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Context and motivation

Floating-point arithmetic model

fl(a op b) = (a op b)(1 + δ), |δ| ≤ u, op ∈ {+,−,×, /}

fp64 fp32 fp16 bfloat16 fp8
(double) (single) (half) (half) (quarter)

u
2−53 2−24 2−11 2−8 2−4

≈ 10−16 ≈ 10−8 ≈ 10−4 ≈ 10−3 ≈ 10−2

• In many numerical linear algebra computations, traditional error
bounds are proportional to nu, e.g., for LU factorization:

|A− LU| ≤ nu|L||U|
⇒ No guarantees if nu is large: issue of growing importance with

the rise of large-scale, mixed-precision computations
• Yet, in practice errors are observed to be much smaller
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Traditional bounds are pessimistic
The issue is that traditional bounds are worst-case bounds, and
are thus pessimistic on average

⇒ Traditional bounds do not provide a realistic picture of the
typical behavior of numerical computations
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Key intuition

• Consider the accumulated effect of n rounding errors

s =
n∑
i=1

δi

• The worst-case bound |s| ≤ nu is attained when all δi have
identical sign and maximal magnitude, which intuitively seems
very unlikely

• Assume δi are random independent variables of mean zero
• Then, the central limit theorem states that if n is sufficiently
large, then

s/
√
n ∼ N (0,u)

⇒ |s| ≤ λ
√
nu, with λ a small constant, holds with high probability

(e.g., 99.7% with λ = 3 by the 3-sigma rule)
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The rule of thumb

This probabilistic approach had led to the following rule of thumb

In general, the statistical distribution of the rounding errors
will reduce considerably the function of n occurring in the
relative errors. We might expect in each case that this
function should be replaced by something which is no
bigger than its square root.

— James Wilkinson, 1961

However, no rigorous result along these lines exists for a wide
class of algorithms

Our contribution:
We provide the first rigorous foundation for this rule of thumb

by computing rigorous error bounds
that hold with probability at least a certain value
for a wide class of linear algebra algorithms
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Objective and assumptions

Fundamental lemma in backward error analysis

If |δi| ≤ u for i = 1 : n and nu < 1, then
n∏
i=1

(1 + δi) = 1 + θn, |θn| ≤ γn ≤ nu+O(u2)

We seek an anologous result by using the following model

Probabilistic model of rounding errors

In the computation of interest, the quantities δ in the model
fl(a op b) = (a op b)(1 + δ), |δ| ≤ u, op ∈ {+,−,×, /}

associated with every pair of operands are independent random
variables of mean zero.

There is no claim that ordinary rounding and chopping are random
processes, or that successive errors are independent. The question to be
decided is whether or not these particular probabilistic models of the
processes will adequately describe what actually happens.

— Hull and Swenson, 1966
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Proof sketch
First step: transform the product in a sum by taking the logarithm

S = log
n∏
i=1

(1 + δi) =

n∑
i=1

log(1 + δi)

Second step: apply Hoeffding’s concentration inequality:

Hoeffding’s inequality

Let X1, …, Xn be random independent variables satisfying |Xi| ≤ ci.
Then the sum S =

∑n
i=1 Xi satisfies

Pr(|S− E(S)| ≥ ξ) ≤ 2 exp
(
− ξ2

2
∑n

i=1 c
2
i

)

to Xi = log(1 + δi) ⇒ requires bounding log(1 + δi) and
E (log(1 + δi)) using Taylor expansions

Third step: retrieve the result by taking the exponential of S
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Our main result

Main result
Let δi, i = 1 : n, be independent random variables of mean zero
such that |δi| ≤ u. Then, for any constant λ > 0, the relation

n∏
i=1

(1 + δi) = 1 + θn, |θn| ≤ γ̃n(λ) := exp
(
λ
√
nu+

nu2

1− u

)
− 1

≤ λ
√
nu+O(u2)

holds with probability of failure P(λ) = 2 exp
(
−λ2(1− u)2/2

)

Key features:
• Exact bound, not first order
• nu < 1 not required
• No “n is sufficiently large” assumption (achieved by replacing
the central limit theorem by Hoeffding’s inequality)

• Small values of λ suffice: P(1) ≈ 0.27, P(5) ≤ 10−5
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Application to numerical linear algebra

Bounds for many numerical linear algebra algorithms are obtained
by the repeated application of our main result. For example:

Probabilistic bound for LU factorization
Let LU = A+∆A be the LU factors computed by Gaussian
elimination of A ∈ Rn×n. Then, for any constant λ > 0, the relation

|∆A| ≤ γ̃n(λ)|L||U|, |γ̃n(λ)| ≤ λ
√
nu+O(u2)

holds with probability of failure (n3/3 + n2/2 + 7n/6)P(λ)

We wish to keep the probabilities independent of n! Fortunately:

O(n3)P(λ) = O(1) ⇒ λ = O(
√
logn)

⇒ error grows no faster than
√
n lognu

Moreover the constant hidden in the big O is small:
P(13) ≤ 10−5 for n ≤ 1010
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Experimental setting

• We use MATLAB R2018b and set rng(1) for reproducibility

• fp16 and fp8 are simulated with the rounding function chop.m
from the Matrix Computation Toolbox

• We use both random matrices with entries drawn from the
uniform [−1, 1] or [0, 1] distribution and real-life matrices from
the SuiteSparse collection

• We compare the bounds γn and γ̃n(λ) with the componentwise
backward error εbwd measured as (Oettli–Prager):
◦ Matrix–vector product y = Ax: εbwd = maxi

|̂y−y|i
(|A||x|)i

◦ Solution to Ax = b via LU factorization: εbwd = maxi
|Ax̂−b|i

(|L̂||Û||̂x|)i

• Our codes are available online:
https://gitlab.com/theo.andreas.mary/proberranalysis

10/18 A New Probabilistic Rounding Error Analysis Theo Mary

https://gitlab.com/theo.andreas.mary/proberranalysis


Experimental results with [−1, 1] entries

Matrix–vector product (fp32)
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Solution of Ax = b (fp32)
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10 -6
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10 -2

• The probabilistic bound is much closer to the actual error
• However for [−1, 1] entries it is still pessimistic
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Experimental results with [0, 1] entries

Matrix–vector product (fp32)
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Solution of Ax = b (fp32)
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• Probabilistic bound is plotted with λ = 1 ⇒ P(λ) is pessimistic…
• …but γ̃n bound itself can be sharp and successfully captures
the

√
n error growth

⇒ Therefore the bounds cannot be further improved without
further assumptions
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Experimental results with low precisions ([−1, 1] entries)

Matrix–vector product (fp16)
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Matrix–vector product (fp8)
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• Importance of the probabilistic bound becomes even clearer
for lower precisions
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Experimental results with low precisions ([0, 1] entries)
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Experimental results with real-life matrices

Solution of Ax = b (fp64),
for 943 matrices from the SuiteSparse collection
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An example where rounding errors are not independent

Inner product of two constant
vectors:

si+1 = si + aibi = si + c

⇒ ŝi+1 = (ŝi + c)(1 + δi)

⇒ δi = θ is constant within
intervals [2q−1; 2q]
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2q−1 2q

×

ŝi ŝi+1 ŝi+2 ŝi+3

+c

××
θ

+c

××
θ

+c

××
θ
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An example where rounding errors have nonzero mean

Inner product of two very large nonnegative vectors:

si+1 = si + aibi ⇒ ŝi+1 = (ŝi + aibi)(1 + δi)
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Top: 1 ≤ n ≤ 106

Bottom: 106 ≤ n ≤ 108

Explanation: si keeps increasing, at some point, it becomes so
large that ŝi+1 = ŝi ⇒ δi = −aibi/(ŝi + aibi) < 0

17/18 A New Probabilistic Rounding Error Analysis Theo Mary



An example where rounding errors have nonzero mean

Inner product of two very large nonnegative vectors:
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Conclusion

• Our analysis provides the first rigorous justification of the rule
of thumb that one can take the square root of the constant in
traditional error bounds to obtain a more realistic bound

• Our experiments show that the probabilistic bounds are in good
agreement with the actual error for both random and real-life
matrices, except in two very special situations, justifying that

The fact that rounding errors are neither random nor uncorrelated will
not in itself preclude the possibility of modelling them usefully by
uncorrelated random variables.

— William Kahan, 1996

and answering Hull and Swenson’s question

Slides and paper available here

bit.ly/theomary
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