 6 to assess the com-

putational saving achieved by the BLR solver, when the problem
size (i.e., the frequency) grows. We used three matrices generated
from subsurface models obtained by FWI for the 5, 7, and 10 Hz
frequencies. For these three frequencies, the grid interval is 70, 50,
and 35 m leading to 2.9, 7.2, and 17.4 million of unknowns, respec-
tively (Table 1). The BLR threshold is set to ε ¼ 10−3. The number
of MPI processes is chosen to keep the memory demand of the LU
factorization per processor of the order of 15 GB. This leads to 6,
20, and 64 MPI processes and to 1.1 × 1013, 2.1 × 1013, and 4.1 ×
1013 flops/MPI process (for the FR solver) for the 5, 7, and 10 Hz
matrices, respectively. Because the number of flops per MPI process

Table 3. North Sea case study. Computational savings provided by the BLR solver during the factorization step. Factor of
improvement due to BLR is indicated between parentheses. The elapsed times required to perform the multi-RHS substitution
step and to compute the gradient are also provided. FSLU�GB�: size of LU factors (GigaBytes); FLU: flops for the LU
factorization; TLU�s�: elapsed time for the LU factorization; Ts�s�: average time for one solution. The first and second numbers
are related to the incident and adjoint wavefields, respectively. The acceleration from the exploitation of the RHS sparsity is
included. Also, Tms�s�: elapsed time for 4604 solutions (incident + adjoint wavefields); Tg�mn�; elapsed time to compute the FWI
gradient. This time also includes the IO tasks.

FðHzÞ∕hðmÞ ε FSLUðGBÞ FLUð×1012Þ TLUðsÞ TsðsÞ TmsðsÞ TgðmnÞ

5 Hz∕70 m (240 cores) FR 62 (1.0) 66 (1.0) 78 (1.0) 0.051/0.063 262 9.9

10−5 35 (1.8) 17 (3.8) 48 (1.6) 9.4

10−4 30 (2.1) 12 (5.3) 46 (1.7) 9.1

10−3 24 (2.6) 8 (8.0) 41 (1.9) 9.1

7 Hz∕50 m (320 cores) FR 211 (1.0) 410 (1.0) 322 (1.0) 0.12/0.14 598 21.2

10−5 90 (2.3) 90 (4.5) 157 (2.1) 17.7

10−4 88 (2.4) 63 (6.5) 136 (2.4) 17.3

10−3 70 (3.0) 38 (10.7) 121 (2.7) 17.1

10 Hz∕35 m (680 cores) FR 722 (1.0) 2600 (1.0) 1153 (1.0) 0.26/0.41 1542 69.0

10−5 333 (2.2) 520 (4.9) 503 (2.3) 48.6

10−4 271 (2.7) 340 (7.5) 442 (2.6) 48.9

10−3 209 (3.5) 190 (13.3) 424 (2.7) 49.5
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grows in this parallel configuration, the execution time increases
with the matrix size accordingly (Table 6). This allows the FR fac-
torization to maintain a high Gflops∕s∕core on higher core counts
(5.2, 4.1, and 3.5 Gflops/s/core, respectively, to compare with a
peak of 10 Gflops∕s∕core), which corresponds to a parallel effi-
ciency (normalized with respect to the 5 Hz problem) of 0.80
and 0.69 for the 7 and 10 Hz problems. In comparison, the normal-
ized efficiency of the BLR factorization is 0.72 and 0.52 for the 7
and 10 Hz problems. Even though the efficiency decreases slightly
faster in BLR than in FR, the flop reduction due to BLR also in-
creases with the frequency (12.4%, 9.0%, and 7.3%, respectively),
which in the end leads to a time reduction by a factor of 2.7, 3.4, and
3.5, respectively. Thus, even though the flop reduction is not fully
translated into time, this weak scaling study shows that the gain due
to BLR can be maintained on higher core counts with a significant
reduction factor of the order of three in time for the current BLR
implementation.

DISCUSSION

We have shown that 3D viscoacoustic VTI fre-
quency-domain FWI allows for efficiently build-
ing a subsurface model from stationary recording
systems, such as OBC with limited computa-
tional resources, when the linear system resulting
from the discretization of the time-harmonic
wave equation is solved with a sparse direct
solver. Two key ingredients in the direct solver
were implemented to achieve high computational
performance for FWI application: The first one
exploits the low-rank properties of the elliptic
partial differential operators embedded in the
time-harmonic wave equation that allows us to
reduce the cost of the LU factorization by a factor
of approximately three in terms of computation
time and factor size; the second one exploits the
sparsity of the seismic source vectors to speed up
the forward elimination step during the compu-
tation of the solutions. Note that the BLR
approximation has so far been implemented in
the LU factorization only; i.e., the FR uncom-
pressed LU factors are still used to compute
the wavefield solutions by substitution. There-
fore, there is a potential to accelerate the solution
step, once the compression of the LU factors
achieved by the BLR approximation is exploited.
More generally, we believe that in the context of
the solution phase with large numbers of right-
hand sides, there is still much scope for improve-
ment to better exploit the parallelism of our target
computers. We will investigate in priority this is-
sue because it is critical. In parallel to the work
on the theoretical complexity bounds of the BLR
factorization (Amestoy et al., 2016b), we are in-
vestigating variants of the BLR factorization im-
proving its performance and complexity. Another
possible object of research is the use of BLR as a
preconditioner rather than a direct solver. Pre-
liminary experiments in Weisbecker (2013) show
promising results, although the time to solve

(Ts in Table 3), which is the bottleneck in this applicative context,
would be multiplied by the number of iterations.
The choice of the low-rank threshold is performed by trial and

error. However, the analysis of the modeling errors introduced by
the BLR approximation and their impact on the convergence behav-
ior of the FWI support that the BLR approximation has a stronger
footprint at low frequencies for a given subsurface target. Therefore,
a general strategy might be to use a slightly more accurate factori-
zation (smaller ε) at low frequencies, when the FWI is not expensive
and use a slightly more aggressive thresholding (higher ε) at higher
frequencies. For the case study presented here, a value of ε ¼ 10−3

does not impact upon the quality of the FWI results at least at the 7
and 10 Hz frequencies. Another case study (not shown here) per-
formed with a smaller target, a portion of the 3D SEG/EAGE land
overthrust model, shows a stronger footprint of the BLR approxi-
mation in the FWI results for ε ¼ 10−3. Additional work is still nec-
essary to estimate in a more automated way the optimal choice of ε.
Furthermore, the influence of the frequency on the error (FR and

Table 4. North Sea case study. The FWI cost; it and g are the number of FWI
iterations and the number of gradients computed on each grid; TFWI is the
elapsed time for FWI on each grid. The total times for the FWI application are
49.2, 39.4, 36, and 37.8 h for the FR, BLR�10−5�, BLR�10−4�, and BLR�10−3�
solvers, respectively.

hðmÞ Frequency (Hz) c ε it g TFWI (h)

70 3.5, 4, 4.5, 5 240 FR 70 77 14.0

10−5 70 77 12.9

10−4 70 77 12.7

10−3 70 82 14.0

50 7 320 FR 20 39 14.5

10−5 20 39 12.0

10−4 20 30 9.1

10−3 20 30 9.0

35 10 680 FR 10 16 20.7

10−5 10 16 14.5

10−4 10 16 14.2

10−3 10 16 14.8

Table 5. North Sea case study. Strong scaling analysis of the factorization of
the 7 Hz problem. For BLR, the threshold is set to ε � 10−3; AccFR/LR
(X → 2X) is the acceleration factor (i.e., ratio of time X and over time 2X)
obtained by doubling the number of processes. See also Figure 13.

Time (s) Time (s) Ratio AccFR AccLR

FR BLR FR/BLR (X → 2X) (X → 2X)

4 × 10 1323 336 3.9 1.5 1.4

8 × 10 865 241 3.6 1.5 1.6

16 × 10 574 151 3.8 1.8 1.4

32 × 10 327 110 3.0 1.4 1.3

64 × 10 237 87 2.7 — —
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with BLR) deserves to be more thoroughly investigated, from an
experimental and a theoretical standpoint.

CONCLUSION

Although 3D frequency-domain FWI based on sparse direct
methods is generally considered intractable, we have shown in this
study its high computational efficiency to process OBC data in the
viscoacoustic VTI approximation with quite limited computational
resources. The computational efficiency of the frequency-domain
FWI relies on a suitable choice of a few discrete frequencies and
recent methodological advances in the development of massively
parallel sparse multifrontal solver. The first advance exploits some
low-rank properties of the elliptic partial differential operators em-
bedded in the time harmonic wave equation, which allows for a
significant reduction in operation count and computation time dur-
ing the LU factorization. This compression procedure, based on the
so-called BLR format and the related approximation, should lead to
a speedup of the solution step too, although this is not yet imple-
mented. The second advance exploits the sparsity of the right sides,
namely, the seismic source vectors, to speed up the forward elimi-

nation step during the wavefield computations. All these features
lead to a quite efficient computation of wavefield solutions by sub-
stitution once the LU factorization has been performed at a very
reasonable cost. This offers a suitable framework to preserve the
fold resulting from dense seismic acquisitions during the stack pro-
cedure underlying FWI and hence build subsurface model with a
high signal-to-noise ratio. Although the FWI was limited to a maxi-
mum frequency of 10 Hz, it is probably reasonable to try to push the
inversion up to a frequency of 15 Hz in the near future. For the
case study presented here, this would require managing computa-
tional grids with up to 60 million of unknowns. On the other hand,
although the frequency decimation underlying efficient frequency-
domain FWI is relatively neutral for monoparameter FWI, the im-
pact of this decimation will have to be assessed with care in the
framework of multiparameter reconstruction. This comment, how-
ever, also applies to time-domain FWI, which is generally applied to
a quite narrow frequency bandwidth. Frequency-domain FWI re-
mains limited to a relatively narrow range of applications in terms
of wave physics and acquisition geometries. Extension of our finite-
difference stencil to tilted transverse isotropy (TTI) is not straight-
forward and should lead to a significant computational overhead.
Application to short-spread narrow-azimuth streamer data might
not be beneficial because the cost of the LU factorizations might
become prohibitive relative to one of the solution steps and the num-
ber of frequencies to be managed should be increased to prevent
wraparound artifacts. Despite these limitations, 3D frequency-
domain FWI on OBC data based on a sparse direct solver can also
be viewed as an efficient tool to build an initial viscoacoustic VTI
subsurface model for subsequent elastic FWI of multicomponent
data. Feasibility of frequency-domain viscoelastic modeling based
on sparse direct solver for multicomponent/multiparameter FWI ap-
plications at low frequencies needs to be assessed and will be the
aim of future work.
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Table 6. North Sea case study. Weak scaling analysis of the factorization on the 5, 7, and 10 Hz problems. For BLR, the
threshold is set to ε � 10−3. The normalized efficiency is the parallel efficiency normalized with respect to the 5 Hz problem run
on 6 x 10 cores. The peak is 10 Gflops∕s∕core.

Time (s) Ratio Flops FR Flops Gflops∕s∕core
Normalized
efficiency

FR BLR FR/BLR (×1012) BLR/FR FR BLR FR BLR

5 Hzð6 × 10Þ 210 77 2.7 66 12.4% 5.2 1.8 1 1

7 Hzð20 × 10Þ 489 144 3.4 420 9.0% 4.1 1.3 0.80 0.72

10 Hzð64 × 10Þ 1132 324 3.5 2624 7.3% 3.5 0.9 0.69 0.52
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APPENDIX A

ALGORITHMIC ASPECTS OF FREQUENCY-
DOMAIN FWI

The frequency-domain FWI is implemented with the SEISCOPE
optimization toolbox, which relies on a reverse-communication inter-
face with the user (Métivier and Brossier, 2015). The SEISCOPE op-
timization toolbox contains several optimization algorithms such as
steepest-descent, conjugate gradient, limited-memory quasi Newton,
and truncated Newton optimization as well as a line search that guar-
antees that the Wolfe conditions are satisfied during the estimation of
the step length (Nocedal and Wright, 2006). The descent direction pro-
vided by each of these optimization algorithms can be improved by a
preconditioner provided by the user. For the most basic steepest-descent
optimization, the user provides to the optimization toolbox the current
subsurface model, the misfit function computed in this model, and its
gradient. In this study, the misfit function is the usual least-squares
norm of the difference between the recorded and the modeled mono-
chromatic data. The gradient is computed with the adjoint-state method
that requires seismic modeling twice per (reciprocal) source (Plessix,
2006). The gradient of the misfit function for the VTI time-harmonic
wave equation is developed in Operto et al. (2015), and is given by

∇Cm ¼ R

��
∂Ah

∂m
ph

�
†

a1

�
; (A-1)

where the dagger indicates adjoint operator and adjoint wavefield a1
satisfies

Ah a1 ¼
1

3
ðAv þ 2IÞRtΔd: (A-2)

In equation A-2,Δd are the data residuals,R denotes the real part
of a complex number, I is the identity matrix, and Rt is a prolon-
gation operator, which augments with zeros the data residual vector
in the full computational domain (Pratt et al., 1998).
After the LU factorization of Ah, the LU factors are stored in

main memory in distributed form. We then sequentially process
Na partitions of Ns seismic sources (Ns is the number of columns
in matrix B, equation 7). TheNs right-hand sides are built in parallel
by distributing them over the processors before their centralization
on the master process with sparse storage. The seismic sources are
positioned in the finite-difference grids with a windowed sinc pa-
rameterization (Hicks, 2002). The solution step performed by
MUMPS returns the Ns monochromatic wavefields in distributed
form following a domain decomposition driven by the distribution
of the LU factors: each processor stores a subdomain of the Ns

wavefields. Because the domain decomposition is driven by the
LU factorization, it is unstructured with subdomains of quite hetero-
geneous sizes (Sourbier et al. [2009], their Figure 2). Therefore, it is
inefficient for parallel gradient computation as it would lead to an
unbalanced workload. Moreover, a domain decomposition of the
gradient would complicate unnecessarily the implementation of
the radiation pattern matrices ∂Ah∕∂m (equation A-1) for secondary
parameters as density and Thomsen’s parameters as well as regu-

larizations. We therefore chose to redistribute the Ns wavefields
over the processors according to the source index to implement an
embarrassing MPI parallelism over sources: Each processor stores
the full domain of Ns∕Np wavefields, where Np denotes the num-
ber of MPI process.
Next, we interpolate the values of the incident wavefields at the

receiver positions with the windowed sinc parameterization (Hicks,
2002), followed by the estimation of the source signature (Pratt,
1999) and the update of the misfit function. The source signature
is averaged over the sources involved in the current partition. The
same modeling workflow is applied to process the adjoint wave-
fields. All along the process, the Ns incident and adjoint wavefields
remain in random-access memory (RAM) in distributed form ac-
cording to the source index. The gradient of the misfit function
can then be updated quite efficiently by combining the embarrass-
ing parallelism over sources with shared-memory parallelism to
process the degrees of freedom of the gradient grid. The gradient
algorithm is above-described for one frequency. When several fre-
quency components are simultaneously inverted, the multifre-
quency gradient is the sum of each monofrequency gradient. The
outer loop over frequencies in the FWI algorithm can be either proc-
essed sequentially or in parallel with an additional MPI communi-
cator if enough computational resources are available.
A suitable architecture for frequency-domain FWI should take ad-

vantage of multicore central processing units (CPUs) with a signifi-
cant amount of RAM. This significant amount of RAM allows for the
simultaneous processing of a large number of right-hand sides in the
matrix B (equation 7) taking advantage of multithreaded BLAS3 ker-
nels and the sparsity of the source vectors. Note that because we can
afford to keep in the core the incident wavefields all along the com-
putation, they do not need to be recomputed during the adjoint sim-
ulation and the gradient computation, a distinct advantage compared
with the time-domain implementation. To limit memory overheads
and volume of communication during the LU factorization, we typ-
ically assign only one MPI process per socket or CPU, each MPI
process being multithreaded over the cores of its CPU. This matches
the architecture best, ensuring a uniform memory access within each
MPI process, and in our experience, provides, in general, comparable
or better performance during LU factorization and solving than using
a single MPI process per node.
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