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Large scale applications

• Target size is n ∼ 109 for sparse ⇒ m ∼ 106 for dense
• O(m2) storage complexity and O(m3) flop complexity
m ∼ 106 ⇒ TeraBytes of storage and ExaFlops of computation!

Need to reduce the asymptotic complexity

• converting complexity gains into real performance gains
• and reach application required accurary



Block Low-Rank general context and main features

• Applicative context: discretized PDEs, integral equations
• Compute an approximate factorization A ≈ LεUε at accuracy ε
controlled by the user

Block Low-Rank1 (BLR )

• Flat and simple format
◦ Algebraic robust solver;
◦ Compatible with the numerical features of a general solver

(such as partial threshold pivoting for stability)

• Work supported by PhD theses from University of Toulouse, C. Weisbecker

(2010-2013, supported by EDF) and T. Mary (2014-2017)

⇒ Many representations: Recursive H,H2 [Bebendof, Börm, Hackbush,
Grasedyck,…], HSS/SSS [Chandrasekaran, Dewilde, Gu, Li, Xia,…], BLR …

1
[Amestoy, Ashcraft, Boiteau, Buttari, L’Excellent, and Weisbecker, SIAM J. Sci. Comput., 2015]



Block Low-Rank Multifrontal feature: principle

⇒
Elimination tree

B

⇒
Singular value decomposition (SVD) of each
block B ⇒ B = X1S1Y1 + X2S2Y2
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Block Low-Rank Multifrontal feature: principle

⇒
Elimination tree

B

⇒
rank k(ε): B = X1S1Y1 +X2S2Y2

∥E∥2 = ∥X2S2Y2∥2 = σk+1 ≤ ε
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H and BLR matrices

H matrix BLR matrix

• Theoretical complexity can be
as low as O(n)

• Complex, hierarchical
structure

• Theoretical complexity can be
as low as O(n4/3)

• Simpler structure

BLR makes easier to preserve the numerical features of a direct
solver and compromises well complexity, accuracy and

performance
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BLR complexity2 (Poisson n = N3, n: matrix size, N: grid size)

• Operations for sparse factorization O
(
n2
)
→ O

(
n4/3

)
• Convert it into performance gains, not straightforward3
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Can we reduce complexity and preserve performance ?
2
proved in [Amestoy, Buttari, L’Excellent, Mary, SIAM J. Sci. Comput. 2017]

3
[Amestoy, Buttari, L’Excellent, Mary, Trans. on Math. Soft. 2018], 24 Haswell cores



Outline

1. Why is sparse factorization a better playground for BLR than
dense factorization ?

2. How to do the minimum to reach a target asympthotic
complexity?

Multilevel BLR (MBLR):
◦ Complexity analysis
◦ Numerical results

3. Concluding remarks

Preprint

P. Amestoy, A. Buttari, J.-Y. L’Excellent, and T. Mary, Bridging the gap between flat and
hierarchical low-rank matrix formats: the multilevel BLR format, submitted (2018).
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Sparse factorization a better playground

for BLR than dense factorization?



From dense to sparse: nested dissection

N n = N2

D1

D2

D3

D4

D1

D2

D3

D4

S

Proceed recursively to
compute separator tree

Factorizing a sparse matrix
amounts to factorizing a

sequence of dense matrices
⇒

sparse complexity is directly
derived from dense one
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Nested dissection complexity formulas

2D: Csparse =

logN∑
ℓ=0

4ℓCdense(
N
2ℓ

)

→ common ratio 22−α

3D: Csparse =

logN∑
ℓ=0

8ℓCdense(
N2

4ℓ
)

→ common ratio 23−2α

Assume Cdense = O(mα). Then:

2D 3D

Csparse(n) Csparse(n)
α > 2 O(nα/2) α > 1.5 O(n2α/3)
α = 2 O(n logn) α = 1.5 O(n logn)
α < 2 O(n) α < 1.5 O(n)
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Bridging the gap between flat and hierarchical formats

Cdense = O(mα) ⇒ Csparse = O(nβ)

Storage

1 1.5 2 2.5 3

1

1.2

1.4

1.6

1.8

2
Flops

1 1.5 2 2.5 3

1

1.2

1.4

1.6

1.8

2

Key motivation: Cdense < O(m2) (2D) or O(m1.5) (3D)
is enough to get O(n) sparse complexity!
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The multilevel BLR (MBLR)
format



Complexity of the two-level BLR format

Two-level BLR format: replace full-rank blocks
by BLR matrices
For b = (m2r)1/3:

Storage = O(m4/3r2/3)

FlopLU = O(m5/3r4/3)

FR BLR 2-BLR … H

storage
dense O(m2) O(m1.5) O(m1.33) … O(m logm)
sparse O(n1.33) O(n logn) O(n) … O(n)

flop LU
dense O(m3) O(m2) O(m1.66) … O(m log3m)
sparse O(n2) O(n1.33) O(n1.11) … O(n)
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Multilevel BLR complexity

Main result
For b = mℓ/(ℓ+1)r1/(ℓ+1), the ℓ−level complexities are:

Storage = O(m(ℓ+2)/(ℓ+1)rℓ/(ℓ+1))

FlopLU = O(m(ℓ+3)/(ℓ+1)r2ℓ/(ℓ+1))

Proof: by induction.

• Simple way to finely control the desired complexity

• Block size b ∝ O(m1−1/(ℓ+1)) ≪ O(m)
⇒ larger blocks that can be efficiently processed in
shared-memory
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Influence of the number of levels ℓ

Storage
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• If r = O(1), can achieve O(n) storage complexity with only two
levels and O(n logn) flop complexity with three levels

• For higher ranks, improvement rate rapidly decreases:
the first few levels achieve most of the asymptotic gain
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Numerical experiments (Poisson)

Storage Flop LU

• Experimental complexity in relatively good agreement with
theoretical one

• Asymptotic gain decreases with levels
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Concluding remarks



Conclusions and perspectives

A new multilevel format to…

• Finely control desired complexity between BLR’s and H’s
• Find a balance between BLR’s simplicity and H’s complexity
• Trade off H’s nearly linear dense complexity and still achieve
Csparse = O(n)

Future work

• Implementation of the MBLR format in a parallel, algebraic,
general purpose sparse solver (e.g. MUMPS)

• Algorithmic work to reach high performance on parallel
architectures (just as it was needed for BLR)
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