**Communications in NLA** 

September 14, 2020

## Mixed Precision Low Rank Compression of Data Sparse Matrices

Theo Mary

Sorbonne Université, CNRS, LIP6 https://www-pequan.lip6.fr/~tmary/ Slides available at https://bit.ly/CommNLA



#### Patrick Amestoy



#### Olivier Boiteau



#### Alfredo Buttari



#### Matthieu Gerest



#### Fabienne Jézéquel



#### Jean-Yves L'Excellent



|          | Bits        |      |                 |                     |
|----------|-------------|------|-----------------|---------------------|
|          | Signif. (†) | Exp. | Range           | $u = 2^{-t}$        |
| bfloat16 | 8           | 8    | $10^{\pm 38}$   | $4 \times 10^{-3}$  |
| fp16     | 11          | 5    | $10^{\pm 5}$    | $5 \times 10^{-4}$  |
| fp32     | 24          | 8    | $10^{\pm 38}$   | $6 \times 10^{-8}$  |
| fp64     | 53          | 11   | $10^{\pm 308}$  | $1 \times 10^{-16}$ |
| fp128    | 113         | 15   | $10^{\pm 4932}$ | $1 \times 10^{-34}$ |

Half precision increasingly supported by hardware:

- Fp16 used by NVIDIA GPUs, AMD Radeon Instinct MI25 GPU, ARM NEON, Fujitsu A64FX ARM
- Bfloat16 used by Google TPU, NVIDIA GPUs, Arm, Intel

# Benefits from low precisions

- Reduced storage and communications
- Increased speed, e.g., with GPU Tensor Cores



fp32  $\rightarrow$  fp16 speedup evolution: P100: 2× V100: 8× A100: 16× (announced)

- Correspondingly low accuracy  $\Rightarrow$  mixed precision algorithms
- Mixed precision algs. highly successful in NLA: linear systems, matrix factorizations, matrix multiplication, iterative methods, least squares, EVD, SVD, matrix functions, FFT, and many others (see some references at the end of the slides)

#### Low rank compression

 $A \approx X Y^{T}$   $n \times n \qquad n \times r r \times n$   $\longrightarrow$ 

•  $\varepsilon$ -rank of A:

smallest  $r_{\varepsilon}$  such that  $\exists T$ , rank $(T) = r_{\varepsilon}$ ,  $||A - T|| \le \varepsilon ||A||$ 

 Optimal ε-approximation given by truncated SVD (Eckart-Young)

$$A = U\Sigma V^{T} \quad \Rightarrow \quad T = U_{\varepsilon} \Sigma_{\varepsilon} V_{\varepsilon}^{T} = \sum_{i=1}^{r_{\varepsilon}} u_{i} \sigma_{i} v_{i}^{T}$$

- What precision should we store T in ?
- Naive answer: lowest possible precision with unit roundoff safely smaller than  $\varepsilon$  (e.g., fp64 if  $\varepsilon < u_{\text{fp32}} \approx 6 \times 10^{-8}$ )







• Assume  $\varepsilon = 10^{-9} \Rightarrow \|A - U_{\varepsilon} \Sigma_{\varepsilon} V_{\varepsilon}^{T}\| \le \varepsilon \|A\|$ 



- Assume  $\varepsilon = 10^{-9} \Rightarrow ||A U_{\varepsilon} \Sigma_{\varepsilon} V_{\varepsilon}^{T}|| \le \varepsilon ||A||$
- Naive approach: use **double precision** because  $u_{\rm fp32} > \varepsilon$



- Assume  $\varepsilon = 10^{-9} \Rightarrow ||A U_{\varepsilon} \Sigma_{\varepsilon} V_{\varepsilon}^{T}|| \le \varepsilon ||A||$
- Naive approach: use **double precision** because  $u_{\rm fp32} > \varepsilon$
- Let  $U_{\varepsilon} = [U_1 \ U_2]$ ,  $\Sigma_{\varepsilon} = \text{diag}(\Sigma_1, \Sigma_2)$ , and  $V_{\varepsilon} = [V_1 \ V_2]$ , such that  $\|\Sigma_2\| \le \varepsilon/u_{\text{fp32}} \approx 2 \times 10^{-2}$



- Assume  $\varepsilon = 10^{-9} \Rightarrow ||A U_{\varepsilon} \Sigma_{\varepsilon} V_{\varepsilon}^{T}|| \le \varepsilon ||A||$
- Naive approach: use **double precision** because  $u_{\rm fp32} > \varepsilon$
- Let  $U_{\varepsilon} = [U_1 \ U_2]$ ,  $\Sigma_{\varepsilon} = \text{diag}(\Sigma_1, \Sigma_2)$ , and  $V_{\varepsilon} = [V_1 \ V_2]$ , such that  $\|\Sigma_2\| \le \varepsilon/u_{\text{fp32}} \approx 2 \times 10^{-2}$
- Our idea: converting U<sub>2</sub> and V<sub>2</sub> to single precision only introduces an error of order u<sub>fp32</sub> ||Σ<sub>2</sub>|| = ε

## Error analysis

• Can use any number of precisions  $u_1 \leq \varepsilon < u_2 < \ldots < u_p$ 

$$S_{k} = \left\{ i \leq r_{\varepsilon} : \frac{\varepsilon}{u_{k+1}} < \frac{\sigma_{i}}{\sigma_{1}} \leq \frac{\varepsilon}{u_{k}} \right\}, \quad k = 1: p$$
$$U_{k} \Sigma_{k} V_{k}^{T} = \sum_{i \in S_{k}} u_{i} \sigma_{i} v_{i}^{T} \quad \text{and} \quad \widehat{T} = \sum_{k=1}^{p} \widehat{U}_{k} \Sigma_{k} \widehat{V}_{k}^{T}$$

where  $\widehat{U}_k$  and  $\widehat{V}_k$  are stored in precision  $u_k$ .

## Error analysis

• Can use any number of precisions  $u_1 \leq \varepsilon < u_2 < \ldots < u_p$ 

$$S_{k} = \left\{ i \leq r_{\varepsilon} : \frac{\varepsilon}{u_{k+1}} < \frac{\sigma_{i}}{\sigma_{1}} \leq \frac{\varepsilon}{u_{k}} \right\}, \quad k = 1: p$$
$$U_{k} \Sigma_{k} V_{k}^{T} = \sum_{i \in S_{k}} u_{i} \sigma_{i} v_{i}^{T} \quad \text{and} \quad \widehat{T} = \sum_{k=1}^{p} \widehat{U}_{k} \Sigma_{k} \widehat{V}_{k}^{T}$$

where  $\widehat{U}_k$  and  $\widehat{V}_k$  are stored in precision  $u_k$ . Since for  $k \geq 2$ 

$$\|U_k \Sigma_k V_k^{\mathsf{T}} - \widehat{U}_k \Sigma_k \widehat{V}_k^{\mathsf{T}}\| \le (2u_k + u_k^2) \|\Sigma_k\| \le (2 + u_k)\varepsilon \|\mathsf{A}\|$$

we obtain 
$$\|A - \widehat{T}\| \le (2p - 1 + \sum_{k=2}^{p} u_k)\varepsilon\|A\| = O(\varepsilon)\|A\|$$

#### Error analysis

we obtain

• Can use any number of precisions  $u_1 \leq \varepsilon < u_2 < \ldots < u_p$ 

$$S_{k} = \left\{ i \leq r_{\varepsilon} : \frac{\varepsilon}{u_{k+1}} < \frac{\sigma_{i}}{\sigma_{1}} \leq \frac{\varepsilon}{u_{k}} \right\}, \quad k = 1: p$$
$$U_{k} \Sigma_{k} V_{k}^{T} = \sum_{i \in S_{i}} u_{i} \sigma_{i} v_{i}^{T} \quad \text{and} \quad \widehat{T} = \sum_{k=1}^{p} \widehat{U}_{k} \Sigma_{k} \widehat{V}_{k}^{T}$$

where  $\widehat{U}_k$  and  $\widehat{V}_k$  are stored in precision  $u_k$ . Since for  $k \geq 2$ 

$$\|U_k \Sigma_k V_k^{\mathsf{T}} - \widehat{U}_k \Sigma_k \widehat{V}_k^{\mathsf{T}}\| \le (2u_k + u_k^2) \|\Sigma_k\| \le (2 + u_k)\varepsilon \|\mathsf{A}\|$$

$$\|\boldsymbol{A} - \widehat{\boldsymbol{T}}\| \leq (2p - 1 + \sum_{k=2}^{p} u_k)\varepsilon \|\boldsymbol{A}\| = O(\varepsilon)\|\boldsymbol{A}\|$$

Applicable to any low rank matrix XY<sup>T</sup> = Σ<sup>rε</sup><sub>i=1</sub> x<sub>i</sub>y<sup>T</sup><sub>i</sub> with decaying ||x<sub>i</sub>y<sup>T</sup><sub>i</sub>||. Example: AP ≈ QεRε = Q1R1 + ... + QpRp

Both matrices have  $\varepsilon$ -rank 30 (with  $\varepsilon = 10^{-9}$ ) but present very different potential for mixed precision



## Examples of spectrum



#### Data sparse matrices

• Data sparse matrices arise in several applications: BEM, PDEs, covariance matrices, ...



- They possess a block low rank structure: a block B represents the interaction between two subdomains
   ⇒ singular values decay rapidly for far away subdomains
- $\Rightarrow$  High potential for mixed precision compression

#### BLR matrices (Amestoy et al.) use a flat 2D block partitioning



- Diagonal blocks are full rank
- Off-diagonal ones are stored in low rank form if their ε-rank is small enough

• 
$$\varepsilon = 10^{-15} \rightarrow 50\%$$
 entries kept

Example of a BLR matrix (Schur complement of a  $64^3$  Poisson problem with block size 128)

BLR matrices (Amestoy et al.) use a flat 2D block partitioning



• Diagonal blocks are full rank

 Off-diagonal ones are stored in low rank form if their ε-rank is small enough

$$ho~arepsilon=10^{-15}
ightarrow$$
 50% entries kept

• 
$$\varepsilon = 10^{-12} \rightarrow 36\%$$
 entries kept

Example of a BLR matrix (Schur complement of a  $64^3$  Poisson problem with block size 128)

BLR matrices (Amestoy et al.) use a flat 2D block partitioning



Example of a BLR matrix (Schur complement of a  $64^3$  Poisson problem with block size 128)

- Diagonal blocks are full rank
- Off-diagonal ones are stored in low rank form if their ε-rank is small enough
- $\varepsilon = 10^{-15} \rightarrow 50\%$  entries kept
- $\varepsilon = 10^{-12} \rightarrow 36\%$  entries kept

• 
$$\varepsilon = 10^{-9} \ 
ightarrow$$
 23% entries kept

BLR matrices (Amestoy et al.) use a flat 2D block partitioning



- Diagonal blocks are full rank
- Off-diagonal ones are stored in low rank form if their ε-rank is small enough
- $\varepsilon = 10^{-15} \rightarrow 50\%$  entries kept
- $\varepsilon = 10^{-12} \rightarrow 36\%$  entries kept
- $\varepsilon = 10^{-9} \ 
  ightarrow$  23% entries kept

Example of a BLR matrix (Schur complement of a  $64^3$  Poisson problem with block size 128)

Hierarchical data sparse matrices ( $\mathcal{H}$ , HSS, ...) not covered in this talk, but could also benefit from mixed precision

## Local vs global uniform precision compression

Should we approximate block  $A_{ij} \approx T_{ij}$  such that

 $\|A_{ij} - T_{ij}\| \le \varepsilon \|A_{ij}\|$  (local compression)

or  $\|A_{ij} - T_{ij}\| \le \varepsilon \|A\|$  (global compression)?

- Global compression increases approximation error by a factor at most the number of block-rows/columns
- Generally worth the extra compression coming from blocks of norm less than ||A|| (Higham & M., 2020)



Local compression (38% entries kept)



Global compression (23% entries kept)

• The set of singular vectors stored in precision  $u_k$  for block  $A_{ij} = U^{(ij)} \Sigma^{(ij)} V^{(ij)T}$  is

$$S_{k}^{(ij)} = \left\{ \ell \leq r_{\varepsilon} : \frac{\varepsilon}{u_{k+1}} < \frac{\sigma_{\ell}^{(ij)}}{\sigma_{1}^{(ij)}} \leq \frac{\varepsilon}{u_{k}} \right\} \quad \text{(local compression)}$$
$$S_{k}^{(ij)} = \left\{ \ell \leq r_{\varepsilon} : \frac{\varepsilon}{u_{k+1}} < \frac{\sigma_{\ell}^{(ij)}}{\|A\|} \leq \frac{\varepsilon}{u_{k}} \right\} \quad \text{(global compression)}$$

⇒ With global compression,  $S_1$  may be empty for some blocks Example: with double and single precisions, blocks such that  $||A_{ij}|| \le \varepsilon/u_{\text{fp32}}||A||$  can be stored entirely in single precision





• Full rank blocks (near field) are in double precision



- Full rank blocks (near field) are in double precision
- Far field blocks are in single precision



- Full rank blocks (near field) are in double precision
- Far field blocks are in single precision
- Mid field blocks are in mixed precision

• Dense matrices obtained from the root separator (Schur complement) of sparse matrices

| Matrix    | Application | n    |
|-----------|-------------|------|
| audikw_1  | Structural  | 3768 |
| Fault_639 | Structural  | 7983 |
| nd24k     | 2D/3D       | 7785 |
| GaAsH6    | Chemistry   | 6232 |
| cage12    | Graph       | 7323 |
| thermal2  | Thermal     | 1382 |

• Block size is set to 128





Up to 1.7 imes storage reduction with almost no error increase

14/18



14/18

Up to 2.2 imes storage reduction with almost no error increase



14/18

Up to 2.7 imes storage reduction with almost no error increase



Gain due to mixed precision increases with problem size:  $1.6\times$  (smallest)  $\rightarrow 1.9\times$  (largest) storage reduction

## Mixed precision factorization of data sparse matrices

- Data sparse matrices can be factorized at a much lower cost than dense matrices
- Mixed precision can be used to further reduce this cost
- Example: a mixed precision low rank matrix  $\widehat{T}$  can be multiplied with a vector v

$$\widehat{T}\mathbf{v} = \left(\sum_{k=1}^{p} \widehat{U}_k \Sigma_k \widehat{V}_k^T\right) \mathbf{v} = \sum_{k=1}^{p} \widehat{U}_k \Sigma_k \widehat{V}_k^T \mathbf{v}$$

by computing  $\widehat{U}_k \Sigma_k \widehat{V}_k v$  in precision  $u_k$ 

• Other NLA operations can also be accelerated

- Data sparse matrices can be factorized at a much lower cost than dense matrices
- Mixed precision can be used to further reduce this cost
- Example: a mixed precision low rank matrix  $\widehat{T}$  can be multiplied with a vector v

$$\widehat{T}\mathbf{v} = \left(\sum_{k=1}^{p} \widehat{U}_k \Sigma_k \widehat{V}_k^T\right) \mathbf{v} = \sum_{k=1}^{p} \widehat{U}_k \Sigma_k \widehat{V}_k^T \mathbf{v}$$

by computing  $\widehat{U}_k \Sigma_k \widehat{V}_k v$  in precision  $u_k$ 

- Other NLA operations can also be accelerated
- Error analysis of BLR factorization in uniform precision *u* (Higham and M., 2020) shows that

 $A + \Delta A = LU, \quad \|\Delta A\| \le c_1 \varepsilon \|A\| + c_2 u \|L\| \|U\|$ 

• Analysis can be generalized to mixed precision (ongoing work) with only a modest increase of  $c_1$ 



Flops compression ( $\varepsilon = 10^{-9}$ ) fp64 fp64/fp32 fp64/fp32/bf16 30 Compression 20 10 0 audikw\_1 Fault\_639 nd24k GaAsH6 cage12 thermal2 Error ( $\varepsilon = 10^{-9}$ ) 10<sup>-7</sup> 10<sup>-8</sup> 10-9 audikw 1 Fault\_639 nd24k GaAsH6 cage12 thermal2

Up to 3.3 imes flops reduction with almost no error increase

Flops compression ( $\varepsilon = 10^{-9}$ ) fp64 fp64/fp32 fp64/fp32/bf16 30 Compression 20 10 0 audikw 1 Fault 639 nd24k GaAsH6 cage12 thermal2 Error ( $\varepsilon = 10^{-9}$ ) 10<sup>-7</sup> 10<sup>-8</sup> 10-9 audikw 1 Fault 639 nd24k GaAsH6 cage12 thermal2 Up to 3.3 imes flops reduction with almost no error increase

ightarrow 3.3 imes time reduction??

Flops compression ( $\varepsilon = 10^{-9}$ ) fp64 fp64/fp32 fp64/fp32/bf16 30 Compression 20 10 0 audikw 1 Fault\_639 nd24k GaAsH6 cage12 thermal2 Error ( $\varepsilon = 10^{-9}$ ) 10<sup>-7</sup> 10<sup>-8</sup> 10<sup>-9</sup> audikw 1 Fault 639 nd24k GaAsH6 cage12 thermal2 Up to 3.3 imes flops reduction with almost no error increase

ightarrow 3.3 imes time reduction?? 7.0 imes with GPU tensor cores

# Conclusions

#### Mixed precision SVD

- Given a matrix A and a target accuracy  $\varepsilon$ , in what precision should we represent A?
- Naive answer: the lowest precision with unit roundoff less than arepsilon
- Our answer: it depends on its singular values!
- $\Rightarrow$  If rapidly decaying, precisions lower than arepsilon can be used
  - Also applicable to QR and many other low rank decompositions

#### Mixed precision compression of data sparse matrices

- Data sparse matrices are an ideal application due to their block low-rank structure
- Achieved up to  $2.7 \times$  storage reduction with fp64/fp32/bfloat16
- Can also accelerate factorization, up to  $3.3 \times$  flops reduction
- $\Rightarrow$  Much work still needed to transform flops into time reduction!

## References (mixed precision algorithms)

- E. Carson and N. J. Higham. Accelerating the Solution of Linear Systems by Iterative Refinement in Three Precisions. SIAM J. Sci. Comput., 40(2), A817–A847 (2018)
- P. Blanchard, N. J. Higham, and T. Mary. A Class of Fast and Accurate Summation Algorithms. *SIAM J. Sci. Comput.* 42(3), A1541–1557 (2020).
- P. Blanchard, N. J. Higham, F. Lopez, T. Mary, and S. Pranesh. Mixed Precision Block Fused Multiply-Add: Error Analysis and Application to GPU Tensor Cores. *SIAM J. Sci. Comput.* 42(3), C124–C141 (2020).
- F. Lopez and T. Mary. Mixed Precision LU Factorization on GPU Tensor Cores: Reducing Data Movement and Memory Footprint. MIMS EPrint 2020.20.
- A. Abdelfattah et al. A Survey of Numerical Methods Utilizing Mixed Precision Arithmetic. ArXiv:2007.06674 (2020).

## References (BLR matrices)

- P. R. Amestoy, C. Ashcraft, O. Boiteau, A. Buttari, J.-Y. L'Excellent, and C. Weisbecker. Improving Multifrontal Methods by Means of Block Low-Rank Representations SIAM J. Sci. Comput., 37(3), A1451–A1474 (2015).
- P. R. Amestoy, A. Buttari, J.-Y. L'Excellent, and T. Mary. On the Complexity of the Block Low-Rank Multifrontal Factorization. SIAM J. Sci. Comput., 39(4), A1710–A1740 (2017).
- P. R. Amestoy, A. Buttari, J.-Y. L'Excellent, and T. Mary. Performance and Scalability of the Block Low-Rank Multifrontal Factorization on Multicore Architectures. *ACM Trans. Math. Softw.*, 45(1), 2:1–2:26 (2019).
- N. J. Higham and T. Mary. Solving Block Low-Rank Linear Systems by LU Factorization is Numerically Stable. MIMS EPrint 2019.15.
- T. Mary. Block Low-Rank multifrontal solvers: complexity, performance, and scalability. PhD thesis (2017).