
Comparison of BLR and HSS
Low-Rank Formats in Multifrontal
Solvers: Theory and Practice

P. Amestoy∗,1 A. Buttari∗,2 P. Ghysels‡ J.-Y. L’Excellent†,3
X. S. Li‡ T. Mary∗,4 F.-H. Rouet∗∗
∗Université de Toulouse ‡LBNL †ENS Lyon ∗∗LSTC
1INPT-IRIT 2CNRS-IRIT 3INRIA-LIP 4UPS-IRIT

CSE’17, Atlanta, Feb. 27 - Mar. 3

Introduction

Sparse direct solvers

Discretization of a physical problem
(e.g. Code_Aster, finite elements)

⇓

A X = B, A large and sparse, B dense or sparse
Sparse direct methods : A = LU (LDLT)

Often a significant part of simulation cost

Objective discussed in this minisymposium:
how to reduce the cost of sparse direct solvers?

Focus on large-scale applications and architectures

3/26 CSE’17, Atlanta, Feb. 27 - Mar. 3

Multifrontal Factorization with Nested Dissection

N n = Nd

3D problem complexity

→ Flops: O(n2), mem: O(n4/3)

4/26 CSE’17, Atlanta, Feb. 27 - Mar. 3

Multifrontal Factorization with Nested Dissection

N n = Nd

D1

D2

D3

D4

D1

D2

D3

D4

S

3D problem complexity
→ Flops: O(n2), mem: O(n4/3)

4/26 CSE’17, Atlanta, Feb. 27 - Mar. 3

Low-rank matrix formats

BLR matrix HODLR/HSS-matrix H/H2-matrix

5/26 CSE’17, Atlanta, Feb. 27 - Mar. 3

Low-rank matrix formats

BLR matrix HODLR/HSS-matrix H/H2-matrix

A block B represents the interaction between two subdomains σ
and τ . If they have a small diameter and are far away their
interaction is weak ⇒ rank is low.

5/26 CSE’17, Atlanta, Feb. 27 - Mar. 3

Low-rank matrix formats

BLR matrix HODLR/HSS-matrix H/H2-matrix

A block B represents the interaction between two subdomains σ
and τ . If they have a small diameter and are far away their
interaction is weak ⇒ rank is low.

Block-admissibility condition:
• Weak: σ × τ is admissible ⇔ σ ̸= τ

• Strong: σ × τ is admissible ⇔ dist(σ, τ) > ηmax(diam(σ),diam(τ))

5/26 CSE’17, Atlanta, Feb. 27 - Mar. 3

Low-rank matrix formats

BLR matrix HODLR/HSS-matrix H/H2-matrix

B̃ = XYT such that rank(B̃) = kε and ∥B− B̃∥ ≤ ε

If kε ≪ size(B) ⇒ memory and flops can be reduced with a
controlled loss of accuracy (≤ ε)

5/26 CSE’17, Atlanta, Feb. 27 - Mar. 3

Low-rank matrix formats

BLR matrix HODLR/HSS-matrix H/H2-matrix

BLR HODLR HSS H H2

blocking flat hierar. hierar. hierar. hierar.
adm. cond. both weak weak strong strong
nested basis no no yes no yes

5/26 CSE’17, Atlanta, Feb. 27 - Mar. 3

Low-rank matrix formats

BLR matrix HODLR/HSS-matrix H/H2-matrix

Objective of this work: compare BLR and hierarchical formats,
both from a theoretical and experimental standpoint

⇒ collaboration between BLR-based MUMPS and HSS-based
STRUMPACK teams.

5/26 CSE’17, Atlanta, Feb. 27 - Mar. 3

Main differences between
MUMPS and STRUMPACK

Full-Rank Solvers

• Both are multifrontal

• STRUMPACK supports LU only ⇒ experiments are all
performed on unsymmetric matrices

• STRUMPACK pivots inside diagonal blocks only; MUMPS has
several options and was used with restricted pivoting too

• Both support geometric and algebraic orderings: METIS 5.1.0
is used in the experiments

• Both can exploit both shared- and distributed-memory
architectures:
◦ Shared-memory MUMPS: mainly node // based on multithreaded

BLAS and OpenMP + some experimental tree // in OpenMP
◦ Shared-memory STRUMPACK: tree and node // in handcoded

OpenMP (sequential BLAS)
◦ Distributed-memory MUMPS: tree MPI // + node 1D MPI //
◦ Distributed-memory STRUMPACK: tree MPI // + node 2D MPI //

7/26 CSE’17, Atlanta, Feb. 27 - Mar. 3

Full-Rank Solvers

• Both are multifrontal

• STRUMPACK supports LU only ⇒ experiments are all
performed on unsymmetric matrices

• STRUMPACK pivots inside diagonal blocks only; MUMPS has
several options and was used with restricted pivoting too

• Both support geometric and algebraic orderings: METIS 5.1.0
is used in the experiments

• Both can exploit both shared- and distributed-memory
architectures:
◦ Shared-memory MUMPS: mainly node // based on multithreaded

BLAS and OpenMP + some experimental tree // in OpenMP
◦ Shared-memory STRUMPACK: tree and node // in handcoded

OpenMP (sequential BLAS)
◦ Distributed-memory MUMPS: tree MPI // + node 1D MPI //
◦ Distributed-memory STRUMPACK: tree MPI // + node 2D MPI //

7/26 CSE’17, Atlanta, Feb. 27 - Mar. 3

Full-Rank Solvers

• Both are multifrontal

• STRUMPACK supports LU only ⇒ experiments are all
performed on unsymmetric matrices

• STRUMPACK pivots inside diagonal blocks only; MUMPS has
several options and was used with restricted pivoting too

• Both support geometric and algebraic orderings: METIS 5.1.0
is used in the experiments

• Both can exploit both shared- and distributed-memory
architectures:
◦ Shared-memory MUMPS: mainly node // based on multithreaded

BLAS and OpenMP + some experimental tree // in OpenMP
◦ Shared-memory STRUMPACK: tree and node // in handcoded

OpenMP (sequential BLAS)
◦ Distributed-memory MUMPS: tree MPI // + node 1D MPI //
◦ Distributed-memory STRUMPACK: tree MPI // + node 2D MPI //

7/26 CSE’17, Atlanta, Feb. 27 - Mar. 3

Full-Rank Solvers

• Both are multifrontal

• STRUMPACK supports LU only ⇒ experiments are all
performed on unsymmetric matrices

• STRUMPACK pivots inside diagonal blocks only; MUMPS has
several options and was used with restricted pivoting too

• Both support geometric and algebraic orderings: METIS 5.1.0
is used in the experiments

• Both can exploit both shared- and distributed-memory
architectures:
◦ Shared-memory MUMPS: mainly node // based on multithreaded

BLAS and OpenMP + some experimental tree // in OpenMP
◦ Shared-memory STRUMPACK: tree and node // in handcoded

OpenMP (sequential BLAS)
◦ Distributed-memory MUMPS: tree MPI // + node 1D MPI //
◦ Distributed-memory STRUMPACK: tree MPI // + node 2D MPI //

7/26 CSE’17, Atlanta, Feb. 27 - Mar. 3

Full-Rank Solvers

• Both are multifrontal

• STRUMPACK supports LU only ⇒ experiments are all
performed on unsymmetric matrices

• STRUMPACK pivots inside diagonal blocks only; MUMPS has
several options and was used with restricted pivoting too

• Both support geometric and algebraic orderings: METIS 5.1.0
is used in the experiments

• Both can exploit both shared- and distributed-memory
architectures:
◦ Shared-memory MUMPS: mainly node // based on multithreaded

BLAS and OpenMP + some experimental tree // in OpenMP
◦ Shared-memory STRUMPACK: tree and node // in handcoded

OpenMP (sequential BLAS)
◦ Distributed-memory MUMPS: tree MPI // + node 1D MPI //
◦ Distributed-memory STRUMPACK: tree MPI // + node 2D MPI //

7/26 CSE’17, Atlanta, Feb. 27 - Mar. 3

Low-Rank Solvers

• MUMPS uses BLR, STRUMPACK uses HSS

• Factorization algorithm:
◦ MUMPS interleaves compressions and factorizations of panels
◦ STRUMPACK first compresses the entire matrix, then performs a

ULV factorization
⇒ STRUMPACK is fully-structured while MUMPS is not

• Compression:
◦ Kernel: both use truncated QR with column pivoting, with in

addition random sampling in STRUMPACK
◦ Threshold: absolute in MUMPS, relative in STRUMPACK

• Assembly (extend-add):
◦ contribution block not compressed in MUMPS ⇒ FR assembly
◦ contribution block compressed in STRUMPACK ⇒ LR assembly

• Both only compress fronts of size ≥ 1000
• Solution phase:

◦ BLR solve not yet available in MUMPS ⇒ performed in FR
◦ HSS solve available in STRUMPACK

8/26 CSE’17, Atlanta, Feb. 27 - Mar. 3

Low-Rank Solvers

• MUMPS uses BLR, STRUMPACK uses HSS
• Factorization algorithm:

◦ MUMPS interleaves compressions and factorizations of panels
◦ STRUMPACK first compresses the entire matrix, then performs a

ULV factorization
⇒ STRUMPACK is fully-structured while MUMPS is not

• Compression:
◦ Kernel: both use truncated QR with column pivoting, with in

addition random sampling in STRUMPACK
◦ Threshold: absolute in MUMPS, relative in STRUMPACK

• Assembly (extend-add):
◦ contribution block not compressed in MUMPS ⇒ FR assembly
◦ contribution block compressed in STRUMPACK ⇒ LR assembly

• Both only compress fronts of size ≥ 1000
• Solution phase:

◦ BLR solve not yet available in MUMPS ⇒ performed in FR
◦ HSS solve available in STRUMPACK

8/26 CSE’17, Atlanta, Feb. 27 - Mar. 3

Low-Rank Solvers

• MUMPS uses BLR, STRUMPACK uses HSS
• Factorization algorithm:

◦ MUMPS interleaves compressions and factorizations of panels
◦ STRUMPACK first compresses the entire matrix, then performs a

ULV factorization
⇒ STRUMPACK is fully-structured while MUMPS is not

• Compression:
◦ Kernel: both use truncated QR with column pivoting, with in

addition random sampling in STRUMPACK
◦ Threshold: absolute in MUMPS, relative in STRUMPACK

• Assembly (extend-add):
◦ contribution block not compressed in MUMPS ⇒ FR assembly
◦ contribution block compressed in STRUMPACK ⇒ LR assembly

• Both only compress fronts of size ≥ 1000
• Solution phase:

◦ BLR solve not yet available in MUMPS ⇒ performed in FR
◦ HSS solve available in STRUMPACK

8/26 CSE’17, Atlanta, Feb. 27 - Mar. 3

Low-Rank Solvers

• MUMPS uses BLR, STRUMPACK uses HSS
• Factorization algorithm:

◦ MUMPS interleaves compressions and factorizations of panels
◦ STRUMPACK first compresses the entire matrix, then performs a

ULV factorization
⇒ STRUMPACK is fully-structured while MUMPS is not

• Compression:
◦ Kernel: both use truncated QR with column pivoting, with in

addition random sampling in STRUMPACK
◦ Threshold: absolute in MUMPS, relative in STRUMPACK

• Assembly (extend-add):
◦ contribution block not compressed in MUMPS ⇒ FR assembly
◦ contribution block compressed in STRUMPACK ⇒ LR assembly

• Both only compress fronts of size ≥ 1000
• Solution phase:

◦ BLR solve not yet available in MUMPS ⇒ performed in FR
◦ HSS solve available in STRUMPACK

8/26 CSE’17, Atlanta, Feb. 27 - Mar. 3

Low-Rank Solvers

• MUMPS uses BLR, STRUMPACK uses HSS
• Factorization algorithm:

◦ MUMPS interleaves compressions and factorizations of panels
◦ STRUMPACK first compresses the entire matrix, then performs a

ULV factorization
⇒ STRUMPACK is fully-structured while MUMPS is not

• Compression:
◦ Kernel: both use truncated QR with column pivoting, with in

addition random sampling in STRUMPACK
◦ Threshold: absolute in MUMPS, relative in STRUMPACK

• Assembly (extend-add):
◦ contribution block not compressed in MUMPS ⇒ FR assembly
◦ contribution block compressed in STRUMPACK ⇒ LR assembly

• Both only compress fronts of size ≥ 1000

• Solution phase:
◦ BLR solve not yet available in MUMPS ⇒ performed in FR
◦ HSS solve available in STRUMPACK

8/26 CSE’17, Atlanta, Feb. 27 - Mar. 3

Low-Rank Solvers

• MUMPS uses BLR, STRUMPACK uses HSS
• Factorization algorithm:

◦ MUMPS interleaves compressions and factorizations of panels
◦ STRUMPACK first compresses the entire matrix, then performs a

ULV factorization
⇒ STRUMPACK is fully-structured while MUMPS is not

• Compression:
◦ Kernel: both use truncated QR with column pivoting, with in

addition random sampling in STRUMPACK
◦ Threshold: absolute in MUMPS, relative in STRUMPACK

• Assembly (extend-add):
◦ contribution block not compressed in MUMPS ⇒ FR assembly
◦ contribution block compressed in STRUMPACK ⇒ LR assembly

• Both only compress fronts of size ≥ 1000
• Solution phase:

◦ BLR solve not yet available in MUMPS ⇒ performed in FR
◦ HSS solve available in STRUMPACK

8/26 CSE’17, Atlanta, Feb. 27 - Mar. 3

Complexity of the
factorization

H-admissibility and sparsity constant

cmin

• H-admissibility condition: A partition P ∈ P(I × I) is
admissible iff

∀σ × τ ∈ P, σ × τ is admissible or min(#σ,#τ) ≤ cmin

• The sparsity constant csp is defined as the maximal number of
blocks of the same size on a given row or column. It measures
the sparsity of the blocking imposed by the partition P.
◦ In BLR, fully refined blocking ⇒ csp = number of blocks per row
◦ Can construct an admissible H-partitioning such that csp = O(1)

10/26 CSE’17, Atlanta, Feb. 27 - Mar. 3

H-admissibility and sparsity constant

cmin

(here, csp = 6)

• H-admissibility condition: A partition P ∈ P(I × I) is
admissible iff

∀σ × τ ∈ P, σ × τ is admissible or min(#σ,#τ) ≤ cmin

• The sparsity constant csp is defined as the maximal number of
blocks of the same size on a given row or column. It measures
the sparsity of the blocking imposed by the partition P.
◦ In BLR, fully refined blocking ⇒ csp = number of blocks per row
◦ Can construct an admissible H-partitioning such that csp = O(1)

10/26 CSE’17, Atlanta, Feb. 27 - Mar. 3

H vs. BLR complexity

Dense factorization complexity
Complexity: Cfacto = O(mc2spr2max log2m) for H and O(mc2spr2max) for HSS

m matrix size
csp sparsity constant
rmax bound on the maximal rank of all blocks

H HSS BLR

csp

O(1)∗ O(1)∗ m/b

rmax

small† small‡ b

Cfacto

O(r2maxm log2m) O(r2maxm) O(m3)
∗Grasedyck & Hackbusch, 2003
†Bebendorf & Hackbusch, 2003
‡Chandrasekaran et al, 2010; Engquist & Ying, 2011

BLR: a particular case of H?
Problem: in H formalism, the maxrank of the blocks of a BLR matrix is rmax = b
(due to the non-admissible blocks)
Solution: bound the rank of the admissible blocks only, and make sure the
non-admissible blocks are in small number

H vs. BLR complexity

Dense factorization complexity
Complexity: Cfacto = O(mc2spr2max log2m) for H and O(mc2spr2max) for HSS

m matrix size
csp sparsity constant
rmax bound on the maximal rank of all blocks

H HSS BLR

csp

O(1)∗ O(1)∗ m/b

rmax

small† small‡ b

Cfacto

O(r2maxm log2m) O(r2maxm) O(m3)
∗Grasedyck & Hackbusch, 2003
†Bebendorf & Hackbusch, 2003
‡Chandrasekaran et al, 2010; Engquist & Ying, 2011

BLR: a particular case of H?
Problem: in H formalism, the maxrank of the blocks of a BLR matrix is rmax = b
(due to the non-admissible blocks)
Solution: bound the rank of the admissible blocks only, and make sure the
non-admissible blocks are in small number

H vs. BLR complexity

Dense factorization complexity
Complexity: Cfacto = O(mc2spr2max log2m) for H and O(mc2spr2max) for HSS

m matrix size
csp sparsity constant
rmax bound on the maximal rank of all blocks

H HSS BLR

csp O(1)∗ O(1)∗

m/b

rmax

small† small‡ b

Cfacto

O(r2maxm log2m) O(r2maxm) O(m3)

∗Grasedyck & Hackbusch, 2003

†Bebendorf & Hackbusch, 2003
‡Chandrasekaran et al, 2010; Engquist & Ying, 2011

BLR: a particular case of H?
Problem: in H formalism, the maxrank of the blocks of a BLR matrix is rmax = b
(due to the non-admissible blocks)
Solution: bound the rank of the admissible blocks only, and make sure the
non-admissible blocks are in small number

H vs. BLR complexity

Dense factorization complexity
Complexity: Cfacto = O(mc2spr2max log2m) for H and O(mc2spr2max) for HSS

m matrix size
csp sparsity constant
rmax bound on the maximal rank of all blocks

H HSS BLR

csp O(1)∗ O(1)∗

m/b

rmax small† small‡

b

Cfacto

O(r2maxm log2m) O(r2maxm) O(m3)

∗Grasedyck & Hackbusch, 2003
†Bebendorf & Hackbusch, 2003
‡Chandrasekaran et al, 2010; Engquist & Ying, 2011

BLR: a particular case of H?
Problem: in H formalism, the maxrank of the blocks of a BLR matrix is rmax = b
(due to the non-admissible blocks)
Solution: bound the rank of the admissible blocks only, and make sure the
non-admissible blocks are in small number

H vs. BLR complexity

Dense factorization complexity
Complexity: Cfacto = O(mc2spr2max log2m) for H and O(mc2spr2max) for HSS

m matrix size
csp sparsity constant
rmax bound on the maximal rank of all blocks

H HSS BLR

csp O(1)∗ O(1)∗

m/b

rmax small† small‡

b

Cfacto O(r2maxm log2m) O(r2maxm)

O(m3)

∗Grasedyck & Hackbusch, 2003
†Bebendorf & Hackbusch, 2003
‡Chandrasekaran et al, 2010; Engquist & Ying, 2011

BLR: a particular case of H?
Problem: in H formalism, the maxrank of the blocks of a BLR matrix is rmax = b
(due to the non-admissible blocks)
Solution: bound the rank of the admissible blocks only, and make sure the
non-admissible blocks are in small number

H vs. BLR complexity

Dense factorization complexity
Complexity: Cfacto = O(mc2spr2max log2m) for H and O(mc2spr2max) for HSS

m matrix size
csp sparsity constant
rmax bound on the maximal rank of all blocks

H HSS BLR

csp O(1)∗ O(1)∗ m/b
rmax small† small‡

b

Cfacto O(r2maxm log2m) O(r2maxm)

O(m3)

∗Grasedyck & Hackbusch, 2003
†Bebendorf & Hackbusch, 2003
‡Chandrasekaran et al, 2010; Engquist & Ying, 2011

BLR: a particular case of H?
Problem: in H formalism, the maxrank of the blocks of a BLR matrix is rmax = b
(due to the non-admissible blocks)
Solution: bound the rank of the admissible blocks only, and make sure the
non-admissible blocks are in small number

H vs. BLR complexity

Dense factorization complexity
Complexity: Cfacto = O(mc2spr2max log2m) for H and O(mc2spr2max) for HSS

m matrix size
csp sparsity constant
rmax bound on the maximal rank of all blocks

H HSS BLR

csp O(1)∗ O(1)∗ m/b
rmax small† small‡ b
Cfacto O(r2maxm log2m) O(r2maxm)

O(m3)

∗Grasedyck & Hackbusch, 2003
†Bebendorf & Hackbusch, 2003
‡Chandrasekaran et al, 2010; Engquist & Ying, 2011

BLR: a particular case of H?
Problem: in H formalism, the maxrank of the blocks of a BLR matrix is rmax = b
(due to the non-admissible blocks)
Solution: bound the rank of the admissible blocks only, and make sure the
non-admissible blocks are in small number

H vs. BLR complexity

Dense factorization complexity
Complexity: Cfacto = O(mc2spr2max log2m) for H and O(mc2spr2max) for HSS

m matrix size
csp sparsity constant
rmax bound on the maximal rank of all blocks

H HSS BLR

csp O(1)∗ O(1)∗ m/b
rmax small† small‡ b
Cfacto O(r2maxm log2m) O(r2maxm) O(m3)
∗Grasedyck & Hackbusch, 2003
†Bebendorf & Hackbusch, 2003
‡Chandrasekaran et al, 2010; Engquist & Ying, 2011

BLR: a particular case of H?
Problem: in H formalism, the maxrank of the blocks of a BLR matrix is rmax = b
(due to the non-admissible blocks)
Solution: bound the rank of the admissible blocks only, and make sure the
non-admissible blocks are in small number

H vs. BLR complexity

Dense factorization complexity
Complexity: Cfacto = O(mc2spr2max log2m) for H and O(mc2spr2max) for HSS

m matrix size
csp sparsity constant
rmax bound on the maximal rank of all blocks

H HSS BLR

csp O(1)∗ O(1)∗ m/b
rmax small† small‡ b
Cfacto O(r2maxm log2m) O(r2maxm) O(m3)
∗Grasedyck & Hackbusch, 2003
†Bebendorf & Hackbusch, 2003
‡Chandrasekaran et al, 2010; Engquist & Ying, 2011

BLR: a particular case of H?
Problem: in H formalism, the maxrank of the blocks of a BLR matrix is rmax = b
(due to the non-admissible blocks)
Solution: bound the rank of the admissible blocks only, and make sure the
non-admissible blocks are in small number

Complexity of dense BLR factorization

BLR-admissibility condition of a partition P
P is admissible ⇔ Nna = #{σ × τ ∈ P, σ × τ is not admissible} ≤ q

Non-Admissible Admissible

Main result from Amestoy et al, 2016

There exists an admissible P for q = O(1), s.t. the maxrank of the admissible
blocks of A is r = O(rHmax)
The dense factorization complexity thus becomes
Cfacto = O(r2m3/b2 +mb2q2) = O(r2m3/b2 +mb2) = O(rm2) (for b = O(

√
rm))

12/26 CSE’17, Atlanta, Feb. 27 - Mar. 3

Complexity of dense BLR factorization

BLR-admissibility condition of a partition P
P is admissible ⇔ Nna = #{σ × τ ∈ P, σ × τ is not admissible} ≤ q

Non-Admissible Admissible

Main result from Amestoy et al, 2016

There exists an admissible P for q = O(1), s.t. the maxrank of the admissible
blocks of A is r = O(rHmax)
The dense factorization complexity thus becomes
Cfacto = O(r2m3/b2 +mb2q2) = O(r2m3/b2 +mb2) = O(rm2) (for b = O(

√
rm))

12/26 CSE’17, Atlanta, Feb. 27 - Mar. 3

Complexity of multifrontal BLR factorization

Under a nested dissection assumption, the sparse (multifrontal)
complexity is directly obtained from the dense complexity

operations (OPC) factor size (NNZ)

r = O(1) r = O(N) r = O(1) r = O(N)

FR O(n2) O(n2) O(n
4
3) O(n

4
3)

BLR O(n
4
3) O(n

5
3) O(n logn) O(n

7
6 logn)

HSS O(n) O(n
4
3) O(n) O(n

7
6)

in the 3D case (similar analysis possible for 2D)

13/26 CSE’17, Atlanta, Feb. 27 - Mar. 3

Experimental complexity: test problems

1. Poisson: N3 grid with a 7-point stencil with u = 1 on the
boundary ∂Ω

∆u = f

Rank bound is rmax = O(1) for BLR (and H), and rmax = O(N)
for HSS.

2. Helmholtz: N3 grid with a 27-point stencil, ω is the angular
frequency, v(x) is the seismic velocity field, and u(x, ω) is the
time-harmonic wavefield solution to the forcing term s(x, ω).(

−∆− ω2

v(x)2

)
u(x, ω) = s(x, ω)

ω is fixed and equal to 4Hz.
Rank bound is rmax = O(N) for both BLR and HSS.

14/26 CSE’17, Atlanta, Feb. 27 - Mar. 3

Experimental flop complexity: Poisson

Mesh size N
64 96 128 160 192 224 256

F
lo

p
co

un
t

10 11

10 12

10 13

10 14

10 15

FR

fit: 5 n 2.06

BLR(10 -10)

fit: 15981 n 1.32

BLR(10 -6)

fit: 27493 n 1.20

HSS(10 -1)

fit: 61420 n 1.29

HSS(0.5)

fit: 335647 n 1.14

• good agreement with the theory (O(n4/3) for both BLR and
HSS)

• higher threshold leads to lower exponent:
◦ relaxed rank pattern in HSS
◦ zero-rank blocks in BLR15/26 CSE’17, Atlanta, Feb. 27 - Mar. 3

Experimental flop complexity: Helmholtz

Mesh size N
64 96 128 160 192 224 256

F
lo

p
co

un
t

10 12

10 13

10 14

10 15

FR

fit: 8 n 2.04

BLR(10 -4)

fit: 79 n 1.76

BLR(10 -3)

fit: 43 n 1.77

HSS(10 -1)

fit: 565072 n 1.15

HSS(0.5)

fit: 173991 n 1.20

• good agreement with the theory (O(n5/3) for BLR, O(n4/3) for
HSS)

• threshold has almost no influence on the exponent

16/26 CSE’17, Atlanta, Feb. 27 - Mar. 3

Experimental factor size complexity

Poisson

Mesh size N
64 96 128 160 192 224 256

F
ac

to
rs

 s
iz

e

10 9

10 10

FR

fit: 6 n 1.41

BLR(10 -10)

fit: 42 n 1.02 log n

HSS(10 -1)

fit: 380 n 1.05

Helmholtz

Mesh size N
64 96 128 160 192 224 256

F
ac

to
rs

 s
iz

e

10 9

10 10

10 11

FR

fit: 15 n 1.37

BLR(10 -3)

fit: 6 n 1.19 log n

HSS(10 -1)

fit: 544 n 1.06

• good agreement with the theory
◦ Poisson: O(n logn) for BLR, O(n7/6) for HSS
◦ Helmholtz: O(n7/6 logn) for BLR, O(n7/6) for HSS

17/26 CSE’17, Atlanta, Feb. 27 - Mar. 3

Preliminary performance
results

Experimental Setting

• Experiments are done on the cori supercomputer of NERSC
◦ Two Intel(r) 16-cores Haswell @ 2.3 GHz per node
◦ Peak per core is 36.8 GF/s
◦ Total memory per node is 128 GB

• Test problems come from several real-life applications: Seismic
(5Hz), Electromagnetism (S3), Structural (perf008d, Geo_1438, Serena,
Transport), CFD (atmosmodd), MHD (A16, A22, A30), Optimization
(nlpkkt80), and Graph (cage13)

(Only partial results shown in next slides)

• We test 7 tolerance values (from 9e-1 to 1e-6) and FR, and
compare the time for factorization + solve with:
◦ 1 step of iterative refinement in FR
◦ GMRES iterative solver in LR with required accuracy of 10−6 and

restart of 30

19/26 CSE’17, Atlanta, Feb. 27 - Mar. 3

Preconditioner vs direct solver mode

Optimal tolerance choice

BLR HSS

atmosmodd 1e-4 9e-1
cage13 9e-1 9e-1
Geo_1438 1e-4 FR
ML_Geer 1e-6 1e-4
nlpkkt80 1e-5 9e-1
Serena 1e-4 9e-1
spe10-aniso 1e-5 FR
Transport 1e-5 FR

20/26 CSE’17, Atlanta, Feb. 27 - Mar. 3

When preconditioning works well…

Tolerance
9e-1 1e-1 1e-2 1e-3 1e-4 1e-5 1e-6 FR

T
im

e
(s

)

0

500

1000

1500

2000

2500

3000

3500

4000

4500
BLR

Facto
Solve

Tolerance
9e-1 1e-1 1e-2 1e-3 1e-4 1e-5 1e-6 FR

T
im

e
(s

)

0

500

1000

1500

2000

2500

3000

3500

4000

4500
HSS

Facto
Solve

cage13 matrix

• Fast convergence even for high tolerance ⇒ preconditioner
mode is better suited

• As the size grows, HSS will gain the upper hand

21/26 CSE’17, Atlanta, Feb. 27 - Mar. 3

When high accuracy is needed…

Tolerance
9e-1 1e-1 1e-2 1e-3 1e-4 1e-5 1e-6 FR

T
im

e
(s

)

0

200

400

600

800

1000
BLR

Facto
Solve

Tolerance
9e-1 1e-1 1e-2 1e-3 1e-4 1e-5 1e-6 FR

T
im

e
(s

)

0

200

400

600

800

1000
HSS

Facto
Solve

spe10-aniso matrix

• No convergence except for low tolerances ⇒ direct solver
mode is needed

• BLR is better suited as HSS rank is too high

22/26 CSE’17, Atlanta, Feb. 27 - Mar. 3

The middle ground

Tolerance
9e-1 1e-1 1e-2 1e-3 1e-4 1e-5 1e-6 FR

T
im

e
(s

)

0

500

1000

1500

2000
BLR

Facto
Solve

Tolerance
9e-1 1e-1 1e-2 1e-3 1e-4 1e-5 1e-6 FR

T
im

e
(s

)

0

500

1000

1500

2000
HSS

Facto
Solve

atmosmodd matrix

• Find compromise between accuracy and compression
• In general, BLR favors direct solver while HSS favors
preconditioner mode

⇒ Performance comparison will depend on numerical difficulty
and size of the problem

23/26 CSE’17, Atlanta, Feb. 27 - Mar. 3

Preconditioner vs direct solver mode

Optimal tolerance choice

BLR HSS

atmosmodd 1e-4 9e-1
cage13 9e-1 9e-1
Geo_1438 1e-4 FR
ML_Geer 1e-6 1e-4
nlpkkt80 1e-5 9e-1
Serena 1e-4 9e-1
spe10-aniso 1e-5 FR
Transport 1e-5 FR

These preliminary results seem
to suggest the following trend:

size

difficultydifficulty

FR

BLR

HSS

⇒ much further work needed to confirm this trend and to fully
understand the differences between low-rank formats

24/26 CSE’17, Atlanta, Feb. 27 - Mar. 3

Preconditioner vs direct solver mode

Optimal tolerance choice

BLR HSS

atmosmodd 1e-4 9e-1
cage13 9e-1 9e-1
Geo_1438 1e-4 FR
ML_Geer 1e-6 1e-4
nlpkkt80 1e-5 9e-1
Serena 1e-4 9e-1
spe10-aniso 1e-5 FR
Transport 1e-5 FR

These preliminary results seem
to suggest the following trend:

size

difficultydifficulty

FR

BLR

HSS

⇒ much further work needed to confirm this trend and to fully
understand the differences between low-rank formats

24/26 CSE’17, Atlanta, Feb. 27 - Mar. 3

References and acknowledgements

Software packages

• MUMPS 5.1.0 (including BLR factorization for the first time)
• STRUMPACK-dense-1.1.1 and STRUMPACK-sparse 1.1.0

References
▶ Amestoy, Ashcraft, Boiteau, Buttari, L’Excellent, and Weisbecker. Improving Multifrontal

Methods by means of Block Low-Rank Representations, SIAM SISC, 2015.

▶ Amestoy, Buttari, L’Excellent, and Mary. On the Complexity of the Block Low-Rank
Multifrontal Factorization, under review, SIAM SISC, 2016.

▶ Ghysels, Li, Rouet, Williams, Napov. An efficient multi-core implementation of a novel
HSS-structured multifrontal solver using randomized sampling, SIAM SISC, 2015.

▶ Rouet, Li, Ghysels, Napov. A distributed-memory package for dense hierarchically
semi-separable matrix computations using randomization, ACM TOMS, 2016.

Acknowledgements

• NERSC for providing access to the machine
• EMGS, SEISCOPE, EDF, and LBNL for providing the matrices

? Thanks!
Questions?

	Introduction
	Main differences between MUMPS and STRUMPACK
	Complexity of the factorization
	Preliminary performance results

