Bridging the gap between flat and hierarchical low-rank matrix formats

P. Amestoy ${ }^{1} \quad$ A. Buttari ${ }^{2} \quad$ J.-Y. L'Excellent ${ }^{3} \quad$ T. Mary ${ }^{4}$
${ }^{1}$ INP-IRIT $\quad{ }^{2}$ CNRS-IRIT $\quad{ }^{3}$ INRIA-LIP $\quad{ }^{4}$ University of Manchester
SIAM CSE 2019, Spokane, Feb. 25th - March 1st

Large scale applications

- Target size is $n \sim 10^{9}$ for sparse $\Rightarrow m \sim 10^{6}$ for dense
- $O\left(m^{2}\right)$ storage complexity and $O\left(m^{3}\right)$ flop complexity $m \sim 10^{6} \Rightarrow$ TeraBytes of storage and ExaFlops of computation!

Need to reduce the asymptotic complexity

- converting complexity gains into real performance gains
- and reach application required accurary
- Applicative context: discretized PDEs, integral equations
- Compute an approximate factorization $\mathbf{A} \approx \mathbf{L}_{\varepsilon} \mathbf{U}_{\varepsilon}$ at accuracy ε controlled by the user

Block Low-Rank ${ }^{1}$ (BLR)

- Flat and simple format
- Algebraic robust solver;
- Compatible with the numerical features of a general solver (such as partial threshold pivoting for stability)
- Work supported by PhD theses from University of Toulouse, C. Weisbecker (2010-2013, supported by EDF) and T. Mary (2014-2017)
\Rightarrow Many representations: Recursive $\mathcal{H}, \mathcal{H}^{2}$ [Bebendof, Börm, Hackbush, Grasedyck,...], HSS/SSS [Chandrasekaran, Dewilde, Gu, Li, Xia,...], BLR ...

[^0]

Singular value decomposition (SVD) of each block $B \Rightarrow B=X_{1} S_{1} Y_{1}+X_{2} S_{2} Y_{2}$

[S $_{1}$

rank $k(\varepsilon): B=X_{1} S_{1} Y_{1}+X_{2} S_{2} Y_{2}$
$\|E\|_{2}=\left\|X_{2} S_{2} Y_{2}\right\|_{2}=\sigma_{k+1} \leq \varepsilon$

\mathcal{H} and BLR matrices

\mathcal{H} matrix

BLR matrix

- Theoretical complexity can be as low as $O\left(n^{4 / 3}\right)$
- Simpler structure
- Complex, hierarchical structure

BLR makes easier to preserve the numerical features of a direct solver and compromises well complexity, accuracy and performance

BLR complexity ${ }^{2}$ (Poisson $n=N^{3}$, n : matrix size, N : grid size)

- Operations for sparse factorization $\mathcal{O}\left(n^{2}\right) \rightarrow \mathcal{O}\left(n^{4 / 3}\right)$
- Convert it into performance gains, not straightforward ${ }^{3}$

Required accuracy: 10^{-9}

Structural mechanics
$n=8 M$
Flop Ratio=17
Time Ratio= 6

Required accuracy: 10^{-3}

Seismic imaging
$n=17 M$
Flop Ratio=27
Time Ratio= 7

Required accuracy: 10^{-7}

Electromagnetism
$n=21 M$
Flop Ratio=65
Time Ratio=19

[^1]
BLR complexity ${ }^{2}$ (Poisson $n=N^{3}$, n : matrix size, N : grid size)

- Operations for sparse factorization $\mathcal{O}\left(n^{2}\right) \rightarrow \mathcal{O}\left(n^{4 / 3}\right)$
- Convert it into performance gains, not straightforward ${ }^{3}$

Required accuracy: 10^{-9}

Structural mechanics
$n=8 M$
Flop Ratio=17
Time Ratio= 6

Required accuracy: 10^{-3}

Seismic imaging
$n=17 M$
Flop Ratio=27
Time Ratio= 7

Required accuracy: 10^{-7}

Electromagnetism
$n=21 M$
Flop Ratio=65
Time Ratio=19

Can we reduce complexity and preserve performance ?

[^2]
Outline

1. Why is sparse factorization a better playground for BLR than dense factorization ?
2. How to do the minimum to reach a target asympthotic complexity?

Multilevel BLR (MBLR):

- Complexity analysis
- Numerical results

3. Concluding remarks

Preprint

T
P. Amestoy, A. Buttari, J.-Y. L'Excellent, and T. Mary, Bridging the gap between flat and hierarchical low-rank matrix formats: the multilevel BLR format, submitted (2018).

Sparse factorization a better playground for BLR than dense factorization?

From dense to sparse: nested dissection

From dense to sparse: nested dissection

Proceed recursively to compute separator tree

Factorizing a sparse matrix amounts to factorizing a sequence of dense matrices

$$
\Rightarrow
$$

sparse complexity is directly derived from dense one

Nested dissection complexity formulas

$$
\text { 2D: } \quad \mathcal{C}_{\text {sparse }}=\sum_{\ell=0}^{\log N} 4^{\ell} \mathcal{C}_{\text {dense }}\left(\frac{N}{2^{\ell}}\right)
$$

Nested dissection complexity formulas

$$
\begin{array}{ll}
\text { 2D: } & \mathcal{C}_{\text {sparse }}=\sum_{\ell=0}^{\log N} 4^{\ell} \mathcal{C}_{\text {dense }}\left(\frac{N}{2^{\ell}}\right) \\
\text { 3D: } & \mathcal{C}_{\text {sparse }}=\sum_{\ell=0}^{\log N} 8^{\ell} \mathcal{C}_{\text {dense }}\left(\frac{N^{2}}{4^{\ell}}\right)
\end{array}
$$

Nested dissection complexity formulas

2D: $\quad \mathcal{C}_{\text {sparse }}=\sum_{\ell=0}^{\log N} 4^{\ell} \mathcal{C}_{\text {dense }}\left(\frac{N}{2^{\ell}}\right) \quad \rightarrow$ common ratio $2^{2-\alpha}$
3D: $\quad \mathcal{C}_{\text {sparse }}=\sum_{\ell=0}^{\log N} 8^{\ell} \mathcal{C}_{\text {dense }}\left(\frac{N^{2}}{4^{\ell}}\right) \rightarrow$ common ratio $2^{3-2 \alpha}$

Assume $\mathcal{C}_{\text {dense }}=O\left(m^{\alpha}\right)$. . ${ }^{\text {den }}$:			
	2 D		3D
	$\mathcal{C}_{\text {sparse }}(\mathrm{n})$		$\mathcal{C}_{\text {sparse }}(n)$
$\alpha>2$	$O\left(n^{\alpha / 2}\right)$	$\alpha>1.5$	$O\left(n^{2 \alpha / 3}\right)$
$\alpha=2$	$O(n \log n)$	$\alpha=1.5$	$O(n \log n)$
$\alpha<2$	$O(n)$	$\alpha<1.5$	$O(n)$

$$
\mathcal{C}_{\text {dense }}=O\left(m^{\alpha}\right) \Rightarrow \mathcal{C}_{\text {sparse }}=O\left(n^{\beta}\right)
$$

Flops

$$
\mathcal{C}_{\text {dense }}=O\left(m^{\alpha}\right) \Rightarrow \mathcal{C}_{\text {sparse }}=O\left(n^{\beta}\right)
$$

Key motivation: $\mathcal{C}_{\text {dense }}<O\left(m^{2}\right)$ (2D) or $O\left(m^{1.5}\right)$ (3D) is enough to get $O(n)$ sparse complexity!

The multilevel BLR (MBLR) format

Complexity of the two-level BLR format

Two-level BLR format: replace full-rank blocks by BLR matrices For $b=\left(m^{2} r\right)^{1 / 3}$:

$$
\begin{aligned}
\text { Storage } & =O\left(m^{4 / 3} r^{2 / 3}\right) \\
\text { Flop } L U & =O\left(m^{5 / 3} r^{4 / 3}\right)
\end{aligned}
$$

		FR	BLR	2-BLR	\ldots	\mathcal{H}
storage	dense	$O\left(m^{2}\right)$	$O\left(m^{1.5}\right)$	$O\left(m^{1.33}\right)$	\ldots	$O(m \log m)$
	sparse	$O\left(n^{1.33}\right)$	$O(n \log n)$	$O(n)$	\ldots	$O(n)$
flop LU	dense	$O\left(m^{3}\right)$	$O\left(m^{2}\right)$	$O\left(m^{1.66}\right)$	\ldots	$O\left(m \log ^{3} m\right)$
	sparse	$O\left(n^{2}\right)$	$O\left(n^{1.33}\right)$	$O\left(n^{1.11}\right)$	\ldots	$O(n)$

Multilevel BLR complexity

Main result

For $b=m^{\ell /(\ell+1)} r^{1 /(\ell+1)}$, the ℓ-level complexities are:

$$
\begin{aligned}
& \text { Storage }=\mathbf{O}\left(\mathbf{m}^{(\ell+2) /(\ell+1)} \mathbf{r}^{\ell /(\ell+1)}\right) \\
& \text { FlopLU}=\mathbf{O}\left(\mathbf{m}^{(\ell+3) /(\ell+1)} \mathbf{r}^{2 \ell /(\ell+1)}\right)
\end{aligned}
$$

Proof: by induction.

- Simple way to finely control the desired complexity
- Block size $b \propto O\left(m^{1-1 /(\ell+1)}\right) \ll O(m)$
\Rightarrow larger blocks that can be efficiently processed in shared-memory

Influence of the number of levels ℓ

Flop LU

- If $r=O(1)$, can achieve $O(n)$ storage complexity with only two levels and $O(n \log n)$ flop complexity with three levels

Influence of the number of levels ℓ

Flop LU

- If $r=O(1)$, can achieve $O(n)$ storage complexity with only two levels and $O(n \log n)$ flop complexity with three levels
- For higher ranks, improvement rate rapidly decreases: the first few levels achieve most of the asymptotic gain

Numerical experiments (Poisson)

Storage

Flop LU

- Experimental complexity in relatively good agreement with theoretical one
- Asymptotic gain decreases with levels

Concluding remarks

Conclusions and perspectives

A new multilevel format to...

- Finely control desired complexity between BLR's and H's
- Find a balance between BLR's simplicity and H's complexity
- Trade off \mathcal{H} 's nearly linear dense complexity and still achieve $\mathcal{C}_{\text {sparse }}=O(n)$

Future work

- Implementation of the MBLR format in a parallel, algebraic, general purpose sparse solver (e.g. MUMPS)
- Algorithmic work to reach high performance on parallel architectures (just as it was needed for BLR)

[^0]: ${ }^{1}$ [Amestoy, Ashcraft, Boiteau, Buttari, L'Excellent, and Weisbecker, SIAM J. Sci. Comput., 2015]

[^1]: ${ }^{2}$ proved in [Amestoy, Buttari, L'Excellent, Mary, SIAM J. Sci. Comput. 2017]
 3 [Amestoy, Buttari, L'Excellent, Mary, Trans. on Math. Soft. 2018], 24 Haswell cores

[^2]: ${ }^{2}$ proved in [Amestoy, Buttari, L'Excellent, Mary, SIAM J. Sci. Comput. 2017]
 3 [Amestoy, Buttari, L'Excellent, Mary, Trans. on Math. Soft. 2018], 24 Haswell cores

