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Introduction




Sparse direct solvers

Discretization of a physical problem
(e.g. Code_Aster, finite elements)

4

A X = B, A large and sparse, B dense or sparse
Sparse direct methods : A = LU (LDLT)

Often a significant part of simulation cost

Objective discussed in this minisymposium:
how to reduce the cost of sparse direct solvers?

Focus on large-scale applications and architectures
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Multifrontal Factorization with Nested Dissection

n=Nd
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Multifrontal Factorization with Nested Dissection
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Low-rank matrix formats

5

BLR matrix HODLR/HSS-matrix H/H2-matrix

5/26 CSE"7, Atlanta, Feb. 27 - Mar. 3



Low-rank matrix formats

5

BLR matrix HODLR/HSS-matrix H/H?-matrix

A block B represents the interaction between two subdomains o
and 7. If they have a small diameter and are far away their
interaction is weak = rank is low.
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Low-rank matrix formats

jl

5

BLR matrix HODLR/HSS-matrix H/H?-matrix

A block B represents the interaction between two subdomains o

and 7. If they have a small diameter and are far away their
interaction is weak = rank is low.

Block-admissibility condition:

® Weak: 0 X T is admissible <& o # T

® Strong: o X T is admissible < dist(o, 7) > nmax(diam(o), diam(7))
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Low-rank matrix formats

5

BLR matrix HODLR/HSS-matrix H/H?-matrix

B = XY such that rank(B) = k. and |[B—B|| < ¢

If ke < size(B) = memory and flops can be reduced with a
controlled loss of accuracy (< ¢€)
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Low-rank matrix formats

5

BLR matrix HODLR/HSS-matrix H/H?-matrix
BLR HODLR HSS H H?
blocking flat hierar. hierar. hierar. hierar.
adm. cond. | both weak weak  strong strong
nested basis | no no yes no yes
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Low-rank matrix formats

5

BLR matrix HODLR/HSS-matrix H/H?-matrix

Objective of this work: compare BLR and hierarchical formats,
both from a theoretical and experimental standpoint

= collaboration between BLR-based MUMPS and HSS-based
STRUMPACK feams.
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Full-Rank Solvers

e Both are multifrontal
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Full-Rank Solvers

e Both are multifrontal

e STRUMPACK supports LU only = experiments are all
performed on unsymmetric matrices

e STRUMPACK pivots inside diagonal blocks only; MUMPS has
several options and was used with restricted pivoting too

e Both support geometric and algebraic orderings: METIS 5.1.0
is used in the experiments

e Both can exploit both shared- and distributed-memory
architectures:

o Shared-memory MUMPS: mainly node // based on multithreaded
BLAS and OpenMP + some experimental tree // in OpenMP

o Shared-memory STRUMPACK: tree and node // in handcoded
OpenMP (sequential BLAS)

o Distributed-memory MUMPS: tree MPI // + node 1D MPI //

o Distributed-memory STRUMPACK: tree MPI // + node 2D MPI //
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Low-Rank Solvers

e MUMPS uses BLR, STRUMPACK uses HSS
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Low-Rank Solvers

e MUMPS uses BLR, STRUMPACK uses HSS
e Factorization algorithm:

o MUMPS interleaves compressions and factorizations of panels

o STRUMPACK first compresses the entire matrix, then performs a
ULV factorization

= STRUMPACK is fully-structured while MUMPS is not
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Low-Rank Solvers

e MUMPS uses BLR, STRUMPACK uses HSS
e Factorization algorithm:

o MUMPS interleaves compressions and factorizations of panels

o STRUMPACK first compresses the entire matrix, then performs a
ULV factorization

= STRUMPACK is fully-structured while MUMPS is not
e Compression:
o Kernel: both use truncated QR with column pivoting, with in
addition random sampling in STRUMPACK
o Threshold: absolute in MUMPS, relative in STRUMPACK
e Assembly (extend-add):
o conftribution block not compressed in MUMPS = FR assembly
o contribution block compressed in STRUMPACK =- LR assembly
e Both only compress fronts of size > 1000
e Solution phase:

o BLR solve not yet available in MUMPS = performed in FR

8/26 o HSS solve available in STRUMPACK CSEN7 Aflanta, Feb. 27 - Mar. 3



Complexity of the
factorization




‘H-admissibility and sparsity constant

Cmin®

5

e H-admissibility condition: A partition P € P(Z x I) is
admissible iff

Vo x 7€ P, ox7isadmissible or min(#o, #7) < cmin
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‘H-admissibility and sparsity constant

Cmin®

(here, csp = 6)

5

e H-admissibility condition: A partition P € P(Z x I) is
admissible iff

Vo x 7€ P, ox7isadmissible or min(#o, #7) < cmin

® The sparsity constant cg, is defined as the maximal number of
blocks of the same size on a given row or column. It measures
the sparsity of the blocking imposed by the partition P.
o In BLR, fully refined blocking = cs, = number of blocks per row
o Can construct an admissible H-partitioning such that cg, = O(1)
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H vs. BLR complexity

Dense factorization complexity

Complexity: Cracto = O(MCZraay log® m) for H and O(mc2,r2,,,) for HSS

m maftrix size
Csp sparsity constant
rmax bound on the maximal rank of all blocks
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H vs. BLR complexity
Dense factorization complexity

Complexity: Cracto = O(MCZraay log® m) for H and O(mc2,r2,,,) for HSS

m maftrix size
Csp sparsity constant
rmax bound on the maximal rank of all blocks

H HSS BLR
Csp o) o) m/b
[ smallt smallt b

Cracto O(rmaxmlog?m)  O(r7am)  O(m?)
*Grasedyck & Hackbusch, 2003

Bebendorf & Hackbusch, 2003
tChandrasekaran et al, 2010; Engquist & Ying, 2011

BLR: a particular case of H?

Problem: in ‘H formalism, the maxrank of the blocks of a BLR matrix is rmax = b
(due to the non-admissible blocks)

Solution: bound the rank of the admissible blocks only, and make sure the
non-admissible blocks are in small number




Complexity of dense BLR factorization

BLR-admissibility condition of a partition P

P is admissible < Np, = #{o X 7 € P, o X 7 is not admissible} < g

Non-Admissible Admissible
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Complexity of dense BLR factorization
BLR-admissibility condition of a partition P

P is admissible < Nn, = #{o X 7 € P, o X 7 is not admissible} < g

Non-Admissible Admissible

Main result from Amestoy et al, 2016

There exists an admissible P for g = O(1), s.t. the maxrank of the admissible

blocks of A is r = O(ri,,)
The dense factorization complexity thus becomes
Cracto = O(r*m? /b? + mb?q?) = O(Pm?/b% + mb?) = O(rm?) (for b = O(y/rm))
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Complexity of multifrontal BLR factorization

Under a nested dissection assumption, the sparse (multifrontal)
complexity is directly obtained from the dense complexity

opera‘rlons (OPC) factor size (NNZ)

r= r= r=0O(N)
FR O(n2) O(n2) O(n%) O(n3)
BLR O(n%) O(n%) O(nlogn) O(n% logn)
HSS | O(n) O(n3) O(n) O(n%)

in the 3D case (similar analysis possible for 2D)
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Experimental complexity: test problems

1. Poisson: N3 grid with a 7-point stencil with u = 1 on the
boundary 052
Au=f

Rank bound is rmax = O(1) for BLR (and H), and rmax = O(N)
for HSS.

2. Helmholtz: N3 grid with a 27-point stencil, w is the angular
frequency, v(x) is the seismic velocity field, and u(x,w) is the
time-harmonic wavefield solution to the forcing term s(x, w).

(—A - %)2) u(x,w) = s(x,w)

w is fixed and equal to 4Hz.
Rank bound is rmax = O(N) for both BLR and HSS.
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Experimental flop complexity: Poisson

O FR

—fit: 5n 208

O BLR(10 1)
—fit: 15981 n 132

V BLR(10 %)
= —fit: 27493 n 1%
3 O Hss@o™)
g —fit: 61420 n +?°
T v HSS(0.5)

—fit: 335647 n 114

10 11 | i

64 96 128 160 192 224 256
Mesh size N

e good agreement with the theory (O(n*/3) for both BLR and
HSS)
e higher threshold leads to lower exponent:
o relaxed rank pattern in HSS
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Experimental flop complexity: Helmholtz

O FR
—ifit: 8 n
O BLR(10%)
—fit 79n 178

V BLR(10 %)
—fit:43n 77

O Hss@o™)
—fit: 565072 n 15
v HSS(0.5)
—fit: 173991 n 120

2.04

Flop count

64 96 128 160 192 224 256
Mesh size N

¢ good agreement with the theory (O(n%/3) for BLR, O(n*/3) for
HSS)

e threshold has almost no influence on the exponent
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Experimental factor size complexity

Poisson Helmholtz

10 11 [
O FR O FR
—fit. 6n 14 —fit: 15n %7
V BLR(1010) V BLR(107%)
—fit: 42n % logn —fit 6n > logn
10 L
10| 7 Hss@o 10| V Hss@o™)
) 1.05 y 10 1.06
N —fit: 380 n BN —fit:544n
2] w
S S
[} o
[+ ©
w w
109 L
10°
64 96 128 160 192 224 256 64 96 128 160 192 224 256
Mesh size N Mesh size N

e good agreement with the theory
o Poisson: O(nlogn) for BLR, O(n"/%) for HSS
o Helmholtz: O(n"/%logn) for BLR, O(n7/6) for HSS
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Preliminary performance
results




Experimental Setting

e Experiments are done on the cori supercomputer of NERSC
o Two Intel(r) 16-cores Haswell @ 2.3 GHz per node
o Peak per core is 36.8 GF/s
o Total memory per node is 128 GB

e Test problems come from several real-life applications: Seismic
(5Hz), Electromagnetism (S3), Structural (perfO08d, Geo_1438, Serena,
Transport), CFD (atmosmodd), MHD (A16, A22, A30), Optimization
(nlpkkt80), and Graph (cagel3)

(Only partial results shown in next slides)

e We test 7 tolerance values (from 9e-1to le-6) and FR, and
compare the time for factorization + solve with:
o 1 step of iterative refinement in FR

o GMRES iterative solver in LR with required accuracy of 10~¢ and
restart of 30
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Preconditioner vs direct solver mode

Optimal tolerance choice

BLR HSS
atmosmodd | le-4 9e-1
cagel3 9e-1 9e-1
Geo_1438 le-4 FR
ML_Geer le-6 1le-4
nlpkkt80 le-5 9e-1
Serena le-4 9e-1
spelO-aniso | 1le-5 FR
Transport le-5 FR
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When preconditioning works well...

BLR HSS
4500

I Facto
4000 | [Jsolve

3500
3000

T 2500

g

£ 2000
1500
1000

500

0 0
9e-1 le-1 le-2 le-3 le-4 le-5 le-6 FR 9e-1 le-1 le-2 1e-3 le-4 le-5 le-6 FR
Tolerance Tolerance

cagel3 matrix

e Fast convergence even for high tolerance = preconditioner
mode is better suited

e As the size grows, HSS will gain the upper hand
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When high accuracy is needed..

BLR HSS
1000 1000
I Facto
[Isolve
800 800
600 __ 600
L <@
[ [}
£ £
F 400 = 400
200 200
0 0
9e-1 le-1 le-2 le-3 le-4 le-5 le-6 FR 9e-1 le-1 le-2 1e-3 le-4 le-5 le-6 FR
Tolerance Tolerance

spelO-aniso matrix

e No convergence except for low tolerances = direct solver
mode is needed

e BLR is better suited as HSS rank is too high
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The middle ground

BLR HSS
2000

2000
I Facto
[Isolve

1500 1500

Z o)

o 1000 o 1000
£ £
[ [

500 500

0 Il:%# 0

9e-1 le-1 le-2 le-3 le-4 le-5 le-6 FR 9e-1 le-1 le-2 1e-3 le-4 le-5 le-6 FR
Tolerance Tolerance

atmosmodd matrix

e Find compromise between accuracy and compression

e In general, BLR favors direct solver while HSS favors
preconditioner mode

= Performance comparison will depend on numerical difficulty
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Preconditioner vs direct solver mode

Optimal tolerance choice These preliminary results seem
BLR _ HSS to suggest the following trend:
difficulty
atmosmodd | le-4 9e-1
cagel3 9e-1 9e-1
Geo_1438 le-4 FR
ML_Geer le-6 le-4
nlpkkt80 le-5 9e-1
Serena le-4 9e-1

spelO-aniso | 1le-5 FR
Transport le-5 FR

size
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Preconditioner vs direct solver mode

Optimal tolerance choice These preliminary results seem
BLR _ HSS to suggest the following trend:
difficulty
atmosmodd | le-4 9e-1
cagel3 9e-1 9e-1
Geo_1438 le-4 FR
ML_Geer le-6 le-4
nlpkkt80 le-5 9e-1
Serena le-4 9e-1

spelO-aniso | 1le-5 FR
Transport le-5 FR

size

= much further work needed to confirm this trend and to fully
understand the differences between low-rank formats
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