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Floating-point arithmetic

• Standard model of floating-point arithmetic

fl(x op y) = (x op y)(1 + δ), |δ| ≤ u , for op ∈ {+,−,×,÷}

• Example: let x , y ∈ R3 and s = xT y

ŝ =
[(
x1y1(1 + δ1) + x2y2(1 + δ2)

)
(1 + δ3) + x3y3(1 + δ4)

]
(1 + δ5)

= x1y1(1 + δ1)(1 + δ3)(1 + δ5) + x2y2(1 + δ2)(1 + δ3)(1 + δ5)

+ x3y3(1 + δ4)(1 + δ5).

• Backward error bound ŝ = (x + ∆x)T y

, |∆x | ≤ γ3

Fundamental lemma in backward error analysis

If |δk | ≤ u for k = 1 : n and nu < 1, then
n∏

k=1

(1 + δk) = 1 + θn, |θn| ≤ γn :=
nu

1− nu
= nu + O(u2)
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Backward error analysis

• Inner products s = xT y :

ŝ = (x + ∆x)T y , |∆x | ≤ γn|x |

• Matrix–vector products y = Ax :

ŷ = (A + ∆A)x , |∆A| ≤ γn|A|

• LU factorization A = LU:

L̂Û = A + ∆A, |∆A| ≤ γn|A|

• Solution to linear system Ax = b:

(A + ∆A)x̂ = b, |∆A| ≤ (3γn + γ2n)|A|

⇒ Error grows as nu in NLA: should we worry ?
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Values of u

Bits

Signif. (t) Exp. Range u = 2−t

fp64 D 53 11 10±308 1× 10−16

fp32 S 24 8 10±38 6× 10−8

fp16 H 11 5 10±5 5× 10−4

bfloat16 B 8 8 10±38 4× 10−3

Low precision increasingly supported by hardware:

• Fp16 used by NVIDIA GPUs, AMD Radeon Instinct MI25 GPU,
ARM NEON, Fujitsu A64FX ARM

• Bfloat16 used by Google TPU, NVIDIA GPUs, Arm, Intel

nu > 1 for n > 2048 in fp16 and for n > 256 in bfloat16!
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Values of n

• Backward error analysis was developed
by James Wilkison in the 1960s

• At that time, n = 100 was huge!

⇒ n was considered a “constant”

Hence traditional error analysis has paid little attention to n

The constant terms in an error bound are the least important
parts of error analysis. It is not worth spending much effort to
minimize constants because the achievable improvements are
usually insignificant.

Nick Higham, ASNA 2ed (2002)
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Values of n

• The #1 computer in the latest TOP500 ranking (Nov. 2020) is
there by having solved a linear system of 21 million equations
(succesfully passing an accuracy check in double precision)

• Some problems we recently solved with the MUMPS sparse
multifrontal solver (for these problems, error grows as n2/3):
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• Yet, all these problems were solved accurately. Why?
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Probabilistic model of rounding errors

• Since the 1960s, researchers have tried modelling the δk as random
variables to translate the intuition that δk of opposite sign cancel
each other (von Neumann & Goldstine, Henrici,
Hull & Swenson, . . . )

• Wilkinson’s rule of thumb: nu →
√
nu

In general, the statistical distribution of the rounding errors will reduce
considerably the function of n occurring in the relative errors. We might
expect in each case that this function should be replaced by something
which is no bigger than its square root.

— James Wilkinson, 1961
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Three limitations

Probabilistic analyses remained a “rule of thumb”: why?

• Lack of rigor

• Lack of generality

• Lack of understanding
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• Lack of rigor
◦ First-order analyses
◦ Asymptotic statements (“for sufficiently large n”)
◦ Unspecified probabilities (“with high probability”)

• Lack of generality
◦ Only applicable to specific algorithms

• Lack of understanding
Let us measure the actual backward error, which is given by

η = min
{
ε > 0 : ŝ = (x + ∆x)T y , |∆x | ≤ ε|x |

}
=
|ŝ − s|
|x |T |y |

and compare it to its bound γn
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Three limitations

Probabilistic analyses remained a “rule of thumb”: why?

• Lack of rigor

• Lack of generality

• Lack of understanding

Inner product in single precision
with random uniform [0, 1] vectors
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Two papers

q Nicholas J. Higham and T.M. A New Approach to Probabilistic Round-
ing Error Analysis, SIAM J. Sci. Comput. 41(5):A2815–A2835
(2019).

◦ First probabilistic backward error analysis, assuming independence of
rounding errors

q Nicholas J. Higham and T.M. Sharper Probabilistic Backward Error
Analysis for Basic Linear Algebra Kernels with Random Data, SIAM
J. Sci. Comput. 42(5):A3427–A3446 (2020).

◦ Replaces independence assumption by the weaker mean independence
◦ Explains difference between [0, 1] and [−1, 1] matrices
◦ New understanding into the behavior of tensor cores
◦ Probabilistic forward error bounds
◦ New algorithm based on shifting matrices in [−1, 1]
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Probabilistic backward error analysis

Model M

In the computation of interest, the rounding errors δk are independent
random variables of mean zero: E(δk) = 0.

Probabilistic fundamental lemma

Let δk , k = 1 : n, satisfy Model M. Then, for any λ > 0, the relation
n∏

k=1

(1 + δk) = 1 + θn, |θn| ≤ γλ√n

holds with probability at least P(λ) = 1− 2 exp(−λ2(1− u)2/2).
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Let δk , k = 1 : n, satisfy Model M. Then, for any λ > 0, the relation
n∏

k=1

(1 + δk) = 1 + θn, |θn| ≤ γλ√n

holds with probability at least P(λ) = 1− 2 exp(−λ2(1− u)2/2).

Key features:
• valid to all orders
• valid for all n
• explicit probability P(λ) (but pessimistic)
• can be applied in a systematic way: γn → γλ

√
n

ŝ = (x + ∆x)T y , |∆x | ≤ γλ√n|x |

ŷ = (A + ∆A)x , |∆A| ≤ γλ√n|A|

L̂Û = A + ∆A, |∆A| ≤ γλ√n|A|

(A + ∆A)x̂ = b, |∆A| ≤ (3γλ
√
n + γ2λ

√
n)|A|
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Typical result

Single precision inner product
with random vectors in [0, 1]
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Stagnation

Half precision inner product
with random vectors in [0, 1]
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• Summation of a very large number of nonnegative terms (n� 103

in half precision) eventually violates Model M

• Issue known as stagnation: small increments get obliterated by
large partial sum12/25



A refined model

Model M’

Let the computation of interest generate rounding errors δ1, δ2, . . . in
that order, with |δk | ≤ u. The δk are (possibly dependent) random
variables of mean zero and mean independent of the previous δ1, . . . ,
δk−1, i.e., E(δk | δ1, . . . , δk−1) = E(δk) = 0.

Probabilistic fundamental lemma

Let δk , k = 1 : n, satisfy Model M’. Then, for any λ > 0, the relation
n∏

k=1

(1 + δk) = 1 + θn, |θn| ≤ γλ√n

holds with probability at least P(λ) = 1− 2 exp(−λ2(1− u)2/2).
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Proof

Martingale: a sequence of random variables satisfying

• E(|Sk |) <∞
• E(Sk+1 | S0, . . . ,Sk) = Sk

Azuma–Hoeffding inequality

Let S0, . . . ,Sn be a martingale such that |Sk+1 − Sk | ≤ c . Then

|Sn − S0| ≤ λ
√
nc

holds with probability at least P(λ) = 1− exp(−2λ2).

• Let Sn =
∏n

k=1(1 + δi ) = 1 + θn

• Sn is martingale (with S0 = 1)

• |Sk+1 − Sk | ≤ |δk+1Sk | ≤ u(1 + |θn|) =: c

• Azuma–Hoeffding: |θn| = |Sn − S0| ≤ λ
√
nu(1 + |θn|)

• |θn| ≤ λ
√
nu

1−λ
√
nu

= γλ
√
n
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Random walks

Let Sk be the position at step k

• Sk+1 depends on Sk

• However, identical chance of
going in any direction
⇒ E(Sk+1 | S0, . . .Sk) = Sk

• Model M’ identifies finite-precision computations to random walks
◦ Allows rounding errors at a given step to depend on previous errors
◦ Only assumes the expected error (conditioned by previous errors) to

be zero
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Stochastic rounding

•
x

bxc dxe

• With stochastic rounding

fl(x) =

{
dxe with probability p = x−bxc

dxe−bxc
bxc with probability 1− p = dxe−x

dxe−bxc

where b·c and d·e denote the operators that round down and up

q Connolly, Higham, and M. (2021): rounding errors produced by SR
satisfy Model M’ (with u ← 2u)

⇒ Probabilistic γλ
√
n bound holds unconditionally: the rule of thumb

is a rule for SR

16/25



Same example, now with SR
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• Stagnation explains success of SR in neural network training
(Gupta et al., 2015)

• SR also prevents stagnation in PDEs (Croci & Giles, 2021)
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[−1, 1] data

Previous results for [0, 1] random uniform data.
What about [−1, 1] data ?
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[0, 1] vectors only have positive elements ⇒ too special ?

No! [−1, 1] vectors are the special ones!
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Role of the data, intuitively

• Recall that η = |ŝ−s|
|x |T |y |

• Under Model M’, |ŝ − s| ≤ λ
√
nu maxk |sk |, where sk is the partial

inner product of the first k elements of x and y

• Because of cancellation, cannot bound |sk | by |xT y | but only by
|x |T |y | in general. But what about specific xi , yi?
◦ xi , yi ∈ Unif([0, 1]) ⇒ |sk | = O(n)
◦ xi , yi ∈ Unif([−1, 1]) ⇒ |sk | = O(

√
n)

⇒ Backward error smaller by a factor
√
n
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Role of the data, more formally

Model M”

In addition to the assumptions of Model M’, assume that in the inner
product s = xT y , xi and yi are random independent variables such
that E(xiyi ) = µ, E(|xiyi |) = µ+, and |xiyi | ≤ C .

Probabilistic bwd error bound for random inner products

Let s = xT y . Under Model M”, for any λ > 0, the backward error
bound

η =
|ŝ − s|
|x |T |y |

≤ λµ
√
n + λ2C

µ+ − λC/
√
n
· u + O(u2)

holds with probability P(λ) = 1− 2(n + 1) exp
(
−λ2/2

)
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Tensor cores
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Round x and y to fp16, then compute s = xT y in fp32 arithmetic

η ≤

∣∣∣∑n
i=1 xiyiεi

∣∣∣
|x |T |y |

+ nu32, |εi | ≤ 2u16 + u216

≤ u16√
n

+ nu32 under Model M” for zero-mean vectors
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Shifting to zero mean for accuracy

Idea: given xi , yi of mean µ 6= 0, let zi = xi − µ and compute
s = zT y + nµ, then η ≤ cu for some c independent of n

Cost: 2n flops but for C = AB, where A,B,C ∈ Rn×n the cost of the
algorithm below is in O(n2) instead of O(n3)

Ã← A− xeT

C ← ÃB + x(eTB)

where xi = mean of ith row of A and e is the vector full of ones
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Application to matrix multiplication

Backward error (for [0, 1] data)
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Conclusions

γn → γλ
√
n with probability P(λ)

• Accuracy guarantees for larger problems/lower precisions
◦ In probabilistic sense
◦ Under some assumptions, which are enforced by SR

• New insights and understanding into the behavior of
finite-precision computations
◦ Stagnation
◦ Rounding mode
◦ Mean of the data
◦ Tensor cores
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Open problem: LU factorization and linear systems

Doolittle’s formula for A = LU

`ik =
(
aik −

k−1∑
j=1

`ijujk
)
/ukk , ukj = akj −

k−1∑
i=1

`kiuij

The inner products arising in LU factorization are not random! And
yet. . .
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Thanks! Questions?25/25


