2021 Fox Prize Meeting

 June 21st, 2021
Are numerical algorithms accurate at large scale and at low precisions ?

Theo Mary
Sorbonne Université, CNRS, LIP6
Joint work with Nicholas J. Higham

Slides available at https://bit.ly/foxprize21

Floating-point arithmetic

- Standard model of floating-point arithmetic

$$
f \mid(x \text { op } y)=(x \text { op } y)(1+\delta), \quad|\delta| \leq u, \text { for op } \in\{+,-, \times, \div\}
$$

- Example: let $x, y \in \mathbb{R}^{3}$ and $s=x^{T} y$

$$
\begin{aligned}
\widehat{s}= & {\left[\left(x_{1} y_{1}\left(1+\delta_{1}\right)+x_{2} y_{2}\left(1+\delta_{2}\right)\right)\left(1+\delta_{3}\right)+x_{3} y_{3}\left(1+\delta_{4}\right)\right]\left(1+\delta_{5}\right) } \\
= & x_{1} y_{1}\left(1+\delta_{1}\right)\left(1+\delta_{3}\right)\left(1+\delta_{5}\right)+x_{2} y_{2}\left(1+\delta_{2}\right)\left(1+\delta_{3}\right)\left(1+\delta_{5}\right) \\
& +x_{3} y_{3}\left(1+\delta_{4}\right)\left(1+\delta_{5}\right) .
\end{aligned}
$$

- Backward error bound $\widehat{s}=(x+\Delta x)^{T} y$

Floating-point arithmetic

- Standard model of floating-point arithmetic

$$
f \mid(x \text { op } y)=(x \text { op } y)(1+\delta), \quad|\delta| \leq u, \text { for op } \in\{+,-, \times, \div\}
$$

- Example: let $x, y \in \mathbb{R}^{3}$ and $s=x^{T} y$

$$
\begin{aligned}
\widehat{s}= & {\left[\left(x_{1} y_{1}\left(1+\delta_{1}\right)+x_{2} y_{2}\left(1+\delta_{2}\right)\right)\left(1+\delta_{3}\right)+x_{3} y_{3}\left(1+\delta_{4}\right)\right]\left(1+\delta_{5}\right) } \\
= & x_{1} y_{1}\left(1+\delta_{1}\right)\left(1+\delta_{3}\right)\left(1+\delta_{5}\right)+x_{2} y_{2}\left(1+\delta_{2}\right)\left(1+\delta_{3}\right)\left(1+\delta_{5}\right) \\
& +x_{3} y_{3}\left(1+\delta_{4}\right)\left(1+\delta_{5}\right) .
\end{aligned}
$$

- Backward error bound $\widehat{s}=(x+\Delta x)^{T} y$

Fundamental lemma in backward error analysis
If $\left|\delta_{k}\right| \leq u$ for $k=1: n$ and $n u<1$, then

$$
\prod_{k=1}^{n}\left(1+\delta_{k}\right)=1+\theta_{n}, \quad\left|\theta_{n}\right| \leq \gamma_{n}:=\frac{n u}{1-n u}=n u+O\left(u^{2}\right)
$$

Floating-point arithmetic

- Standard model of floating-point arithmetic

$$
f \mid(x \text { op } y)=(x \text { op } y)(1+\delta), \quad|\delta| \leq u, \text { for op } \in\{+,-, \times, \div\}
$$

- Example: let $x, y \in \mathbb{R}^{3}$ and $s=x^{T} y$

$$
\begin{aligned}
\widehat{s}= & {\left[\left(x_{1} y_{1}\left(1+\delta_{1}\right)+x_{2} y_{2}\left(1+\delta_{2}\right)\right)\left(1+\delta_{3}\right)+x_{3} y_{3}\left(1+\delta_{4}\right)\right]\left(1+\delta_{5}\right) } \\
= & x_{1} y_{1}\left(1+\delta_{1}\right)\left(1+\delta_{3}\right)\left(1+\delta_{5}\right)+x_{2} y_{2}\left(1+\delta_{2}\right)\left(1+\delta_{3}\right)\left(1+\delta_{5}\right) \\
& +x_{3} y_{3}\left(1+\delta_{4}\right)\left(1+\delta_{5}\right) .
\end{aligned}
$$

- Backward error bound $\widehat{s}=(x+\Delta x)^{T} y, \quad|\Delta x| \leq \gamma_{3}$

Fundamental lemma in backward error analysis
If $\left|\delta_{k}\right| \leq u$ for $k=1: n$ and $n u<1$, then

$$
\prod_{k=1}^{n}\left(1+\delta_{k}\right)=1+\theta_{n}, \quad\left|\theta_{n}\right| \leq \gamma_{n}:=\frac{n u}{1-n u}=n u+O\left(u^{2}\right)
$$

Backward error analysis

- Inner products $s=x^{T} y$:

$$
\widehat{s}=(x+\Delta x)^{T} y, \quad|\Delta x| \leq \gamma_{n}|x|
$$

- Matrix-vector products $y=A x$:

$$
\widehat{y}=(A+\Delta A) x, \quad|\Delta A| \leq \gamma_{n}|A|
$$

- LU factorization $A=L U$:

$$
\widehat{L} \widehat{U}=A+\Delta A, \quad|\Delta A| \leq \gamma_{n}|A|
$$

- Solution to linear system $A x=b$:

$$
(A+\Delta A) \widehat{x}=b, \quad|\Delta A| \leq\left(3 \gamma_{n}+\gamma_{n}^{2}\right)|A|
$$

\Rightarrow Error grows as $n u$ in NLA: should we worry ?

Values of u

Bits					
		Signif.	(t)	Exp.	Range
	$u=2^{-t}$				
fp64	D	53	11	$10^{ \pm 308}$	1×10^{-16}
fp32	S	24	8	$10^{ \pm 38}$	6×10^{-8}
fp16	H	11	5	$10^{ \pm 5}$	5×10^{-4}
bfloat16	B	8	8	$10^{ \pm 38}$	4×10^{-3}

Low precision increasingly supported by hardware:

- Fp16 used by NVIDIA GPUs, AMD Radeon Instinct MI25 GPU, ARM NEON, Fujitsu A64FX ARM
- Bfloat16 used by Google TPU, NVIDIA GPUs, Arm, Intel

Values of u

Bits						
		Signif.	(t)	Exp.	Range	$u=2^{-t}$
fp64	D	53	11	$10^{ \pm 308}$	1×10^{-16}	
fp32	S	24	8	$10^{ \pm 38}$	6×10^{-8}	
fp16	H	11	5	$10^{ \pm 5}$	5×10^{-4}	
bfloat16	B	8	8	$10^{ \pm 38}$	4×10^{-3}	

Low precision increasingly supported by hardware:

- Fp16 used by NVIDIA GPUs, AMD Radeon Instinct MI25 GPU, ARM NEON, Fujitsu A64FX ARM
- Bfloat16 used by Google TPU, NVIDIA GPUs, Arm, Intel

$$
n u>1 \text { for } n>2048 \text { in fp16 and for } n>256 \text { in bfloat16! }
$$

Values of n

- Backward error analysis was developed by James Wilkison in the 1960s
- At that time, $n=100$ was huge!
$\Rightarrow n$ was considered a "constant"

Hence traditional error analysis has paid little attention to n The constant terms in an error bound are the least important parts of error analysis. It is not worth spending much effort to minimize constants because the achievable improvements are usually insignificant.

Nick Higham, ASNA 2ed (2002)

Values of n

- The \#1 computer in the latest TOP500 ranking (Nov. 2020) is there by having solved a linear system of 21 million equations (succesfully passing an accuracy check in double precision)

Values of n

- The \#1 computer in the latest TOP500 ranking (Nov. 2020) is there by having solved a linear system of 21 million equations (succesfully passing an accuracy check in double precision)
- Some problems we recently solved with the MUMPS sparse multifrontal solver (for these problems, error grows as $n^{2 / 3}$):

Jet engine $n=105$ millions
Double precision

Seismic imaging
$n=130$ millions
Single precision

Helioseismology $n=384$ millions
Single precision

- Yet, all these problems were solved accurately. Why?
- Since the 1960 s, researchers have tried modelling the δ_{k} as random variables to translate the intuition that δ_{k} of opposite sign cancel each other (von Neumann \& Goldstine, Henrici, Hull \& Swenson, ...)
- Wilkinson's rule of thumb: $n u \rightarrow \sqrt{n} u$

In general, the statistical distribution of the rounding errors will reduce considerably the function of n occurring in the relative errors. We might expect in each case that this function should be replaced by something which is no bigger than its square root.

- James Wilkinson, 1961

Three limitations

Probabilistic analyses remained a "rule of thumb": why?

Three limitations

Probabilistic analyses remained a "rule of thumb": why?

- Lack of rigor
- First-order analyses
- Asymptotic statements ("for sufficiently large n ")
- Unspecified probabilities ("with high probability")

Three limitations

Probabilistic analyses remained a "rule of thumb": why?

- Lack of rigor
- First-order analyses
- Asymptotic statements ("for sufficiently large n ")
- Unspecified probabilities ("with high probability")
- Lack of generality
- Only applicable to specific algorithms

Three limitations

Probabilistic analyses remained a "rule of thumb": why?

- Lack of rigor
- First-order analyses
- Asymptotic statements ("for sufficiently large n")
- Unspecified probabilities ("with high probability")
- Lack of generality
- Only applicable to specific algorithms
- Lack of understanding

Let us measure the actual backward error, which is given by

$$
\eta=\min \left\{\epsilon>0: \widehat{s}=(x+\Delta x)^{T} y, \quad|\Delta x| \leq \epsilon|x|\right\}=\frac{|\widehat{s}-s|}{|x|^{T}|y|}
$$

and compare it to its bound γ_{n}

Three limitations

Probabilistic analyses remained a "rule of thumb": why?

- Lack of rigor
- Lack of generality
- Lack of understanding

Inner product in single precision with random uniform $[0,1]$ vectors

Three limitations

Probabilistic analyses remained a "rule of thumb": why?

- Lack of rigor
- Lack of generality
- Lack of understanding

Inner product in half precision with random uniform $[0,1]$ vectors

Three limitations

Probabilistic analyses remained a "rule of thumb": why?

- Lack of rigor
- Lack of generality
- Lack of understanding

Inner product in half precision with random uniform $[-1,1]$ vectors

Three limitations

Probabilistic analyses remained a "rule of thumb": why?

- Lack of rigor
- Lack of generality
- Lack of understanding

Inner product with tensor cores
with random uniform $[-1,1]$ vectors
Error bound $2 u_{16}+n u_{32}$

Three limitations

Probabilistic analyses remained a "rule of thumb": why?

- Lack of rigor
- Lack of generality
- Lack of understanding

(-) Nicholas J. Higham and T.M. A New Approach to Probabilistic Rounding Error Analysis, SIAM J. Sci. Comput. 41(5):A2815-A2835 (2019).
- First probabilistic backward error analysis, assuming independence of rounding errors

国 Nicholas J. Higham and T.M. Sharper Probabilistic Backward Error Analysis for Basic Linear Algebra Kernels with Random Data, SIAM J. Sci. Comput. 42(5):A3427-A3446 (2020).

- Replaces independence assumption by the weaker mean independence
- Explains difference between $[0,1]$ and $[-1,1]$ matrices
- New understanding into the behavior of tensor cores
- Probabilistic forward error bounds
- New algorithm based on shifting matrices in $[-1,1]$

Probabilistic backward error analysis

Model M

In the computation of interest, the rounding errors δ_{k} are independent random variables of mean zero: $\mathbb{E}\left(\delta_{k}\right)=0$.

Probabilistic backward error analysis

Model M

In the computation of interest, the rounding errors δ_{k} are independent random variables of mean zero: $\mathbb{E}\left(\delta_{k}\right)=0$.

Probabilistic fundamental lemma

Let $\delta_{k}, k=1: n$, satisfy Model M. Then, for any $\lambda>0$, the relation

$$
\prod_{k=1}^{n}\left(1+\delta_{k}\right)=1+\theta_{n}, \quad\left|\theta_{n}\right| \leq \gamma_{\lambda \sqrt{n}}
$$

holds with probability at least $P(\lambda)=1-2 \exp \left(-\lambda^{2}(1-u)^{2} / 2\right)$.

Probabilistic backward error analysis

Probabilistic fundamental lemma

Let $\delta_{k}, k=1: n$, satisfy Model M. Then, for any $\lambda>0$, the relation

$$
\prod_{k=1}^{n}\left(1+\delta_{k}\right)=1+\theta_{n}, \quad\left|\theta_{n}\right| \leq \gamma_{\lambda \sqrt{n}}
$$

holds with probability at least $P(\lambda)=1-2 \exp \left(-\lambda^{2}(1-u)^{2} / 2\right)$.
Key features:

- valid to all orders
- valid for all n
- explicit probability $P(\lambda)$ (but pessimistic)
- can be applied in a systematic way: $\gamma_{n} \rightarrow \gamma_{\lambda \sqrt{n}}$

$$
\begin{gathered}
\widehat{s}=(x+\Delta x)^{T} y, \quad|\Delta x| \leq \gamma_{\lambda \sqrt{n}}|x| \\
\widehat{y}=(A+\Delta A) x, \quad|\Delta A| \leq \gamma_{\lambda \sqrt{n}}|A| \\
\widehat{L} \widehat{U}=A+\Delta A, \quad|\Delta A| \leq \gamma_{\lambda \sqrt{n}}|A| \\
(A+\Delta A) \widehat{x}=b, \quad|\Delta A| \leq\left(3 \gamma_{\lambda \sqrt{n}}+\gamma_{\lambda \sqrt{n}}^{2}\right)|A|
\end{gathered}
$$

Single precision inner product with random vectors in $[0,1]$

Half precision inner product with random vectors in $[0,1]$

- Summation of a very large number of nonnegative terms $\left(n \gg 10^{3}\right.$ in half precision) eventually violates Model M
- Issue known as stagnation: small increments get obliterated by

A refined model

Model M'

Let the computation of interest generate rounding errors $\delta_{1}, \delta_{2}, \ldots$ in that order, with $\left|\delta_{k}\right| \leq u$. The δ_{k} are (possibly dependent) random variables of mean zero and mean independent of the previous δ_{1}, \ldots, δ_{k-1}, i.e., $\mathbb{E}\left(\delta_{k} \mid \delta_{1}, \ldots, \delta_{k-1}\right)=\mathbb{E}\left(\delta_{k}\right)=0$.

A refined model

Model M'

Let the computation of interest generate rounding errors $\delta_{1}, \delta_{2}, \ldots$ in that order, with $\left|\delta_{k}\right| \leq u$. The δ_{k} are (possibly dependent) random variables of mean zero and mean independent of the previous δ_{1}, \ldots, δ_{k-1}, i.e., $\mathbb{E}\left(\delta_{k} \mid \delta_{1}, \ldots, \delta_{k-1}\right)=\mathbb{E}\left(\delta_{k}\right)=0$.

Probabilistic fundamental lemma

Let $\delta_{k}, k=1: n$, satisfy Model M^{\prime}. Then, for any $\lambda>0$, the relation

$$
\prod_{k=1}^{n}\left(1+\delta_{k}\right)=1+\theta_{n}, \quad\left|\theta_{n}\right| \leq \gamma_{\lambda \sqrt{n}}
$$

holds with probability at least $P(\lambda)=1-2 \exp \left(-\lambda^{2}(1-u)^{2} / 2\right)$.

Martingale: a sequence of random variables satisfying

- $\mathbb{E}\left(\left|S_{k}\right|\right)<\infty$
- $\mathbb{E}\left(S_{k+1} \mid S_{0}, \ldots, S_{k}\right)=S_{k}$

Martingale: a sequence of random variables satisfying

- $\mathbb{E}\left(\left|S_{k}\right|\right)<\infty$
- $\mathbb{E}\left(S_{k+1} \mid S_{0}, \ldots, S_{k}\right)=S_{k}$

Azuma-Hoeffding inequality

Let S_{0}, \ldots, S_{n} be a martingale such that $\left|S_{k+1}-S_{k}\right| \leq c$. Then

$$
\left|S_{n}-S_{0}\right| \leq \lambda \sqrt{n} c
$$

holds with probability at least $P(\lambda)=1-\exp \left(-2 \lambda^{2}\right)$.

Proof

Martingale: a sequence of random variables satisfying

- $\mathbb{E}\left(\left|S_{k}\right|\right)<\infty$
- $\mathbb{E}\left(S_{k+1} \mid S_{0}, \ldots, S_{k}\right)=S_{k}$

Azuma-Hoeffding inequality

Let S_{0}, \ldots, S_{n} be a martingale such that $\left|S_{k+1}-S_{k}\right| \leq c$. Then

$$
\left|S_{n}-S_{0}\right| \leq \lambda \sqrt{n} c
$$

holds with probability at least $P(\lambda)=1-\exp \left(-2 \lambda^{2}\right)$.

- Let $S_{n}=\prod_{k=1}^{n}\left(1+\delta_{i}\right)=1+\theta_{n}$
- S_{n} is martingale (with $S_{0}=1$)
- $\left|S_{k+1}-S_{k}\right| \leq\left|\delta_{k+1} S_{k}\right| \leq u\left(1+\left|\theta_{n}\right|\right)=: c$
- Azuma-Hoeffding: $\left|\theta_{n}\right|=\left|S_{n}-S_{0}\right| \leq \lambda \sqrt{n} u\left(1+\left|\theta_{n}\right|\right)$
- $\left|\theta_{n}\right| \leq \frac{\lambda \sqrt{n} u}{1-\lambda \sqrt{n} u}=\gamma_{\lambda \sqrt{n}}$

Random walks

Let S_{k} be the position at step k

- S_{k+1} depends on S_{k}
- However, identical chance of going in any direction $\Rightarrow \mathbb{E}\left(S_{k+1} \mid S_{0}, \ldots S_{k}\right)=S_{k}$

Random walks

Let S_{k} be the position at step k

- S_{k+1} depends on S_{k}
- However, identical chance of going in any direction $\Rightarrow \mathbb{E}\left(S_{k+1} \mid S_{0}, \ldots S_{k}\right)=S_{k}$
- Model M^{\prime} identifies finite-precision computations to random walks
- Allows rounding errors at a given step to depend on previous errors
- Only assumes the expected error (conditioned by previous errors) to be zero

Stochastic rounding

- With stochastic rounding

$$
f(x)=\left\{\begin{array}{l}
\lceil x\rceil \text { with probability } p=\frac{x-\lfloor x\rfloor}{|x|-\lfloor x \mid} \\
\lfloor x\rfloor \text { with probability } 1-p=\frac{|x|-x}{|x|-[x]}
\end{array}\right.
$$

where $\lfloor\cdot\rfloor$ and $\lceil\cdot\rceil$ denote the operators that round down and up
国 Connolly, Higham, and M. (2021): rounding errors produced by SR satisfy Model M' (with $u \leftarrow 2 u$)
\Rightarrow Probabilistic $\gamma_{\lambda \sqrt{n}}$ bound holds unconditionally: the rule of thumb is a rule for SR

Same example, now with SR

- Stagnation explains success of SR in neural network training (Gupta et al., 2015)
- SR also prevents stagnation in PDEs (Croci \& Giles, 2021)

$[-1,1]$ data

Previous results for $[0,1]$ random uniform data.
What about $[-1,1]$ data ?

$[0,1]$ vectors only have positive elements \Rightarrow too special ?

$[-1,1]$ data

Previous results for $[0,1]$ random uniform data.
What about $[-1,1]$ data ?

$[0,1]$ vectors only have positive elements \Rightarrow too special ?
No! $[-1,1]$ vectors are the special ones!

Role of the data, intuitively

- Recall that $\eta=\frac{|\hat{s}-s|}{|x|^{T}|y|}$
- Under Model $\mathrm{M}^{\prime},|\widehat{s}-s| \leq \lambda \sqrt{n} u \max _{k}\left|s_{k}\right|$, where s_{k} is the partial inner product of the first k elements of x and y
- Because of cancellation, cannot bound $\left|s_{k}\right|$ by $\left|x^{T} y\right|$ but only by $|x|^{T}|y|$ in general. But what about specific x_{i}, y_{i} ?
- $x_{i}, y_{i} \in \operatorname{Unif}([0,1]) \Rightarrow\left|s_{k}\right|=O(n)$
- $x_{i}, y_{i} \in \operatorname{Unif}([-1,1]) \Rightarrow\left|s_{k}\right|=O(\sqrt{n})$
\Rightarrow Backward error smaller by a factor \sqrt{n}

Role of the data, more formally

Model M"

In addition to the assumptions of Model M^{\prime}, assume that in the inner product $s=x^{T} y, x_{i}$ and y_{i} are random independent variables such that $\mathbb{E}\left(x_{i} y_{i}\right)=\mu, \mathbb{E}\left(\left|x_{i} y_{i}\right|\right)=\mu_{+}$, and $\left|x_{i} y_{i}\right| \leq C$.

Probabilistic bwd error bound for random inner products

Let $s=x^{T} y$. Under Model M", for any $\lambda>0$, the backward error bound

$$
\eta=\frac{|\widehat{s}-s|}{|x|^{T}|y|} \leq \frac{\lambda \mu \sqrt{n}+\lambda^{2} C}{\mu_{+}-\lambda C / \sqrt{n}} \cdot u+O\left(u^{2}\right)
$$

holds with probability $P(\lambda)=1-2(n+1) \exp \left(-\lambda^{2} / 2\right)$

Tensor cores

Round x and y to fp 16 , then compute $s=x^{\top} y$ in fp32 arithmetic

$$
\begin{aligned}
\eta & \leq \frac{\left|\sum_{i=1}^{n} x_{i} y_{i} \epsilon_{i}\right|}{|x|^{T}|y|}+n u_{32}, \quad\left|\epsilon_{i}\right| \leq 2 u_{16}+u_{16}^{2} \\
& \leq \frac{u_{16}}{\sqrt{n}}+n u_{32} \quad \text { under Model } \mathrm{M}^{\prime \prime} \text { for zero-mean vectors }
\end{aligned}
$$

Shifting to zero mean for accuracy

Idea: given x_{i}, y_{i} of mean $\mu \neq 0$, let $z_{i}=x_{i}-\mu$ and compute $s=z^{T} y+n \mu$, then $\eta \leq c u$ for some c independent of n

Cost: $2 n$ flops but for $C=A B$, where $A, B, C \in \mathbb{R}^{n \times n}$ the cost of the algorithm below is in $O\left(n^{2}\right)$ instead of $O\left(n^{3}\right)$

$$
\begin{aligned}
& \widetilde{A} \leftarrow A-x e^{T} \\
& C \leftarrow \widetilde{A} B+x\left(e^{T} B\right)
\end{aligned}
$$

where $x_{i}=$ mean of i th row of A and e is the vector full of ones

Application to matrix multiplication

Backward error (for [0, 1] data)

Single precision

Half precision

Conclusions

$$
\gamma_{n} \rightarrow \gamma_{\lambda \sqrt{n}} \text { with probability } P(\lambda)
$$

- Accuracy guarantees for larger problems/lower precisions
- In probabilistic sense
- Under some assumptions, which are enforced by SR
- New insights and understanding into the behavior of finite-precision computations
- Stagnation
- Rounding mode
- Mean of the data
- Tensor cores

Open problem: LU factorization and linear systems

Doolittle's formula for $A=L U$

$$
\ell_{i k}=\left(a_{i k}-\sum_{j=1}^{k-1} \ell_{i j} u_{j k}\right) / u_{k k}, \quad u_{k j}=a_{k j}-\sum_{i=1}^{k-1} \ell_{k i} u_{i j}
$$

The inner products arising in LU factorization are not random! And yet. . .

Thanks! Questions?

