Sparse direct solvers towards seismic imaging of large 3D domains

P. Amestoy^{*,1} A. Buttari^{*,2} J.-Y. L'Excellent^{†,3} T. Mary^{*,1} ^{*}Université de Toulouse [†]ENS Lyon ¹IRIT ²CNRS-IRIT ³Inria-LIP 78th EAGE Conference, Vienna 2016

Outline

Sparse direct solver - introduction

Block Low-rank to reduce complexity of direct methods?

Complexity of Block Low-Rank factorization

Performance analysis

Exploiting large sparse RHS

Concluding remarks

Sparse direct solvers

A X = B, A large and sparse, B dense or sparse
Sparse direct methods : A = LU (LDL^T)

on multiprocessor architectures

(3D EAGE/SEG overthrust model)

Frequency domain FWI Helmholtz equations Complex large sparse matrix **A** Multiple (very) sparse **B**

78th EAGE Conference, Vienna 2016

Sparse direct solvers

Discretization of a physical problem (e.g. Code_Aster, finite elements)

Solution of sparse systems A X = B

Often a significant part of simulation cost

Main steps:

- Preprocess A and B
- Factor $\mathbf{A} = \mathbf{L}\mathbf{U} (\mathbf{L}\mathbf{D}\mathbf{L}^{\mathsf{T}} \text{ if } \mathbf{A} \text{ symmetric})$
- Triangular solve: $\mathbf{L}\mathbf{Y} = \mathbf{B}$, then $\mathbf{U}\mathbf{X} = \mathbf{Y}$

Preferred to iterative methods for their robustness, accuracy, and capacity to solve efficiently multiple/successive right-hand sides

Sparse direct solvers: black boxes?

Modified problem: A'x' = b' with $A' = PD_rAQD_cP^T$

Multifrontal method [Duff Reid '83]

Memory is divided into two parts:

- the factors
- the active memory

Elimination tree represents dependencies between tasks

78th EAGE Conference, Vienna 2016

• Assume:

- $\circ n = N^3$ degrees of freedom,
- \circ N^2 seismic sources
- N time steps
- Time domain FWI scales to $\mathcal{O}(N^6)$ (Plessix, 2007)

• Frequency domain FWI...

- $\circ\,$ Factorization of one matrix (one frequency) scales to ${\cal O}(N^6)$
- Size of LU factors scales to $\mathcal{O}(N^4)$ and N^2 sources/RHS \implies Solution scales to $\mathcal{O}(N^6)$

...if only few discrete frequencies required (case of wide-azimuth long-offset (OBC/OBN) surveys) then frequency domain FWI scales to $\mathcal{O}(N^6)$

How to reduce the complexity of direct methods?
(i.e., in O(N^α), with α < 6)

• How to translate complexity reduction into a **performance gain** in a parallel setting (shared and/or distributed)?

• How to efficiently process multiple sparse right-hand sides?

Sparse direct solver - introduction

Block Low-rank to reduce complexity of direct methods?

Complexity of Block Low-Rank factorization

Performance analysis

Exploiting large sparse RHS

Concluding remarks

Application specific solvers: BLR feature

- Applicative context: discretized PDEs, integral equations
- BLR factorization computes an approximation A = L_εU_ε at accuracy ε controlled by the user
- Operations and factor size reduction

Work supported by PhD thesis: C. Weisbecker (2010-2013, supported by EDF) and T. Mary (2014-ongoing)

Main features of Block Low Rank (BLR) format

- Algebraic robust solver; flat and simple format
- Compatibility with numerical pivoting
- Variants of BLR can reach complexity as low as non-fully structured ${\cal H}$ format

 \Rightarrow Many representations: Recursive $\mathcal{H}, \mathcal{H}^2$ [Bebendof, Börm, Hackbush, Grasedyck,...], HSS/SSS [Chandrasekaran, Dewilde, Gu, Li, Xia,...], BLR ...

${\mathcal H}$ and BLR matrices

BLR matrix

A block *B* represents the interaction between two subdomains. If they have a small diameter and are far away, their interaction is weak \Rightarrow rank is low.

$$\tilde{B} = XY^{T}$$
 such that rank $(\tilde{B}) = k_{\varepsilon}$ and $\|B - \tilde{B}\| \leq \varepsilon$

If $k_{\varepsilon} \ll \text{size}(B) \Rightarrow$ memory and flops can be reduced with a _{/31}controlled loss of accuracy ($\leq \varepsilon$) 78th EAGE Conference, Vienna 2016

Block Low Rank multifrontal solver

Block Low Rank multifrontal solver

Application to frequency-domain seismic modeling

from left to right: FR, $\varepsilon = 10^{-5}$, $\varepsilon = 10^{-4}$, $\varepsilon = 10^{-3}$ (overthrust model)

		ops	m	iemory
ε	fqcy		factors	active mem.
(10^{-5})	2 Hz	41.8 %	61.8 %	32.3%
	4 Hz	27.4 %	50.0 %	24.4%
	8 Hz	21.8 %	41.6 %	23.9%
(10^{-4})	2 Hz	32.9 %	53.4 %	23.9%
	4 Hz	20.0 %	42.2 %	21.7%
	8 Hz	15.2 %	28.9 %	19.4%

% : percentage of standard (full-rank) sparse solver, [SEG'13 proceedings]

Sparse direct solver - introduction

Block Low-rank to reduce complexity of direct methods?

Complexity of Block Low-Rank factorization

Performance analysis

Exploiting large sparse RHS

Concluding remarks

Context of the study:

- Extended theoretical work on $\mathcal{H}\text{-matrices}$ by Hackbush and Bebendorf (2003) and Bebendorf (2005, 2007) to the BLR case
 - Amestoy, Buttari, L'Excellent and Mary. On the Complexity of the Block Low-Rank Multifrontal Factorization, sumitted to SIAM SISC, 2016.
- Discretized elliptic PDEs on a cubic domain of size N (i.e., $n = N^3$)
- Two BLR variants:
 - BLR: original version (Phd of C. Weisbecker (2013))
 - BLR+: new variants, more efficient and with lower complexity
- Two families of equations:
 - r = O(1): rank of off-diagonal blocks bound by a constant. Example: the Poisson equation
 - r = O(N): rank of off-diagonal blocks bound by N. Example: the Helmholtz equation

	operatio	ns (OPC)	factor size (NNZ)		
	$r = \mathcal{O}(1)$	$r = \mathcal{O}(N)$	$r = \mathcal{O}(1)$	$r = \mathcal{O}(N)$	
FR	$O(N^6)$	$\mathcal{O}(N^6)$	$O(N^4)$	$\mathcal{O}(N^4)$	
BLR BLR+	$egin{array}{c} \mathcal{O}(N^5) \ \mathcal{O}(N^4) \end{array}$	$\mathcal{O}(N^{5.5}) \ \mathcal{O}(N^5)$	$\mathcal{O}(N^3 \log N) \ \mathcal{O}(N^3 \log N)$	$\mathcal{O}(N^{3.5} \log N) \ \mathcal{O}(N^{3.5} \log N)$	
${\cal H} \ {\cal H}$ (fully struct.)	$ \begin{vmatrix} \mathcal{O}(N^4) \\ \mathcal{O}(N^3) \end{vmatrix} $	${ {\cal O}({\sf N}^5) \over {\cal O}({\sf N}^4)}$	$ \begin{vmatrix} \mathcal{O}(N^3) \\ \mathcal{O}(N^3) \end{vmatrix} $	$\mathcal{O}(N^{3.5})\ \mathcal{O}(N^{3.5})$	

in the 3D case (similar analysis possible for 2D)

Important properties: with both r = O(1) or r = O(N)

- Complexity of the orginal BLR has a lower exponent than the full-rank
- Variants improves complexity, (BLR+) being not so far from the $\mathcal H$ -case

Experimental MF flop complexity: Helmholtz ($arepsilon=10^{-4}$)

- Good agreement with theoretical complexity $(\mathcal{O}(N^6), \, \mathcal{O}(N^{5.5}), \, \mathrm{and} \, \, \mathcal{O}(N^5))$
- Purely algebraic approach (METIS) achieves comparable complexity to geometric (ND)

Sparse direct solver - introduction

Block Low-rank to reduce complexity of direct methods?

Complexity of Block Low-Rank factorization

Performance analysis

Exploiting large sparse RHS

Concluding remarks

Experimental Setting

- MUMPS sparse solver used for all the experiments (http://mumps-solver.org/)
- 2. Distributed memory experiments are done on the **eos** supercomputer at the CALMIP center of Toulouse (grant 2014-P0989):
 - Two Intel(r) 10-cores Ivy Bridge @ 2.8 GHz
 - Peak per core is 22.4 GF/s (real, double precision)
 - 64 GB memory per node
 - Infiniband FDR interconnect
- 3. Shared memory experiments are done on grunch at the LIP laboratory of Lyon:
 - Two Intel(r) 14-cores Haswell @ 2.3 GHz
 - Peak per core is 36.8 GF/s (real, double precision)
 - Total memory is 768 GB

Performance on seismic modeling on 640 cores

3D seismic Modeling North Sea case study (Simple) Complex matrix Helmholtz equation SEISCOPE project

Matrix from 3D FWI for seismic modeling (credits: SEISCOPE)

	2	227	MUM	BLR*		
пашх	[]	TITZ	time	sp-up**	$\%_{peak}$	time
10Hz/35m	17M	446M	1132s	295	35%	324s
$^*arepsilon=10^{-3}$; ** estimated speedup on $64 imes10$ cores						

Performance on 3D EM application on 900 cores

3D Electromagnetic Modeling (Double) Complex matrix Matrix D4 requires: 3 TBytes of storage, 3 PetaFlops

Matrix from 3D EM problems (credits: EMGS)

		207	MUM	BLR*		
mainx	[]	TITZ	time	sp-up**	$\%_{peak}$	time
D4	30M	384M	2221s	373	33%	566s
$^*arepsilon=10^{-7}$; ** estimated speedup on $90 imes10$ cores						

Gains due to BLR (distributed, MPI+OpenMP)

Poisson ($\varepsilon = 10^{-6}$)

Helmholtz ($\varepsilon = 10^{-4}$)

- gains increase with problem size
- gain in flops does not fully translate into gain in time
- multithreaded efficiency lower with BLR than with Full-Rank (FR)
- same remarks apply to Helmoltz, to a lesser extent

Gains due to BLR (distributed, MPI+OpenMP)

Poisson ($\varepsilon = 10^{-6}$)

Helmholtz ($\varepsilon = 10^{-4}$)

- gains increase with problem size
- gain in flops does not fully translate into gain in time
- multithreaded efficiency lower with BLR than with Full-Rank (FR)
- same remarks apply to Helmoltz, to a lesser extent

 \Rightarrow improve multithreading behaviour₂₀₁₆

	1 thread		
	time	% _{nci}	
FR	62660s (1)	1%	
BLR	7823s (8)	11%	
BLR+	2464s (25)	38%	
3D F	Poisson; $n = 256^3$	³ (16M);	; $arepsilon = 10^{-6}$;

	1 thread		28 threads		
	time	% _{nci}	time	% _{nci}	
FR	62660s (1)	1%			
BLR	7823s (8)	11%			
BLR+	2464s (25)	38%	557s (7)	68%	
3D F	Poisson; $n = 256^3$	³ (16Μ); ε	$\epsilon = 10^{-6}$;	

	1 thread		28 threads		28 threads + L0 OMP*	
	time	% _{nci}	time	% _{nci}	time	% _{nci}
FR BLR BLR+	62660s (1) 7823s (8) 2464s (25)	1% 11% 38%	557s (7)	68%	310s (11)	42%
3D F	Poisson; $n = 256^{\circ}$	³ (16M);	$\varepsilon = 10^{-6}$; *PhD V	V. Sid Lakhdar	(2014)

	1 thread		28 threads		28 threads + L0 OMP*	
	time	% _{nci}	time	% _{nci}	time	% _{nci}
FR	62660s (1)	1%	3805s (1)	9%	3430s (1)	0%
BLR	7823s (8)	11%	1356s (3)	26%	1160s (3)	14%
BLR+	2464s (25)	38%	557s (7)	68%	310s (11)	42%
3D F	Poisson; $n = 256^3$	³ (16M);	$\varepsilon = 10^{-6}$; *PhD \	V. Sid Lakhdar	(2014)

Improved performance relies on new BLR variants and improved multithreading based on Sid-Lakhdar's PhD (2011-2014) so called L0 OMP thread

application	matrix	LO OMPª	tim FR	ne in sec BLR ^b	onds BLR+ ^c
Electro- magnetism [†]	E3	no yes	451 393	265 199	184 114
	S3	no yes	585 519	324 239	223 136
Structural mechanics [‡]	perf008d	no yes	249 208	177 140*	137 100*
	perf008ar	no yes	831 787	574 531*	331 287*

*estimated (ongoing work)

[†] Credits: EMGS (
$$\varepsilon = 10^{-7}$$
)
[‡] Credits: Code_Aster ($\varepsilon = 10^{-9}$

^a W. Sid-Lakhdar's PhD (2011-2014)

^b C. Weisbecker's PhD (2010-2013)

^c T. Mary's PhD (2014-ongoing)

Sparse direct solver - introduction

Block Low-rank to reduce complexity of direct methods?

Complexity of Block Low-Rank factorization

Performance analysis

Exploiting large sparse RHS

Concluding remarks

Exploiting sparsity of right-hand sides

Context

- LUx = b, Ly = b, Ux = y
- Sparse $y \rightarrow$ not all of the tree/factors need be used [Gilbert,1994] (similar property for partial solution)
- Typically found in electromagnetism, geophysics, explicit Schur, refactoring ...

Tree pruning to minimize flops

• Group columns "close in the tree" to limit flops

- Questions:
 - Columns "close in the tree"?
 - How to expose parallelism?

Exploiting tree parallelism and sparsity of RHS

- Need for grouping / permuting columns:
 - "Close in the tree"? dependent on the application and on the tree structure
 - $\,\circ\,$ Combinatorial problem $\,\rightarrow\,$ similarity with computing entries in A^{-1}
- On going work, Phd thesis of Gilles Moreau (ENS-Lyon) with applications from seismic modeling and electromagnetism

Sparse direct solver - introduction

Block Low-rank to reduce complexity of direct methods?

Complexity of Block Low-Rank factorization

Performance analysis

Exploiting large sparse RHS

Concluding remarks

Concluding remarks

3D Frequency domain Full-Wave Inversion

- Theoretical gains: (not yet fully exploited)
 - Factorization $\mathcal{O}(N^6) \Rightarrow \mathcal{O}(N^5)$
 - Solution Phase (N^2 sources/RHS) $\mathcal{O}(N^6) \Rightarrow \mathcal{O}(N^{5.5} \log N)$
- North Sea case study (680 cores):
 - $\,\circ\,$ BLR ($\varepsilon=10^{-4})$ accelerates factorization by a factor of 3

Full FWI : $49hr \Rightarrow 36hr$ (MUMPS-SEISCOPE research work submitted to Geophysics) [2015]

Perspectives for further improvement:

- Complexity: BLR+ and BLR solution phase
- Exploit sparsity of multiple RHS
- Improve efficiency (MPI and multithreading)

Questions?