A New Approach to Probabilistic Rounding Error Analysis

Theo Mary, joint work with Nick Higham University of Manchester, School of Mathematics SIAM CSE19, Spokane, USA, Feb 25-Mar 12019

Context and motivation

Floating-point arithmetic model

$$
f \mid(a \text { op } b)=(a \text { op } b)(1+\delta), \quad|\delta| \leq u, \quad \text { op } \in\{+,-, \times, /\}
$$

	fp64 (double)	fp32 (single)	fp16 (half)	bfloat16 (half)	fp8 (quarter)
(2^{-53}	2^{-24}	2^{-11}	2^{-8}	2^{-4}	
	$\approx 10^{-16}$	$\approx 10^{-8}$	$\approx 10^{-4}$	$\approx 10^{-3}$	$\approx 10^{-2}$

- In many numerical linear algebra computations, traditional error bounds are proportional to nu, e.g., for LU factorization:

$$
|A-L U| \leq n u|L \| U|
$$

\Rightarrow No guarantees if nu is large: issue of growing importance with the rise of large-scale, mixed-precision computations

- Yet, in practice errors are observed to be much smaller

Traditional bounds are pessimistic

The issue is that traditional bounds are worst-case bounds, and are thus pessimistic on average

Traditional bounds are pessimistic

The issue is that traditional bounds are worst-case bounds, and are thus pessimistic on average

Matrix-vector product (fp32)

Solution of $A x=b(f p 32)$

Traditional bounds are pessimistic

The issue is that traditional bounds are worst-case bounds, and are thus pessimistic on average

Matrix-vector product (fp16)

Matrix-vector product (fp8)

Traditional bounds are pessimistic

The issue is that traditional bounds are worst-case bounds, and are thus pessimistic on average

Matrix-vector product (fp16)

Matrix-vector product (fp8)

\Rightarrow Traditional bounds do not provide a realistic picture of the typical behavior of numerical computations

Key intuition

- Consider the accumulated effect of n rounding errors

$$
s=\sum_{i=1}^{n} \delta_{i}
$$

- The worst-case bound $|s| \leq n u$ is attained when all δ_{i} have identical sign and maximal magnitude, which intuitively seems very unlikely
- Assume δ_{i} are random independent variables of mean zero
- Then, the central limit theorem states that if n is sufficiently large, then

$$
s / \sqrt{n} \sim \mathcal{N}(0, u)
$$

$\Rightarrow|s| \leq \lambda \sqrt{n} u$, with λ a small constant, holds with high probability (e.g., 99.7% with $\lambda=3$ by the 3 -sigma rule)

The rule of thumb

This probabilistic approach had led to the following rule of thumb
In general, the statistical distribution of the rounding errors will reduce considerably the function of n occurring in the relative errors. We might expect in each case that this function should be replaced by something which is no bigger than its square root.

- James Wilkinson, 1961

However, no rigorous result along these lines exists for a wide class of algorithms

The rule of thumb

This probabilistic approach had led to the following rule of thumb
In general, the statistical distribution of the rounding errors will reduce considerably the function of n occurring in the relative errors. We might expect in each case that this function should be replaced by something which is no bigger than its square root.

- James Wilkinson, 1961

However, no rigorous result along these lines exists for a wide class of algorithms

Our contribution:

We provide the first rigorous foundation for this rule of thumb
by computing rigorous error bounds that hold with probability at least a certain value for a wide class of linear algebra algorithms

Objective and assumptions

Fundamental lemma in backward error analysis
If $\left|\delta_{i}\right| \leq u$ for $i=1: n$ and $n u<1$, then

$$
\prod_{i=1}\left(1+\delta_{i}\right)=1+\theta_{n}, \quad\left|\theta_{n}\right| \leq \gamma_{n} \leq n u+O\left(u^{2}\right)
$$

Objective and assumptions

Fundamental lemma in backward error analysis
If $\left|\delta_{i}\right| \leq u$ for $i=1: n$ and $n u<1$, then

$$
\prod_{i=1}\left(1+\delta_{i}\right)=1+\theta_{n}, \quad\left|\theta_{n}\right| \leq \gamma_{n} \leq n u+O\left(u^{2}\right)
$$

We seek an anologous result by using the following model

Probabilistic model of rounding errors

In the computation of interest, the quantities δ in the model

$$
f|(a \circ p b)=(a \circ p b)(1+\delta), \quad| \delta \mid \leq u, \quad \text { op } \in\{+,-, \times, /\}
$$

associated with every pair of operands are independent random variables of mean zero.

There is no claim that ordinary rounding and chopping are random processes, or that successive errors are independent. The question to be decided is whether or not these particular probabilistic models of the processes will adequately describe what actually happens.

Proof sketch

First step: transform the product in a sum by taking the logarithm

$$
S=\log \prod_{i=1}^{n}\left(1+\delta_{i}\right)=\sum_{i=1}^{n} \log \left(1+\delta_{i}\right)
$$

Proof sketch

First step: transform the product in a sum by taking the logarithm

$$
S=\log \prod_{i=1}^{n}\left(1+\delta_{i}\right)=\sum_{i=1}^{n} \log \left(1+\delta_{i}\right)
$$

Second step: apply Hoeffding's concentration inequality:

Hoeffding's inequality

Let X_{1}, \ldots, X_{n} be random independent variables satisfying $\left|X_{i}\right| \leq c_{i}$. Then the sum $S=\sum_{i=1}^{n} X_{i}$ satisfies

$$
\operatorname{Pr}(|S-\mathbb{E}(S)| \geq \xi) \leq 2 \exp \left(-\frac{\xi^{2}}{2 \sum_{i=1}^{n} c_{i}^{2}}\right)
$$

to $X_{i}=\log \left(1+\delta_{i}\right) \Rightarrow$ requires bounding $\log \left(1+\delta_{i}\right)$ and
$\mathbb{E}\left(\log \left(1+\delta_{i}\right)\right)$ using Taylor expansions

Proof sketch

First step: transform the product in a sum by taking the logarithm

$$
S=\log \prod_{i=1}^{n}\left(1+\delta_{i}\right)=\sum_{i=1}^{n} \log \left(1+\delta_{i}\right)
$$

Second step: apply Hoeffding's concentration inequality:

Hoeffding's inequality

Let X_{1}, \ldots, X_{n} be random independent variables satisfying $\left|X_{i}\right| \leq c_{i}$. Then the sum $S=\sum_{i=1}^{n} X_{i}$ satisfies

$$
\operatorname{Pr}(|S-\mathbb{E}(S)| \geq \xi) \leq 2 \exp \left(-\frac{\xi^{2}}{2 \sum_{i=1}^{n} c_{i}^{2}}\right)
$$

to $X_{i}=\log \left(1+\delta_{i}\right) \Rightarrow$ requires bounding $\log \left(1+\delta_{i}\right)$ and
$\mathbb{E}\left(\log \left(1+\delta_{i}\right)\right)$ using Taylor expansions
Third step: retrieve the result by taking the exponential of S

Our main result

Main result

Let $\delta_{i}, i=1: n$, be independent random variables of mean zero such that $\left|\delta_{i}\right| \leq u$. Then, for any constant $\lambda>0$, the relation

$$
\begin{aligned}
\prod_{i=1}^{n}\left(1+\delta_{i}\right)=1+\theta_{n}, \quad\left|\theta_{n}\right| & \leq \widetilde{\gamma}_{n}(\lambda):=\exp \left(\lambda \sqrt{n} u+\frac{n u^{2}}{1-u}\right)-1 \\
& \leq \lambda \sqrt{n} u+O\left(u^{2}\right)
\end{aligned}
$$

holds with probability of failure $P(\lambda)=2 \exp \left(-\lambda^{2}(1-u)^{2} / 2\right)$

Our main result

Main result

Let $\delta_{i}, i=1: n$, be independent random variables of mean zero such that $\left|\delta_{i}\right| \leq u$. Then, for any constant $\lambda>0$, the relation

$$
\begin{aligned}
\prod_{i=1}^{n}\left(1+\delta_{i}\right)=1+\theta_{n}, \quad\left|\theta_{n}\right| & \leq \widetilde{\gamma}_{n}(\lambda):=\exp \left(\lambda \sqrt{n u}+\frac{n u^{2}}{1-u}\right)-1 \\
& \leq \lambda \sqrt{n} u+O\left(u^{2}\right)
\end{aligned}
$$

holds with probability of failure $P(\lambda)=2 \exp \left(-\lambda^{2}(1-u)^{2} / 2\right)$
Key features:

- Exact bound, not first order
- nu <1 not required
- No " n is sufficiently large" assumption (achieved by replacing the central limit theorem by Hoeffding's inequality)
- Small values of λ suffice: $P(1) \approx 0.27, P(5) \leq 10^{-5}$

Application to numerical linear algebra

Bounds for many numerical linear algebra algorithms are obtained by the repeated application of our main result. For example:

Probabilistic bound for LU factorization

Let $L U=A+\Delta A$ be the $L U$ factors computed by Gaussian elimination of $A \in \mathbb{R}^{n \times n}$. Then, for any constant $\lambda>0$, the relation

$$
|\Delta A| \leq \widetilde{\gamma}_{n}(\lambda)|L \| U|, \quad\left|\widetilde{\gamma}_{n}(\lambda)\right| \leq \lambda \sqrt{n} u+O\left(u^{2}\right)
$$

holds with probability of failure $\left(n^{3} / 3+n^{2} / 2+7 n / 6\right) P(\lambda)$

Application to numerical linear algebra

Bounds for many numerical linear algebra algorithms are obtained by the repeated application of our main result. For example:

Probabilistic bound for LU factorization

Let $L U=A+\Delta A$ be the $L U$ factors computed by Gaussian elimination of $A \in \mathbb{R}^{n \times n}$. Then, for any constant $\lambda>0$, the relation

$$
|\Delta A| \leq \widetilde{\gamma}_{n}(\lambda)|L \| \cup U|, \quad\left|\widetilde{\gamma}_{n}(\lambda)\right| \leq \lambda \sqrt{n} u+O\left(u^{2}\right)
$$

holds with probability of failure $\left(n^{3} / 3+n^{2} / 2+7 n / 6\right) P(\lambda)$

We wish to keep the probabilities independent of n ! Fortunately:

$$
O\left(n^{3}\right) P(\lambda)=O(1) \quad \Rightarrow \quad \lambda=O(\sqrt{\log n})
$$

\Rightarrow error grows no faster than $\sqrt{n \log n u}$

Application to numerical linear algebra

Bounds for many numerical linear algebra algorithms are obtained by the repeated application of our main result. For example:

Probabilistic bound for LU factorization

Let $L U=A+\Delta A$ be the $L U$ factors computed by Gaussian elimination of $A \in \mathbb{R}^{n \times n}$. Then, for any constant $\lambda>0$, the relation

$$
|\Delta A| \leq \widetilde{\gamma}_{n}(\lambda)|L \| \cup U|, \quad\left|\widetilde{\gamma}_{n}(\lambda)\right| \leq \lambda \sqrt{n} u+O\left(u^{2}\right)
$$

holds with probability of failure $\left(n^{3} / 3+n^{2} / 2+7 n / 6\right) P(\lambda)$

We wish to keep the probabilities independent of n ! Fortunately:

$$
O\left(n^{3}\right) P(\lambda)=O(1) \quad \Rightarrow \quad \lambda=O(\sqrt{\log n})
$$

\Rightarrow error grows no faster than $\sqrt{n \log n u}$
Moreover the constant hidden in the big O is small:

$$
P(13) \leq 10^{-5} \text { for } n \leq 10^{10}
$$

Experimental setting

- We use MATLAB R2018b and set rng(1) for reproducibility
- fp16 and fp8 are simulated with the rounding function chop.m from the Matrix Computation Toolbox
- We use both random matrices with entries drawn from the uniform $[-1,1]$ or $[0,1]$ distribution and real-life matrices from the SuiteSparse collection
- We compare the bounds γ_{n} and $\widetilde{\gamma}_{n}(\lambda)$ with the componentwise backward error $\varepsilon_{b w d}$ measured as (Oettli-Prager):
- Matrix-vector product $y=A x: \varepsilon_{b w d}=\max _{i} \frac{|\hat{y}-y|_{i}}{(|A||x|)_{i}}$
- Solution to $A x=b$ via LU factorization: $\varepsilon_{b w d}=\max _{i} \frac{|A \widehat{x}-b|_{i}}{(|\hat{L}||\hat{U}| \mid \widehat{\mid})_{i}}$
- Our codes are available online: https://gitlab.com/theo.andreas.mary/proberranalysis

Experimental results with $[-1,1]$ entries

Matrix-vector product (fp32)

Solution of $A x=b(f p 32)$

Experimental results with $[-1,1]$ entries

Matrix-vector product (fp32)

Solution of $A x=b(f p 32)$

- The probabilistic bound is much closer to the actual error
- However for $[-1,1]$ entries it is still pessimistic

Experimental results with $[0,1]$ entries

Matrix-vector product (fp32)

Solution of $A x=b(f p 32)$

- Probabilistic bound is plotted with $\lambda=1 \Rightarrow P(\lambda)$ is pessimistic...
- ...but $\widetilde{\gamma}_{n}$ bound itself can be sharp and successfully captures the \sqrt{n} error growth
\Rightarrow Therefore the bounds cannot be further improved without further assumptions

Experimental results with low precisions ($[-1,1]$ entries)

Matrix-vector product (fp8)

- Importance of the probabilistic bound becomes even clearer for lower precisions

Experimental results with low precisions ([0, 1] entries)

Matrix-vector product (fp8)

- Importance of the probabilistic bound becomes even clearer for lower precisions

Experimental results with real-life matrices
Solution of $A x=b(f p 64)$,
for 943 matrices from the SuiteSparse collection

An example where rounding errors are not independent

Inner product of two constant vectors:

$$
\begin{aligned}
s_{i+1} & =s_{i}+a_{i} b_{i}=s_{i}+c \\
\Rightarrow \quad \widehat{s}_{i+1} & =\left(\widehat{s}_{i}+c\right)\left(1+\delta_{i}\right)
\end{aligned}
$$

An example where rounding errors are not independent

Inner product of two constant vectors:

$$
\begin{aligned}
s_{i+1} & =s_{i}+a_{i} b_{i}=s_{i}+c \\
\Rightarrow \quad \widehat{s}_{i+1} & =\left(\widehat{s}_{i}+c\right)\left(1+\delta_{i}\right)
\end{aligned}
$$

An example where rounding errors are not independent

Inner product of two constant vectors:

$$
\begin{aligned}
s_{i+1} & =s_{i}+a_{i} b_{i}=s_{i}+c \\
\Rightarrow \quad \widehat{s}_{i+1} & =\left(\widehat{s}_{i}+c\right)\left(1+\delta_{i}\right)
\end{aligned}
$$

$\widehat{s}_{i} \quad \widehat{s}_{i+1} \quad \widehat{s}_{i+2} \quad \widehat{s}_{i+3}$

An example where rounding errors are not independent

Inner product of two constant vectors:

$$
\begin{aligned}
s_{i+1} & =s_{i}+a_{i} b_{i}=s_{i}+c \\
\Rightarrow \quad \widehat{s}_{i+1} & =\left(\widehat{s}_{i}+c\right)\left(1+\delta_{i}\right)
\end{aligned}
$$

$\Rightarrow \delta_{i}=\theta$ is constant within intervals $\left[2^{q-1} ; 2^{q}\right]$

$\widehat{s}_{i} \quad \widehat{s}_{i+1} \quad \widehat{s}_{i+2} \quad \widehat{s}_{i+3}$

An example where rounding errors have nonzero mean

Inner product of two very large nonnegative vectors:

$$
s_{i+1}=s_{i}+a_{i} b_{i} \quad \Rightarrow \quad \widehat{s}_{i+1}=\left(\hat{s}_{i}+a_{i} b_{i}\right)\left(1+\delta_{i}\right)
$$

An example where rounding errors have nonzero mean

Inner product of two very large nonnegative vectors:

$$
s_{i+1}=s_{i}+a_{i} b_{i} \quad \Rightarrow \quad \widehat{s}_{i+1}=\left(\hat{s}_{i}+a_{i} b_{i}\right)\left(1+\delta_{i}\right)
$$

An example where rounding errors have nonzero mean

Inner product of two very large nonnegative vectors:

$$
s_{i+1}=s_{i}+a_{i} b_{i} \quad \Rightarrow \quad \widehat{s}_{i+1}=\left(\hat{s}_{i}+a_{i} b_{i}\right)\left(1+\delta_{i}\right)
$$

Explanation: s_{i} keeps increasing, at some point, it becomes so large that $\widehat{s}_{i+1}=\widehat{s}_{i} \Rightarrow \delta_{i}=-a_{i} b_{i} /\left(\hat{s}_{i}+a_{i} b_{i}\right)<0$

An example where rounding errors have nonzero mean

Inner product of two very large nonnegative vectors:

$$
s_{i+1}=s_{i}+a_{i} b_{i} \quad \Rightarrow \quad \widehat{s}_{i+1}=\left(\hat{s}_{i}+a_{i} b_{i}\right)\left(1+\delta_{i}\right)
$$

Explanation: s_{i} keeps increasing, at some point, it becomes so large that $\widehat{s}_{i+1}=\widehat{s}_{i} \Rightarrow \delta_{i}=-a_{i} b_{i} /\left(\widehat{s}_{i}+a_{i} b_{i}\right)<0$

Conclusion

- Our analysis provides the first rigorous justification of the rule of thumb that one can take the square root of the constant in traditional error bounds to obtain a more realistic bound
- Our experiments show that the probabilistic bounds are in good agreement with the actual error for both random and real-life matrices, except in two very special situations, justifying that

The fact that rounding errors are neither random nor uncorrelated will not in itself preclude the possibility of modelling them usefully by uncorrelated random variables.

- William Kahan, 1996
and answering Hull and Swenson's question

Slides and paper available here

bit.ly/theomary

