Bridging the gap between flat and hierarchical low-rank matrix formats

P. Amestoy¹ A. Buttari² J.-Y. L'Excellent³ T. Mary⁴ ¹INP-IRIT ²CNRS-IRIT ³INRIA-LIP ⁴University of Manchester SIAM CSE 2019, Spokane, Feb. 25th - March 1st

Large scale applications

- Target size is $n \sim 10^9$ for sparse $\Rightarrow m \sim 10^6$ for dense
- $O(m^2)$ storage complexity and $O(m^3)$ flop complexity $m \sim 10^6 \Rightarrow$ TeraBytes of storage and ExaFlops of computation!

Need to reduce the asymptotic complexity

- converting complexity gains into real performance gains
- and reach application required accurary

Block Low-Rank general context and main features

- Applicative context: discretized PDEs, integral equations
- Compute an approximate factorization A ≈ L_εU_ε at accuracy ε controlled by the user

Block Low-Rank¹ (BLR)

- Flat and simple format
 - Algebraic robust solver;
 - Compatible with the numerical features of a general solver (such as partial threshold pivoting for stability)
- Work supported by PhD theses from University of Toulouse, C. Weisbecker (2010-2013, supported by EDF) and T. Mary (2014-2017)

 \Rightarrow Many representations: Recursive $\mathcal{H}, \mathcal{H}^2$ [Bebendof, Börm, Hackbush, Grasedyck,...], HSS/SSS [Chandrasekaran, Dewilde, Gu, Li, Xia,...], BLR ...

[[]Amestoy, Ashcraft, Boiteau, Buttari, L'Excellent, and Weisbecker, SIAM J. Sci. Comput., 2015]

Block Low-Rank Multifrontal feature: principle

Block Low-Rank Multifrontal feature: principle

${\cal H}$ and BLR matrices

 ${\cal H}$ matrix

- Theoretical complexity can be as low as O(n)
- Complex, hierarchical structure

BLR matrix

- Theoretical complexity can be as low as $O(n^{4/3})$
- Simpler structure

BLR makes easier to preserve the numerical features of a direct solver and compromises well complexity, accuracy and performance

BLR complexity² (Poisson $n = N^3$, n: matrix size, N: grid size)

- Operations for sparse factorization $\mathcal{O}\left(n^{2}
 ight)
 ightarrow\mathcal{O}\left(n^{4/3}
 ight)$
- Convert it into performance gains, not straightforward³

² proved in [Amestoy, Buttari, L'Excellent, Mary, SIAM J. Sci. Comput. 2017]

³ [Amestoy, Buttari, L'Excellent, Mary, Trans. on Math. Soft. 2018], 24 Haswell cores

BLR complexity² (Poisson $n = N^3$, n: matrix size, N: grid size)

- Operations for sparse factorization $\mathcal{O}\left(n^{2}
 ight)
 ightarrow\mathcal{O}\left(n^{4/3}
 ight)$
- Convert it into performance gains, not straightforward³

Can we reduce complexity and preserve performance?

² proved in [Amestoy, Buttari, L'Excellent, Mary, SIAM J. Sci. Comput. 2017]

³ [Amestoy, Buttari, L'Excellent, Mary, Trans. on Math. Soft. 2018], 24 Haswell cores

Outline

- 1. Why is sparse factorization a better playground for BLR than dense factorization ?
- 2. How to do the minimum to reach a target asympthotic complexity?

Multilevel BLR (MBLR):

- Complexity analysis
- Numerical results
- 3. Concluding remarks

Preprint

P. Amestoy, A. Buttari, J.-Y. L'Excellent, and T. Mary, *Bridging the gap between flat and hierarchical low-rank matrix formats: the multilevel BLR format*, submitted (2018).

Sparse factorization a better playground for BLR than dense factorization?

From dense to sparse: nested dissection

From dense to sparse: nested dissection

Proceed recursively to compute separator tree

Factorizing a sparse matrix amounts to factorizing a sequence of dense matrices ⇒ sparse complexity is directly derived from dense one

Nested dissection complexity formulas

2D:
$$C_{\text{sparse}} = \sum_{\ell=0}^{\log N} 4^{\ell} C_{\text{dense}}(\frac{N}{2^{\ell}})$$

Nested dissection complexity formulas

2D:
$$C_{sparse} = \sum_{\ell=0}^{\log N} 4^{\ell} C_{dense}(\frac{N}{2^{\ell}})$$

3D: $C_{sparse} = \sum_{\ell=0}^{\log N} 8^{\ell} C_{dense}(\frac{N^2}{4^{\ell}})$

Nested dissection complexity formulas

$$\begin{aligned} \textbf{2D:} \quad \mathcal{C}_{sparse} &= \sum_{\ell=0}^{\log N} 4^{\ell} \mathcal{C}_{dense}(\frac{N}{2^{\ell}}) \quad \rightarrow \text{ common ratio } 2^{2-\alpha} \\ \textbf{3D:} \quad \mathcal{C}_{sparse} &= \sum_{\ell=0}^{\log N} 8^{\ell} \mathcal{C}_{dense}(\frac{N^2}{4^{\ell}}) \quad \rightarrow \text{ common ratio } 2^{3-2\alpha} \\ & \frac{\text{Assume } \mathcal{C}_{dense} = O(m^{\alpha}). \text{ Then:}}{2D \qquad 3D} \\ \hline \frac{2D \qquad 3D}{\mathcal{C}_{sparse}(n)} & \mathcal{C}_{sparse}(n) \\ \alpha &> 2 \quad O(n^{\alpha/2}) \\ \alpha &= 2 \quad O(n \log n) \\ \alpha &< 2 \quad O(n) \\ \end{aligned}$$

Bridging the gap between flat and hierarchical formats

Bridging the gap between flat and hierarchical formats

Key motivation: $C_{dense} < O(m^2)$ (2D) or $O(m^{1.5})$ (3D) is enough to get O(n) sparse complexity!

The multilevel BLR (MBLR) format

Complexity of the two-level BLR format

Two-level BLR format: replace full-rank blocks by BLR matrices For $b = (m^2 r)^{1/3}$:

$$\begin{aligned} \text{Storage} &= O(m^{4/3}r^{2/3}) \\ \text{FlopLU} &= O(m^{5/3}r^{4/3}) \end{aligned}$$

Main result

For $b = m^{\ell/(\ell+1)} r^{1/(\ell+1)}$, the ℓ -level complexities are:

Storage =
$$O(m^{(\ell+2)/(\ell+1)}r^{\ell/(\ell+1)})$$

FlopLU = $O(m^{(\ell+3)/(\ell+1)}r^{2\ell/(\ell+1)})$

Proof: by induction. \Box

- Simple way to finely control the desired complexity
- Block size b ∝ O(m^{1-1/(ℓ+1)}) ≪ O(m)
 ⇒ larger blocks that can be efficiently processed in shared-memory

Influence of the number of levels ℓ

 If r = O(1), can achieve O(n) storage complexity with only two levels and O(n log n) flop complexity with three levels

Influence of the number of levels ℓ

- If r = O(1), can achieve O(n) storage complexity with only two levels and O(n log n) flop complexity with three levels
- For higher ranks, improvement rate rapidly decreases: the first few levels achieve most of the asymptotic gain

Numerical experiments (Poisson)

- Experimental complexity in relatively good agreement with theoretical one
- Asymptotic gain decreases with levels

Concluding remarks

Conclusions and perspectives

A new multilevel format to...

- Finely control desired complexity between BLR's and \mathcal{H} 's
- Find a balance between BLR's simplicity and \mathcal{H} 's complexity
- Trade off \mathcal{H} 's nearly linear dense complexity and still achieve $\mathcal{C}_{sparse} = O(n)$

Future work

- Implementation of the MBLR format in a parallel, algebraic, general purpose sparse solver (e.g. MUMPS)
- Algorithmic work to reach high performance on parallel architectures (just as it was needed for BLR)