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Abstract. The need to sum floating-point numbers is ubiquitous in scientific computing. Stan-
dard recursive summation of n summands, often implemented in a blocked form, has a backward
error bound proportional to nu, where u is the unit roundoff. With the growing interest in low
precision floating-point arithmetic and ever increasing n in applications, computed sums are more
likely to have insufficient accuracy. We propose a class of summation algorithms called FABsum (for
“fast and accurate block summation”) that applies a fast summation algorithm (such as recursive
summation) blockwise and then sums the partial sums using an accurate summation algorithm (such
as compensated summation, or recursive summation in higher precision). We give a rounding error
analysis to show that FABsum with a fixed block size b has a backward error bound (b+1)u+O(u2),
which is independent of n to first order. Our computational experiments show that with a suitable
choice of b (independent of n) FABsum can deliver substantially more accurate results than blocked
recursive summation, with only a modest drop in performance. FABsum is especially attractive for
low precisions, where it can provide correct digits for much larger n than recursive summation.
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1. Introduction. Summation is a key computational task at the heart of many
numerical algorithms, most notably numerical linear algebra kernels involving inner
products, such as matrix–vector or matrix–matrix multiplications, matrix factoriza-
tions, and the solution of linear systems. In floating-point arithmetic, summation
incurs rounding errors. Backward error bounds for the basic summation algorithms
are proportional to nu, where n is the number of summands and u the unit roundoff,
and thus they grow linearly with n.

While compensated summation algorithms achieving backward error bounds that
do not grow (or grow slowy) with n are known [10, sec. 4.3], they are computa-
tionally expensive. Indeed running a basic summation algorithm in higher precision
(e.g., using double precision rather than single precision) may provide a better per-
formance/accuracy tradeoff. Compensated summation algorithms are thus only used
when the highest precision available is not enough for the application at hand, and
they are generally not available in optimized libraries such as the Intel Math Kernel
Library or the NAG Library.

The rise of large-scale, low-precision computations presents new challenges. On
the one hand, modern supercomputing allows larger and larger problems to be solved,
and we must routinely evaluate sums of 108 or more terms. On the other hand, the use
of low floating-point precisions (such as IEEE half precision, for which u ≈ 4.88×10−4)
is increasingly common [2], [8], [12]. For such large sizes and low precisions, error
bounds of order nu exceed 1, and so do not provide any meaningful information. This
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creates a dilemma, as we need to choose between benefiting from the speed, lower
energy requirements, and reduced data movement of low precision arithmetic and
being able to accurately solve large problems.

In this work we tackle this dilemma by introducing a new class of summation
algorithms that excels in both performance and accuracy. These algorithms achieve
backward error bounds that do not grow with n (that is, the bounds are of the form
cu + O(u2), where c is a moderate constant independent of n) and, at the same
time, they can deliver a similar performance to optimized, standard algorithms by
performing an arbitrarily low number of extra flops (e.g., less than a 1% overhead)
and by allowing efficient implementation on modern computers.

We first review existing summation algorithms in section 2. Then, in section 3,
we present the new class of algorithms, called FABsum, perform a rounding error
analysis for algorithms in this class, and analyze their cost in a general framework.
In section 4 we apply FABsum to several key numerical linear algebra algorithms.
In section 5, we assess the practical performance and accuracy of FABsum through
numerical experiments. We provide our concluding remarks in section 6.

2. Existing summation algorithms. We begin by briefly reviewing existing
algorithms to compute the sum s =

∑n
i=1 xi. We denote by ŝ the computed value

of s in floating-point arithmetic. We use the standard model of floating-point arith-
metic [10, sec. 2.2]

(2.1) f l(a op b) = (a op b)(1 + δ), |δ| ≤ u, op ∈ {+,−,×, /}.

Note that this model does not account for the possibility of underflow (or overflow).
However, an addition or subtraction incurring underflow is necessarily exact [9], [10,
Prob. 2.19] and therefore our results for summation hold even in presence of underflow.
This does not extend, though, to the more general algorithms based on summation
in section 4.

We note that sharper error bounds can be obtained in some cases by making the
stronger assumption that the floating-point arithmetic uses round to nearest [16], [19],
[24]. However, we prefer to restrict to the model (2.1) in order that our results have
the widest possible applicability, for example to directed or stochastic rounding.

We mention that summation algorithms have been proposed that achieve repro-
ducibility (see, e.g., [4], [5]). Reproducibility and accuracy are two distinct objectives,
since even very accurate algorithms can yield different results on different runs. In
this article, we target accuracy rather than reproducibility.

2.1. Recursive summation. The most basic algorithm to compute s is recur-
sive summation, which starts with s = x1 and computes

s← s+ xi, i = 2 : n.

The computed sum satisfies [10, sec. 4.2]

(2.2) ŝ =

n∑
i=1

xi(1 + µi), |µi| ≤ γn−1 = (n− 1)u+O(u2),

where γn = nu/(1− nu) for nu < 1. This backward error bound grows linearly with
n and is almost attainable [10, Prob. 4.2].
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2.2. Blocked summation. In order to allow a sum to be computed in parallel,
high–performance libraries divide the summands into n/b blocks of size b. From now
on, n is assumed to be a multiple of b for simplicity. First, the local sums

(2.3) si =

ib∑
j=(i−1)b+1

xj , i = 1 : n/b,

are computed with recursive summation, and then s =
∑n/b

i=1 si is also obtained with
recursive summation.

By applying (2.2) to si and s we find that the computed ŝ from blocked summation
satisfies

(2.4) ŝ =

n∑
i=1

xi(1 + µi), |µi| ≤ (b+ n/b− 2)u+O(u2),

and so the backward error bound depends on the block size b. The constant b+n/b−2
in the bound is minimized for b =

√
n, for which it equals 2

√
n − 2. However, for

performance reasons b is often chosen to be a moderate constant (such as 128 or 256),
in which case the error bound for blocked summation still grows linearly with n.

2.3. Pairwise summation. Pairwise summation (also known as tree summa-
tion or binary cascade summation) generalizes blocked summation by recursively com-
puting the local sums (2.3) with blocked summation, continuing until sums of two
terms are obtained. There are thus at most dlog2 ne levels of recursion, where d·e
denotes the ceiling function, which leads to the backward error result [10, sec. 4.2]

(2.5) ŝ =

n∑
i=1

xi(1 + µi), |µi| ≤ dlog2 neu+O(u2),

in which the bound grows with n at a much slower rate than for blocked summation.
However, pairwise summation is not well suited for an efficient implementation on
parallel computers, and it usually delivers poor performance compared with blocked
summation [3].

2.4. Compensated summation. The principle of compensation is based on
the fact that for any pair (a, b) of floating-point numbers and their computed sum
ŝ = fl(a+ b), there exists a floating-point number e such that

(2.6) a+ b = s+ e.

In other words, the error in a floating-point addition is itself a floating-point number.
Compensated summation algorithms approximate the error term e at each step

of recursive summation in order to correct the computed sum. Many such algorithms
have been designed and analyzed over the years. Here we focus on Algorithm 2.1
[17], [22], and we note that the augmented arithmetic operations in the 2019 revision
of the IEEE 754 standard for floating-point arithmetic [15] can be exploited in the
algorithm. The backward error result for this algorithm is [7, Thm. 8], [18, Ex. 19,
sec, 4.2.2]

(2.7) ŝ =

n∑
i=1

xi(1 + µi), |µi| ≤ 2u+O(u2),
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Algorithm 2.1 Compensated summation.

This algorithm takes as input n summands xi and computes their sum by compensated
summation.

1: s = 0, e = 0
2: for i = 1: n do
3: z = s
4: y = xi + e
5: s = z + y
6: e = (z − s) + y
7: end for

which is an almost ideal result.
Algorithm 2.1 requires 3 extra flops per loop iteration, which is typically more

expensive than simply switching to a higher precision. For this reason, compensated
summation is usually worth considering only when computations are already taking
place at the highest precision available on the target hardware.

3. Fast and accurate blocked summation. Assume that we have at our
disposal two summation algorithms: one that is fast, referred to as the FastSum al-
gorithm, and one that is accurate, referred to as the AccurateSum algorithm. In
Algorithm 3.1 we describe FABsum, a new blocked summation algorithm that exploits
FastSum and AccurateSum. The key idea is to use FastSum to compute the local
sums si of b numbers and AccurateSum to sum the local sums. This idea is moti-
vated by the observations that the bulk of the computation is in computing the local
sums if the block size is chosen appropriately and that rounding error growth can be
attenuated by accumulating the local sums more accurately. We can therefore expect
that the new algorithm will be almost as fast as FastSum and almost as accurate
as AccurateSum. The rest of this section is devoted to proving this expectation by
analyzing the rounding errors and the cost of Algorithm 3.1 and illustrating these
analyses with some practical choices of FastSum and AccurateSum.

Algorithm 3.1 (FABsum) Fast and accurate blocked summation algorithms.

This algorithm takes as input n summands xi, a block size b, and two summation
algorithms FastSum and AccurateSum. It returns the sum s =

∑n
i=1 xi.

1: for i = 1: n/b do

2: Compute si =
∑ib

j=(i−1)b+1 xj with FastSum.
3: end for
4: Compute s =

∑n/b
i=1 si with AccurateSum.

We note the special cases b = 1, which is entirely AccurateSum, and b = n, which
is entirely FastSum. We are interested in values of b between these two extremes: b
should be large enough to give speed benefits but small enough to give error bounds
independent of n to first order. In the next two sections we give error and cost analyses
that guide the choice of b.

Our general framework includes some previously proposed algorithms. For exam-
ple, taking AccurateSum to be pairwise summation leads to the superblock algorithm
from [3]. Similarly, [1] presents a “selective compensation” algorithm that amounts to
using compensated summation as AccurateSum. Our analysis below generalizes the
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analyses of these papers, considers other possible AccurateSum choices, and extends
the analysis to numerical linear algebra kernels in section 4.

3.1. Rounding error analysis. To carry out a rounding error analysis of Al-
gorithm 3.1 we need to make some assumptions on the error bounds associated with
algorithms FastSum and AccurateSum. For any sum of the form s =

∑n
i=1 xi, we

assume that the computed ŝ from FastSum satisfies

(3.1) ŝ =

n∑
i=1

xi(1 + µf
i ), |µf

i | ≤ εf (n)

and the computed ŝ from AccurateSum satisfies

(3.2) ŝ =

n∑
i=1

xi(1 + µa
i ), |µa

i | ≤ εa(n),

where εf (n) and εa(n) are O(u) and depend on n and u. With these assumptions, we
have the following backward error result.

Theorem 3.1. Let s =
∑n

i=1 xi be computed by Algorithm 3.1. The computed ŝ
satisfies

ŝ =

n∑
i=1

xi(1 + µi), |µi| ≤ ε(n, b) = εf (b) + εa(n/b) + εf (b)εa(n/b).

Proof. Each of the local sums si computed at line 2 of Algorithm 3.1 satisfies

(3.3) ŝi =

ib∑
j=(i−1)b+1

xj
(
1 + µf

j

)
,
∣∣µf

j

∣∣ ≤ εf (b).

Let t =
∑n/b

i=1 ŝi be the sum of the computed local sums. Then the computed t̂, which
is the overall computed sum ŝ, satisfies

(3.4) t̂ = ŝ =

n/b∑
i=1

ŝi
(
1 + µa

i

)
,
∣∣µa

i

∣∣ ≤ εa(n/b).

Combining (3.3) and (3.4) and defining µ̃a
i = µa

di/be, we obtain

ŝ =

n∑
i=1

xi
(
1 + µf

i

)(
1 + µ̃a

i

)
,
∣∣µf

i

∣∣ ≤ εf (b),
∣∣µ̃a

i

∣∣ ≤ εa(n/b).

Defining µi = µf
i + µ̃a

i + µf
i µ̃

a
i , the result follows.

We can interpret Theorem 3.1 as follows. If εa is of order u2 (such as when
AccurateSum uses doubled precision, that is, with a unit roundoff u2 corresponding
to a significand twice as large), then ε(n, b) = εf (b) + O(u2) is independent of n to
first order and thus does not grow with n. In fact, even if εa is of order u, as long as it
does not grow with n to first order (such as when AccurateSum uses compensation),
ε(n, b) does not grow with n to first order either.

To explore this point more precisely we provide an expression for ε(n, b) in the
following cases. Assume FastSum corresponds to recursive summation, so that εf (b) =
(b− 1)u+O(u2).
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• If AccurateSum uses recursive summation in doubled precision with a final
rounding back to the working precision, then we have εa(n/b) = u + O(u2)
and an overall error bound

(3.5) ε(n, b) = bu+O(u2).

• If AccurateSum uses compensated summation, we have εa(n/b) = 2u+O(u2)
by (2.7) and an overall bound

(3.6) ε(n, b) = (b+ 1)u+O(u2).

• If AccurateSum uses pairwise summation, we have εa(n/b) = dlog2(n/b)eu+
O(u2) by (2.5) and an overall bound

(3.7) ε(n, b) = (b− 1 + dlog2(n/b)e)u+O(u2).

In all cases we thus obtain an overall error bound that does not grow (or, in the case
of pairwise summation, grows very slowly) with n.

3.1.1. Accuracy versus stability. Accurate summation means achieving a
small forward error, but our error analysis bounds the backward error. We will show
that these concepts are closely related for summation. The backward error of an
approximation ŝ to s =

∑n
i=1 xi is

(3.8) η(ŝ) = min

{
max |δi| : ŝ =

n∑
i=1

xi(1 + δi)

}
.

A formula for the backward error can be obtained as a special case of the Oettli–Prager
theorem [10, Thm. 7.3], [23]:

(3.9) η(ŝ) =

∣∣ŝ−∑n
i=1 xi

∣∣∑n
i=1 |xi|

.

The numerator is the absolute forward error in the computed sum. The relative
forward error is a factor

∑n
i=1 |xi|/|

∑n
i=1 xi| larger than η(ŝ)—a factor that depends

on the data but not the algorithm. This factor is precisely the condition number

cond(s) = lim
ε→0

sup

{ ∣∣∑n
i=1(xi +∆xi)−

∑n
i=1 xi

∣∣
ε
∣∣∑n

i=1 xi
∣∣ : |∆xi| ≤ ε|xi|, i = 1: n

}
.

3.1.2. On second order contributions. Up to now we have considered ex-
pansions of the error bounds up to first order in u. However, when low precision
arithmetic is being used it is likely that the O(u2) terms will become significant even
for moderate n.

If the arithmetic uses round to nearest we can drop these second order terms for
recursive summation, as proved in [16], [19], [24]. However, as noted in section 2, we
wish to keep the analysis more general. Using the general model (2.1) we now obtain
the second order terms explicitly in order to assess their potential influence on the
error bounds of FABsum.

Let us start with the error bounds given in section 2. In the case of recursive
summation, if (n− 1)u < 1 a second order bound is found by using the expansion of
γn−1 at u = 0 in (2.2):

ŝ =

n∑
i=1

xi(1 + µi), |µi| ≤ (n− 1)u+ (n− 1)2u2 +O(u3).
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Here, the second order term becomes significant when (n − 1)u approaches 1, that
is, when the bound becomes invalid and hence of no use. Similarly, for recursive
summation in doubled precision (with unit roundoff u2) with a final rounding to
working precision u, we have

ŝ =

n∑
i=1

xi(1 + µi), |µi| ≤ u+ (n− 1)u2 +O(u3).

Finally, an explicit second order backward error bound for compensated summation
can be found in [7, Thm. 8]:

ŝ =

n∑
i=1

xi(1 + µi), |µi| ≤ 2u+ 2(2n+ 1)u2 +O(u3).

By Theorem 3.1, the second order terms of FABsum can be obtained by adding
the second order terms of εf (b) and εa(n/b) to the product of their first order terms.
We assume that FastSum uses recursive summation at the working precision, so that
εf (b) = (b− 1)u+ (b− 1)2u2 +O(u3).

• If AccurateSum uses recursive summation in doubled precision, we have
εa(n/b) = u+ (n/b− 1)u2 +O(u3) and an overall error bound

ε(n, b) = bu+
[
n/b− 1 + (b− 1)2 + (b− 1)

]
u2 +O(u3).

• If AccurateSum uses compensated summation, we have εa(n/b) = 2u +
2(2n/b+ 1)u2 +O(u3) and an overall bound

ε(n, b) = (b+ 1)u+
[
4n/b+ 2 + (b− 1)2 + 2(b− 1)

]
u2 +O(u3).

We will not derive a higher–order bound for pairwise summation as the bound (3.7)
depends on n to first order already. For large n, n/b is in practice much larger than
b and so we have, roughly,

(3.10) ε(n, b) = bu+ (n/b)u2 +O(u3)

for doubled precision and

(3.11) ε(n, b) = (b+ 1)u+ (4n/b)u2 +O(u3)

for compensated summation. The order u2 terms become significant when n exceeds
the critical values b2/u for doubled precision and b2/(4u) for compensated summation.
For instance, in IEEE half precision arithmetic (u = 2−11 ≈ 4.88 × 10−4) and for a
block size b = 128, the second order terms in the bounds are significant for n larger
than 3.3× 107 with doubled precision and 8.3× 106 with compensation.

3.2. Cost analysis. We now analyze the cost C(n, b) in flops of Algorithm 3.1.
Let Cf and Ca denote the costs of algorithms FastSum and AccurateSum, respectively.
Then

C(n, b) =
n

b
Cf (b) + Ca

(n
b

)
.

In particular, if the costs Cf and Ca are linear functions of the number of summands,
as is often the case, C(n, b) simplifies to

C(n, b) = Cf (n) +
1

b
Ca(n) +O

(n
b

)
.
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Therefore the cost of Algorithm 3.1 can be made arbitrarily close to that of FastSum
by increasing the block size b.

For example, assume FastSum is recursive summation, whose cost is Cf (n) = n−1,
and AccurateSum is compensated summation, whose cost is Ca(n) = 4n − 2. Then
C(n, b) is equal to n − 1 + (4n − 2)/b, that is, it requires only (4n − 2)/b extra
flops compared with recursive summation, which is a very small overhead for typical
choices of block sizes. For instance, for b = 400, this represents an overhead of only
1%. Similar results hold when AccurateSum uses recursive summation with doubled
precision (the use of doubled precision increases the cost of recursive summation
by a constant factor, usually 2) or pairwise summation (which does not change the
number of required flops, but may decrease the speed due to poor efficiency on parallel
computers).

As long as the parameter b is both reasonably large (to keep the overhead cost
limited) and constant (to avoid error growth), we therefore have the freedom to tune
it in order to achieve the highest possible performance on a given target architecture,
taking into account the cache size, for example.

4. Application to numerical linear algebra. Now we apply our new FABsum

algorithm (Algorithm 3.1) within some important summation-based kernels in numeri-
cal linear algebra, namely inner products, matrix–vector and matrix–matrix products,
matrix factorizations, and the solution of linear systems. The core computation is an
inner product, and to be precise we specify in Algorithm 4.1 how FABsum is used.

Algorithm 4.1 Inner product via FABsum.

This algorithm takes as input vectors x, y ∈ Rn and a block size b and returns the
inner product xT y.

1: Apply Algorithm 3.1 to the summands xiyi, i = 1: n.

We now derive rounding error bounds for the resulting algorithms. Recall that εf (n)
and εa(n) are the error constants in (3.1) and (3.2) for FastSum and AccurateSum,
respectively.

Theorem 4.1 (inner products). Let x, y ∈ Rn and let s = xT y be computed by
Algorithm 4.1. The computed ŝ satisfies

ŝ =

n∑
i=1

xiyi(1 + µi), |µi| ≤ u+ εf (b) + εa(n/b) +O(u2).

Proof. The initial products zi = xiyi each incur one rounding error. The rest of
the proof follows from the application of Theorem 3.1 to the computation of

∑n
i=1 zi.

In the next result we consider matrix–vector and matrix–matrix products com-
puted by the usual inner product formulas. Here, |A| denotes the matrix (|aij |) and
inequalities involving matrices or vectors are to be understood componentwise.

Theorem 4.2 (matrix–vector and matrix–matrix products). Let A ∈ Rm×n,
B ∈ Rn×p, and x ∈ Rn. If y = Ax is computed via inner products using Algorithm 4.1
then

ŷ = (A+∆A)x, |∆A| ≤
(
u+ εf (b) + εa(n/b) +O(u2)

)
|A|.

If C = AB is computed via inner products using Algorithm 4.1 then

|Ĉ − C| ≤
(
u+ εf (b) + εa(n/b) +O(u2)

)
|A||B|.

8



Proof. The proof follows directly from Theorem 4.1.

In order to analyze the solution of linear systems we need the next lemma. For
convenience in stating the bounds we will assume that εf (n) ≥ u and εa(n) ≥ u,
which is true for all the methods under consideration here.

Lemma 4.3. If y = (c−
∑k−1

i=1 aibi)/bk is computed by applying Algorithm 4.1 to
the summation term then the computed ŷ satisfies

(4.1) bkŷ(1 + µ0) = c−
k−1∑
i=1

aibi(1 + µi),

where |µi| ≤ u+ εf (b) + εa((k − 1)/b) +O(u2) for all i.

Proof. By Theorem 3.1 and (2.1) we have

ŷ = b−1k

(
c−

k−1∑
i=1

aibi(1 + δi)(1 + µ′i)

)
(1 + δk)(1 + δk+1),

where

|δi| ≤ u, i = 1: k + 1, |µ′i| ≤ εf (b) + εa((k − 1)/b) + εf (b)εa((k − 1)/b).

Therefore (4.1) holds with 1 + µ0 =
(
(1 + δk)(1 + δk+1)

)−1
, which implies |µ0| ≤

2u+O(u2), and
1 + µi = 1 + δi + µ′i + δiµ

′
i,

which implies
|µi| ≤ u+ εf (b) + εa((k − 1)/b) +O(u2).

We can now derive results for the solution of linear systems by LU factorization.
The next result is immediate from Lemma 4.3.

Theorem 4.4. Let the triangular system Tx = b, where T ∈ Rn×n, be solved by
substitution using Algorithm 4.1. Then the computed solution x̂ satisfies

(T +∆T )x̂ = b, |∆T | ≤
(
u+ εf (b) + εa((n− 1)/b) +O(u2)

)
|T |.

For the next two results we assume that the Doolittle form of LU factorization
is used (see, e.g., [10, Alg. 9.2]) and that Algorithm 4.1 is used in the inner products
therein.

Theorem 4.5. If LU factorization applied to A ∈ Rn×n runs to completion then
the computed LU factors L̂ and Û satisfy

A+∆A = L̂Û , |∆A| ≤
(
u+ εf (b) + εa(n/b) +O(u2)

)
|L̂||Û |.

Proof. The result is obtained by applying Lemma 4.3 to the equations that de-
termine L and U , and is analogous to the proof of [10, Thm. 9.3].

Theorem 4.6. Let A ∈ Rn×n and suppose LU factorization produces computed
LU factors L̂, Û , and a computed solution x̂ to Ax = b. Then

(4.2) (A+∆A)x̂ = b, |∆A| ≤ 3
(
u+ εf (b) + εa(n/b) +O(u2)

)
|L̂||Û |.

Proof. The result is obtained by combining Theorems 4.4 and 4.5, and is analo-
gous to the proof of [10, Thm. 9.4].
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When recursive summation is used (which corresponds to b = n in Algorithm 3.1,
with FastSum equal to recursive summation), we have εa = 0 and εf (b) = εf (n) =
(n − 1)u + O(u2), so the error constants in Theorems 4.1–4.2 and 4.4–4.6 have first
order terms proportional to n. But as shown in section 3.1, if FABsum is used with
FastSum equal to recursive summation and AccurateSum equal to either compensated
summation or recursive summation in doubled precision then the first order terms in
Theorems 4.1–4.2 and 4.4–4.6 are of order bu and hence independent of n. FABsum

therefore offers error constants roughly n/b times smaller than those for recursive
summation.

5. Numerical experiments. We have carried out an extensive set of numerical
experiments to assess the performance and accuracy of our new FABsum algorithm
(Algorithm 3.1) with different AccurateSum choices and to compare it with existing
algorithms.

In section 5.1 we experiment with summation using MATLAB R2018b. In sec-
tion 5.2 we present performance and accuracy results with PLASMA [6], a state-of-
the-art numerical linear algebra library that we have modified by integrating FABsum.

In all the experiments, the working precision is single (u = 2−24 ≈ 5.96 × 10−8)
and the “exact” quantities appearing in the error bound formulas for inner products
and matrix–matrix products are computed in double precision.

5.1. Summation. We first experiment with summation with MATLAB. We
compute s =

∑n
i=1 xi, where x is a randomly generated vector. While the behavior of

the error as a function of n does not strongly depend on the type of distribution (such
as random uniform or normal), it does depend on the mean of the entries xi [13]. For
this reason, we compare the two distributions

• random uniform [0, 1]: x = rand(m,n),
• random uniform [−1, 1]: x = (rand(m,n)-0.5)*2.

In order to make the experiments reproducible, we seed the random number generator
at the beginning of the scripts generating each figure of this section. We have made
these scripts available online1. For each problem size n, we run the same experiment
Ntest = 10 times and plot the value of the maximum backward error (3.8).

Results using single precision and a block size b = 128 are displayed in Figure 5.1,
where we compare blocked summation (one of the fastest summation algorithms),
compensated summation (Algorithm 2.1, one of the most accurate summation algo-
rithms), and FABsum (Algorithm 3.1), which in this case uses recursive summation
for FastSum and compensated summation for AccurateSum. Clearly, FABsum is much
more stable than blocked summation, by up to three orders of magnitude for large n.
It yields a backward error that does not grow with n and is almost ideally small for
[0, 1] vectors, matching the compensated summation error. For [−1, 1] vectors, com-
pensated summation remains more accurate, but only by a constant factor always less
than 10.

The backward error bound for FABsum is (b+ 1)u+O(u2) (see (3.6)) versus 2u+
O(u2) for compensated summation, but we see a ratio in the actual backward errors
roughly

√
b/2 rather than b/2. This is not surprising because the probabilistic error

analysis in [11] shows that if the rounding errors are independent random variables
of zero mean then an error bound of order the square root of the worst-case bound
holds with high probability.

The next experiment uses IEEE half precision (fp16, u = 2−11 ≈ 4.88 × 10−4),

1https://gitlab.com/nla-grp/FABsum.
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(b) Random uniform [−1, 1] vectors.

Fig. 5.1: Backward error for the sum
∑n

i=1 xi computed in single precision, for a
vector x with random uniform entries and block size b = 128.

bfloat16 (u = 2−8 ≈ 3.91×10−3), and quarter precision (u = 2−4 ≈ 6.25×10−2)—the
latter is not standard, but this choice of precision for 8-bit words is suggested in [21].
These lower precisions are simulated with the rounding function chop.m from [14].
Since our objective is to assess the effect of rounding errors, in order to avoid overflow
interfering with the results we only simulate the significand of these low precision
formats; for the exponent, we keep the same number of bits as double precision.
Figure 5.2 compares blocked summation with FABsum with recursive summation for
FastSum and two choices for AccurateSum: compensated summation and recursive
summation in extended precision ue = 2−24 (that is, single precision). As can be
seen in the figure, for such low precisions blocked summation leads to a backward
error that quickly reaches 1, at which point the computed sum is meaningless from a
backward error point of view. Since in this experiment x is a nonnegative vector, one
important difficulty is that the sum s keeps increasing as it is computed. For large n,
the sum may become so large that the following increments do not increase its value
in floating-point arithmetic. This phenomenon, which we call stagnation, leads to a
dramatic increase of the error. The reason is that the rounding errors incurred during
stagnation are all negative, which makes the worst-case error bound close to being
sharp [11, Sec. 4.2.1] and also invalidates the model upon which the probabilistic
analysis in [11] is based. Since the entries of x are bounded by 1, we know that s (in
line 4 of Algorithm 3.1) must necessarily stagnate after its value exceeds b/u; note
that stagnation can, however, occur for smaller values of s when the increments xi
are small. For random uniform summands in [0, 1], the value of s should be about
n/2. This explains the dramatic increase of the error for blocked summation observed
in Figure 5.2 when n becomes larger than 2b/u, that is, 131072, 16384, and 1024 in
fp16, bfloat16, and fp8 arithmetic, respectively.

We now discuss the behavior of FABsum with respect to stagnation for different
choices of AccurateSum. For fp8 arithmetic, stagnation occurs for FABsum with com-
pensated summation, eventually leading to a sharp increase of the error. However,
when extended (single) precision is used, s does not stagnate because it never exceeds
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Fig. 5.2: Backward error of the computed sum
∑n

i=1 xi for a vector x with random
uniform [0, 1] entries and block size b = 32. The methods are blocked summation and
FABsum with compensated summation or recursive summation in extended precision
(ue = 2−24) for AccurateSum.

2b/ue ≈ 1.1 × 109. For larger n, one could use an even higher extended precision,
such as double precision. In fact, provided that stagnation does not occur within local
sums, FABsum with extended precision summation is able to avoid stagnation as long
as standard blocked summation in precision ue, at a fraction of the cost. For the fp16
and bfloat16 precisions, even though the range of sizes n are too small to show the full
effect of stagnation, the variant with extended precision is again noticeably and con-
sistently more accurate than the variant with compensated summation. In contrast
to the fp8 case, it is not clear, though, whether this is due to some mild beginning of
stagnation or to the effect of the second-order terms analyzed in section 3.1.2.

We conclude with a classical example affected by stagnation: the evaluation of
the harmonic series s =

∑n
i=1 1/i. In exact arithmetic, s diverges as n→∞, whereas

in floating-point arithmetic, s is known to “converge” due to stagnation [14], [20]. In
Figure 5.3, we compare the value to which s converges for different precisions and
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Fig. 5.3: Value of the computed sum s =
∑n

i=1 1/i for different precisions and sum-
mation algorithms, using a block size b = 32.

summation algorithms. These experiments demonstrate again that FABsum with ex-
tended precision summation (in this case, double precision) is able to delay stagnation
much longer than the other algorithms.

5.2. Matrix multiplication. We now experiment with the state-of-the-art par-
allel numerical linear algebra library PLASMA [6]. PLASMA includes much of the
functionality of the BLAS and LAPACK, but partitions matrices into t × t blocks
called tiles. Independent operations on different tiles are performed concurrently us-
ing OpenMP task-based parallelism in order to achieve high performance on shared-
memory multicore machines. The tile size is tuned for performance: it must be large
enough to allow for computations of high granularity but small enough to expose
enough parallelism to feed all the available cores.

By design, PLASMA therefore lends itself naturally to using blocked summation.
Note that it is not easy to determine what specific summation algorithm PLASMA
uses, because it relies on third-party libraries (in our experiments, Intel MKL) to
compute the local operations on tiles. Nevertheless, we expect the default implemen-
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Fig. 5.4: Performance and accuracy of m×n by n×p matrix–matrix multiplication in
single precision with m = p = 4096, block size b = 256, tile size t = 256, and varying
n. We compare the standard implementation based on blocked summation with two
versions based on the new FABsum algorithm.

tation of the library to suffer from growth of the error with the matrix size. In order
to assess how FABsum can overcome this issue and at what performance cost, we have
implemented FABsum in some of the PLASMA routines.2

We experiment with single precison matrix–matrix multiplications C = AB,
where A ∈ Rm×n and B ∈ Rn×p are randomly generated matrices with uniform
entries in [0, 1]. We use two 14-core Intel Broadwell processors on the Kebnekaise
supercomputer (Ume̊a, Sweden). We perform Ntest = 10 consecutive runs and take
the maximum performance and the maximum error, measured as

(5.1)
‖Ĉ − C‖
‖A‖‖B‖

,

where the norm is the Frobenius norm and the “exact” C is computed by a double
precision multiplication. We wish to study the behavior of the error for large n. Since
the matrices would not fit in memory if taken to be square, we fix m = p = 4096 and
vary n from 103 to 2× 105.

In Figure 5.4, we compare the performance and accuracy of PLASMA using
FABsum with the default implementation of the PLASMA library. In this first ex-
periment, we have taken the summation block size b to be equal to the default tile
size t = 256 because this makes for the most convenient implementation of FABsum.
Figure 5.4a shows that for the largest matrices, the error is reduced by more than an
order of magnitude. In theory, the performance loss should follow the flop overhead,
which is about 1% since b = 256. However, Figure 5.4b reports a much higher per-
formance loss: while the default implementation achieves a performance peak of over
1500 Gflops for the largest matrices, FABsum only reaches about 1200 Gflops, which

2The code is available online at https://gitlab.com/nla-grp/plasma-17.1-xp.
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Fig. 5.5: Performance and accuracy of m×n by n×p matrix–matrix multiplication in
single precision with m = p = 4096, tile size t = 256, and varying n. We compare the
standard implementation based on blocked summation with the FABsum algorithm for
different block sizes b varying from t to 16t = 4096.

represents a 20% loss. This is probably explained by the fact that the extra work
required by FABsum cannot achieve a high speed, being of BLAS-2 type rather than
BLAS-3.

Therefore, even though it is convenient to take the summation block size b and
the tile size t to be the same, doing so does not allow for an entirely satisfying perfor-
mance/accuracy tradeoff. While dissociating b and t slightly complicates the imple-
mentation, it allows us to find the best possible compromise between performance and
accuracy, as shown in Figure 5.5. Figure 5.5a shows that increasing b from t = 256 to
16t = 4096 barely impacts the error, even though the bound is 16 times larger (this
is partly explained by the probabilistic arguments discussed in the previous section,
which suggest the error should increase by only a factor around

√
16—but even this

prediction turns out to be pessimistic for large n). In turn, taking a larger b signifi-
cantly improves the performance of FABsum: Figure 5.5b shows that with b = 16t the
performance loss reduces significantly to about 3%.

6. Conclusion. As problem sizes n in scientific computing continue to grow,
rounding error bounds proportional to nu, where u is the unit roundoff, become less
satisfactory—especially in the context of the low precision arithmetics that are in-
creasingly available in hardware. Error bounds for (blocked recursive) summation
have the form nu + O(u2) and so can readily exceed 1 in practice. We have pro-
posed a class of blocked summation algorithms, FABsum, that uses a fast algorithm to
sum blocks of b numbers and an accurate algorithm to sum the resulting local sums.
When the fast algorithm is recursive summation and the accurate algorithm is either
compensated summation or recursive summation in extended precision, FABsum has a
backward error bound (b+ 1)u+O(u2); this bound is about a factor n/b smaller than
that for standard summation and, for constant b, does not grow with n to first order.

When FABsum is used in the core linear algebra operations of matrix multiplication
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and solution of linear systems by LU factorization, error bounds with constant first
order term are again obtained, as shown in section 4. Our numerical experiments
show that FABsum does indeed produce substantial reductions to the actual backward
errors in practice, and can do so with only a small reduction in performance in the
context of the high performance state-of-the-art linear algebra library PLASMA.

FABsum provides an attractive way to obtain more accurate sums and more accu-
rate linear algebra kernel evaluations, especially for low precisions.
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