Sparse direct solvers towards seismic imaging of large 3D domains

P. Amestoy*,1 A. Buttari*,2 J.-Y. L'Excellent ${ }^{\dagger}, 3$ T. Mary*,1
*Université de Toulouse †ENS Lyon ${ }^{1}$ IRIT ${ }^{2}$ CNRS-IRIT ${ }^{3}$ Inria-LIP
$78^{\text {th }}$ EAGE Conference, Vienna 2016

Outline

\qquad -
\qquad

\qquad
\qquad

-
-

\qquad

Sparse direct solvers

$\mathbf{A} \mathbf{X}=\mathbf{B}, \mathbf{A}$ large and sparse, \mathbf{B} dense or sparse

$$
\text { Sparse direct methods : } \mathbf{A}=\mathbf{L U}\left(\mathbf{L D L}^{\boldsymbol{\top}}\right)
$$

on multiprocessor architectures

(3D EAGE/SEG overthrust model)

Frequency domain FWI
Helmholtz equations
Complex large sparse matrix \mathbf{A}
Multiple (very) sparse B

Sparse direct solvers

Discretization of a physical problem
(e.g. Code_Aster, finite elements)

Solution of sparse systems
A X = B
Often a significant part of simulation cost
Main steps:

- Preprocess \mathbf{A} and \mathbf{B}
- Factor $\mathbf{A}=\mathbf{L U}$ (LDL' ${ }^{\boldsymbol{\top}}$ if \mathbf{A} symmetric)
- Triangular solve: $\mathbf{L Y}=\mathbf{B}$, then $\mathbf{U X}=\mathbf{Y}$

Preferred to iterative methods for their robustness, accuracy, and capacity to solve efficiently multiple/successive right-hand sides

Sparse direct solvers: black boxes?

Matrix properties and preprocessing influence:

- Size of L, U and memory
- Operation count and time
- Numerical accuracy

Original ($A=$ LHRO1) \quad Preprocessed matrix $\left(A^{\prime}(\mathrm{LHRO1})\right)$

Modified problem: $A^{\prime} x^{\prime}=b^{\prime}$ with $A^{\prime}=P D_{r} A Q D_{c} P^{T}$

Multifrontal method [Duff Reid '83]

Memory is divided into two parts:

- the factors
- the active memory

Elimination tree represents dependencies between tasks

- Assume:
- $n=N^{3}$ degrees of freedom,
- N^{2} seismic sources
- N time steps
- Time domain FWI scales to $\mathcal{O}\left(N^{6}\right)$ (Plessix, 2007)
- Frequency domain FWI...
- Factorization of one matrix (one frequency) scales to $\mathcal{O}\left(N^{6}\right)$
- Size of $L U$ factors scales to $\mathcal{O}\left(N^{4}\right)$ and N^{2} sources/RHS \Rightarrow Solution scales to $\mathcal{O}\left(N^{6}\right)$
...if only few discrete frequencies required (case of wide-azimuth long-offset (OBC/OBN) surveys) then frequency domain FWI scales to $\mathcal{O}\left(N^{6}\right)$

Questions addressed in this talk

- How to reduce the complexity of direct methods? (i.e., in $\mathcal{O}\left(N^{\alpha}\right)$, with $\alpha<6$)
- How to translate complexity reduction into a performance gain in a parallel setting (shared and/or distributed)?
- How to efficiently process multiple sparse right-hand sides?

Outline

Abstract

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

[^0]Block Low-rank to reduce complexity of direct methods?
Complexity of Block
Exploiting large sparse RHS
\[

$$
\begin{aligned}
& \begin{array}{l}
\text { Sparse direct solver introduction Low-rank to reduce complexity of direct methods? } \\
\text { Complexity of Block Low-Rank factorization } \\
\text { Exploiting large sparse RHS } \\
\text { Concluding remarks } \\
\text { Cline analysis }
\end{array} \\
& \text { Exploiting large sparse RHS }
\end{aligned}
$$
\]

$$
\begin{aligned}
& \text { Out }
\end{aligned}
$$

Application specific solvers: BLR feature

- Applicative context: discretized PDEs, integral equations
- BLR factorization computes an approximation $\mathbf{A}=\mathbf{L}_{\varepsilon} \mathbf{U}_{\varepsilon}$ at accuracy ε controlled by the user
- Operations and factor size reduction

Work supported by PhD thesis: C. Weisbecker (2010-2013, supported by EDF) and T. Mary (2014-ongoing)

Main features of Block Low Rank (BLR) format

- Algebraic robust solver; flat and simple format
- Compatibility with numerical pivoting
- Variants of BLR can reach complexity as low as non-fully structured \mathcal{H} format
\Rightarrow Many representations: Recursive $\mathcal{H}, \mathcal{H}^{2}$ [Bebendof, Börm, Hackbush, Grasedyck,...], HSS/SSS [Chandrasekaran, Dewilde, Gu, Li, Xia,...], BLR ...

\mathcal{H} and BLR matrices

\mathcal{H}-matrix

BLR matrix

A block B represents the interaction between two subdomains. If they have a small diameter and are far away, their interaction is weak \Rightarrow rank is low.

$$
\tilde{B}=X Y^{\top} \text { such that } \operatorname{rank}(\tilde{B})=k_{\varepsilon} \text { and }\|B-\tilde{B}\| \leq \varepsilon
$$

If $k_{\varepsilon} \ll \operatorname{size}(B) \Rightarrow$ memory and flops can be reduced with a controlled loss of accuracy $(\leq \varepsilon)$

Block Low Rank multifrontal solver

Elimination tree

Singular value decomposition (SVD) of each block $B \Rightarrow B=X_{1} S_{1} Y_{1}+X_{2} S_{2} Y_{2}$

Block Low Rank multifrontal solver

Elimination tree

S_{1}

rank $k(\varepsilon): B=X_{1} S_{1} Y_{1}+X_{2} S_{2} Y_{2}$
$\|E\|_{2}=\left\|X_{2} S_{2} Y_{2}\right\|_{2}=\sigma_{k+1} \leq \varepsilon$

Application to frequency-domain seismic modeling

from left to right: $\mathrm{FR}, \varepsilon=10^{-5}, \varepsilon=10^{-4}, \varepsilon=10^{-3}$ (overthrust model)

		ops	memory	
ε	fqcy		factors	active mem.
$\left(10^{-5}\right)$	2 Hz	41.8%	61.8%	32.3%
	4 Hz	27.4%	50.0%	24.4%
	8 Hz	21.8%	41.6%	23.9%
$\left(10^{-4}\right)$	2 Hz	32.9%	53.4%	23.9%
	4 Hz	20.0%	42.2%	21.7%
	8 Hz	15.2%	28.9%	19.4%

\% : percentage of standard (full-rank) sparse solver, [SEG'13 proceedings]

Outline

(

Exploiting large sparse RHS Concluding remarks (2)

\square
 mp lo

Complexity of Block L

Sparse direct solver - introduction
Sparse direct solver - introduction Complexity of Block Low-Rank factorization

Sparse direct solver - introduction Complexity of Block Low-Rank factorization
Sparse direct solver - introduction Complexity of Block Low-Rank factorization
Sparse direct solver - introduction Complexity of Block Low-Rank factorization
Sparse direct solver - introduction Complexity of Block Low-Rank factorization

Sparse direct solver - introduction Complexity of Block Low-Rank factorization
\qquad

direct sold
-

-
\qquad

Complexity of multifrontal BLR factorization

Context of the study:

- Extended theoretical work on \mathcal{H}-matrices by Hackbush and Bebendorf (2003) and Bebendorf $(2005,2007)$ to the BLR case
- Amestoy, Buttari, L'Excellent and Mary. On the Complexity of the Block Low-Rank Multifrontal Factorization, sumitted to SIAM SISC, 2016.
- Discretized elliptic PDEs on a cubic domain of size N (i.e., $n=N^{3}$)
- Two BLR variants:
- BLR: original version (Phd of C. Weisbecker (2013))
- BLR+: new variants, more efficient and with lower complexity
- Two families of equations:
- $r=\mathcal{O}(1)$: rank of off-diagonal blocks bound by a constant. Example: the Poisson equation
- $r=\mathcal{O}(N)$: rank of off-diagonal blocks bound by N.

Example: the Helmholtz equation

	operations (OPC)		factor size (NNZ)	
	$r=\mathcal{O}(1)$	$r=\mathcal{O}(N)$	$r=\mathcal{O}(1)$	$r=\mathcal{O}(N)$
FR	$\mathcal{O}\left(N^{6}\right)$	$\mathcal{O}\left(N^{6}\right)$	$\mathcal{O}\left(N^{4}\right)$	$\mathcal{O}\left(N^{4}\right)$
BLR	$\mathcal{O}\left(N^{5}\right)$	$\mathcal{O}\left(N^{5.5}\right)$	$\mathcal{O}\left(N^{3} \log N\right)$	$\mathcal{O}\left(N^{3.5} \log N\right)$
BLR+	$\mathcal{O}\left(N^{4}\right)$	$\mathcal{O}\left(N^{5}\right)$	$\mathcal{O}\left(N^{3} \log N\right)$	$\mathcal{O}\left(N^{3.5} \log N\right)$
\mathcal{H}	$\mathcal{O}\left(N^{4}\right)$	$\mathcal{O}\left(N^{5}\right)$	$\mathcal{O}\left(N^{3}\right)$	$\mathcal{O}\left(N^{3.5}\right)$
\mathcal{H} (fully struct.)	$\mathcal{O}\left(N^{3}\right)$	$\mathcal{O}\left(N^{4}\right)$	$\mathcal{O}\left(N^{3}\right)$	$\mathcal{O}\left(N^{3.5}\right)$

in the 3D case (similar analysis possible for 2D)

Important properties: with both $r=\mathcal{O}(1)$ or $r=\mathcal{O}(N)$

- Complexity of the orginal BLR has a lower exponent than the full-rank
- Variants improves complexity, (BLR+) being not so far from the \mathcal{H}-case

Experimental MF flop complexity: Helmholtz $\left(\varepsilon=10^{-4}\right)$

Nested Dissection ordering (geometric)

METIS ordering (purely algebraic)

- Good agreement with theoretical complexity $\left(\mathcal{O}\left(N^{6}\right), \mathcal{O}\left(N^{5.5}\right)\right.$, and $\left.\mathcal{O}\left(N^{5}\right)\right)$
- Purely algebraic approach (METIS) achieves comparable complexity to geometric (ND)

Sparse direct solver introduction BlockLow-ranktoreduce complexity of direct nonethods? Performance analysis

Outline

Sparse direct solver introduction BlockLow-ranktoreduce complexity of direct nonethods? Performance analysis

```
#
```


Experimental Setting

1. MUMPS sparse solver used for all the experiments (http://mumps-solver.org/)
2. Distributed memory experiments are done on the eos supercomputer at the CALMIP center of Toulouse (grant 2014-P0989):

- Two Intel(r) 10-cores Ivy Bridge a 2.8 GHz
- Peak per core is 22.4 GF/s (real, double precision)
- 64 GB memory per node
- Infiniband FDR interconnect

3. Shared memory experiments are done on grunch at the LIP laboratory of Lyon:

- Two Intel(r) 14-cores Haswell @ 2.3 GHz
- Peak per core is $36.8 \mathrm{GF} / \mathrm{s}$ (real, double precision)
- Total memory is 768 GB

3D seismic Modeling North Sea case study
(Simple) Complex matrix
Helmholtz equation
SEISCOPE project

Matrix from 3D FWI for seismic modeling (credits: SEISCOPE)

matrix	n	nnz	MUMPS (Full-Rank) time			sp-up**
time						

3D Electromagnetic Modeling
(Double) Complex matrix
Matrix D4 requires:
3 TBytes of storage, 3 PetaFlops

Matrix from 3D EM problems (credits: EMGS)

matrix n	nnz	MUMPS-(Full-Rank) time			BLR* sp-up**	$\%_{\text {peak }}$

Gains due to BLR (distributed, MPI+OpenMP)

Poisson $\left(\varepsilon=10^{-6}\right)$

Helmholtz $\left(\varepsilon=10^{-4}\right)$

- gains increase with problem size
- gain in flops does not fully translate into gain in time
- multithreaded efficiency lower with BLR than with Full-Rank (FR)
- same remarks apply to Helmoltz, to a lesser extent

Gains due to BLR (distributed, MPI+OpenMP)

Poisson $\left(\varepsilon=10^{-6}\right)$

Helmholtz $\left(\varepsilon=10^{-4}\right)$

- gains increase with problem size
- gain in flops does not fully translate into gain in time
- multithreaded efficiency lower with BLR than with Full-Rank (FR)
- same remarks apply to Helmoltz, to a lesser extent

Performance analysis (shared memory, 28 threads)

Computationally Intensive

Not Computationally
Intensive

1 thread		
	time	\%nci
FR	62660s (1)	1\%
3D Poisson; $n=256^{3}(16 \mathrm{M}) ; \varepsilon=10^{-6}$		

Performance analysis (shared memory, 28 threads)

Computationally Intensive

Not Computationally
Intensive

Performance analysis (shared memory, 28 threads)

Computationally Intensive

Not Computationally Intensive

Performance analysis (shared memory, 28 threads)

Performance analysis (shared memory, 28 threads)

	1 thread		28 threads		28 threads+ LO OMP*	
	time	\%nci	time	\%nci	time	\%nci
$\begin{aligned} & \text { FR } \\ & \text { BLR } \\ & \text { BLR+ } \end{aligned}$	$\begin{array}{r} 62660 s(1) \\ 7823 s(8) \\ 2464 s(25) \end{array}$	$\begin{array}{r} 1 \% \\ 11 \% \\ 38 \% \end{array}$	557s (7)	68\%	310s (11)	42\%
3D Poisson; $n=256^{3}(16 \mathrm{M}) ; \varepsilon=10^{-6} \quad \quad$; ${ }^{*}$ PhD W. Sid Lakhdar (2014)						

Performance analysis (shared memory, 28 threads)

	1 thread		28 threads		28 threads + LO OMP*	
	time	\%nci	time	\%nci	time	\% n ci
FR	62660s (1)	1\%	3805s (1)	9\%	3430s (1)	0\%
BLR	7823s (8)	11\%	1356s (3)	26\%	1160s (3)	14\%
BLR+	2464s (25)	38\%	557s (7)	68\%	310s (11)	42\%

threads)

Improved performance relies on new BLR variants and improved multithreading based on Sid-Lakhdar's PhD (2011-2014) so called LO OMP thread

application	matrix	LO OMP ${ }^{\text {a }}$	time in seconds		
			FR	$B L R^{6}$	$B L R+{ }^{\text {c }}$
Electromagnetism ${ }^{\dagger}$	E3	no	451	265	184
		yes	393	199	114
	S3	no	585	324	223
		yes	519	239	136
Structural mechanics ${ }^{\ddagger}$	perf008d	no	249	177	13
		yes	208	140*	100*
	perf008ar	no	831	574	331
	perf008ar	yes	787	531*	287*

*estimated (ongoing work)
${ }^{\dagger}$ Credits: $\operatorname{EMGS}\left(\varepsilon=10^{-7}\right)$
\ddagger Credits: Code_Aster $\left(\varepsilon=10^{-9}\right)$
${ }^{a}$ W. Sid-Lakhdar's PhD (2011-2014)
${ }^{b}$ C. Weisbecker's PhD (2010-2013)
${ }^{\text {c }}$ T. Mary's PhD (2014-ongoing)

Sparsendirectsolvernintroduction
Sparsendreat solvernintroduction
\square
\square

tine

为
ARA PA
\square

sparser

\qquad

Exploiting sparsity of right-hand sides

Context

- $\mathbf{L U} \mathbf{x}=b, \mathbf{L} y=b, \mathbf{U}_{x}=y$
- Sparse $y \rightarrow$ not all of the tree/factors need be used [Gilbert,1994] (similar property for partial solution)
- Typically found in electromagnetism, geophysics, explicit Schur, refactoring ...

Tree pruning to minimize flops

- Group columns "close in the tree" to limit flops

- Questions:
- Columns "close in the tree"?
- How to expose parallelism?

Exploiting tree parallelism and sparsity of RHS

- Need for grouping / permuting columns:
- "Close in the tree"? dependent on the application and on the tree structure
- Combinatorial problem \rightarrow similarity with computing entries in \mathbf{A}^{-1}
- On going work, Phd thesis of Gilles Moreau (ENS-Lyon) with applications from seismic modeling and electromagnetism

Outline

3D Frequency domain Full-Wave Inversion

- Theoretical gains: (not yet fully exploited)
- Factorization $\mathcal{O}\left(N^{6}\right) \Rightarrow \mathcal{O}\left(N^{5}\right)$
- Solution Phase (N^{2} sources/RHS) $\mathcal{O}\left(N^{6}\right) \Rightarrow \mathcal{O}\left(N^{5.5} \log N\right)$
- North Sea case study (680 cores):
- BLR $\left(\varepsilon=10^{-4}\right)$ accelerates factorization by a factor of 3

Full FWI : 49hr $\Rightarrow 36 \mathrm{hr}$ (MUMPs-SEISCOPE research work submitted to Geophysics) [2015]

Perspectives for further improvement:

- Complexity: BLR+ and BLR solution phase
- Exploit sparsity of multiple RHS
- Improve efficiency (MPI and multithreading)

Questions?

[^0]: \qquad

