Comparison of BLR and HSS Low-Rank Formats in Multifrontal Solvers: The<u>ory and Practice</u>

P. Amestoy^{*,1} A. Buttari^{*,2} P. Ghysels[‡] J.-Y. L'Excellent^{†,3} X. S. Li[‡] T. Mary^{*,4} F.-H. Rouet^{**} ^{*}Université de Toulouse [‡]LBNL [†]ENS Lyon ^{**}LSTC ¹INPT-IRIT ²CNRS-IRIT ³INRIA-LIP ⁴UPS-IRIT CSE'17, Atlanta, Feb. 27 - Mar. 3

Introduction

Sparse direct solvers

Discretization of a physical problem (e.g. Code_Aster, finite elements)

A X = **B**, **A** large and sparse, **B** dense or sparse Sparse direct methods : $\mathbf{A} = \mathbf{LU} (\mathbf{LDL}^{T})$

Often a significant part of simulation cost

∜

Objective discussed in this minisymposium: how to reduce the cost of sparse direct solvers?

Focus on large-scale applications and architectures

Multifrontal Factorization with Nested Dissection

Multifrontal Factorization with Nested Dissection

BLR matrix

HODLR/HSS-matrix

 $\mathcal{H}/\mathcal{H}^2$ -matrix

BLR matrix

HODLR/HSS-matrix

 $\mathcal{H}/\mathcal{H}^2$ -matrix

A block *B* represents the interaction between two subdomains σ and τ . If they have a small diameter and are far away their interaction is weak \Rightarrow rank is low.

BLR matrix

HODLR/HSS-matrix

 $\mathcal{H}/\mathcal{H}^2$ -matrix

A block *B* represents the interaction between two subdomains σ and τ . If they have a small diameter and are far away their interaction is weak \Rightarrow rank is low.

Block-admissibility condition:

- Weak: $\sigma \times \tau$ is admissible $\Leftrightarrow \sigma \neq \tau$
- Strong: $\sigma \times \tau$ is admissible $\Leftrightarrow \operatorname{dist}(\sigma, \tau) > \eta \max(\operatorname{diam}(\sigma), \operatorname{diam}(\tau))$

BLR matrix

HODLR/HSS-matrix

 $\mathcal{H}/\mathcal{H}^2$ -matrix

$$\tilde{B} = XY^T$$
 such that rank $(\tilde{B}) = k_{\varepsilon}$ and $\|B - \tilde{B}\| \leq \varepsilon$

If $k_{\varepsilon} \ll \text{size}(B) \Rightarrow$ memory and flops can be reduced with a controlled loss of accuracy ($\leq \varepsilon$)

BLR matrix

HODLR/HSS-matrix

 $\mathcal{H}/\mathcal{H}^2$ -matrix

	BLR	HODLR	HSS	${\cal H}$	\mathcal{H}^2
blocking	flat	hierar. weak	hierar.	hierar.	hierar.
nested basis	no	no	yes	no	yes

BLR matrix

HODLR/HSS-matrix

 $\mathcal{H}/\mathcal{H}^2$ -matrix

Objective of this work: compare BLR and hierarchical formats, both from a theoretical and experimental standpoint

⇒ collaboration between BLR-based MUMPS and HSS-based STRUMPACK teams.

Main differences between MUMPS and STRUMPACK

Full-Rank Solvers

• Both are multifrontal

Full-Rank Solvers

- Both are multifrontal
- STRUMPACK supports LU only ⇒ experiments are all performed on unsymmetric matrices

- Both are multifrontal
- STRUMPACK supports LU only ⇒ experiments are all performed on unsymmetric matrices
- STRUMPACK pivots inside diagonal blocks only; MUMPS has several options and was used with restricted pivoting too

- Both are multifrontal
- STRUMPACK supports LU only ⇒ experiments are all performed on unsymmetric matrices
- STRUMPACK pivots inside diagonal blocks only; MUMPS has several options and was used with restricted pivoting too
- Both support geometric and algebraic orderings: METIS 5.1.0 is used in the experiments

- Both are multifrontal
- STRUMPACK supports LU only ⇒ experiments are all performed on unsymmetric matrices
- STRUMPACK pivots inside diagonal blocks only; MUMPS has several options and was used with restricted pivoting too
- Both support geometric and algebraic orderings: METIS 5.1.0 is used in the experiments
- Both can exploit both shared- and distributed-memory architectures:
 - Shared-memory MUMPS: mainly node // based on multithreaded BLAS and OpenMP + some experimental tree // in OpenMP
 - Shared-memory STRUMPACK: tree and node // in handcoded OpenMP (sequential BLAS)
 - Distributed-memory MUMPS: tree MPI // + node 1D MPI //
 - Distributed-memory STRUMPACK: tree MPI // + node 2D MPI //

• MUMPS uses BLR, STRUMPACK uses HSS

- MUMPS uses BLR, STRUMPACK uses HSS
- Factorization algorithm:
 - MUMPS interleaves compressions and factorizations of panels
 - STRUMPACK first compresses the entire matrix, then performs a ULV factorization
 - ⇒ STRUMPACK is fully-structured while MUMPS is not

- MUMPS uses BLR, STRUMPACK uses HSS
- Factorization algorithm:
 - MUMPS interleaves compressions and factorizations of panels
 - STRUMPACK first compresses the entire matrix, then performs a ULV factorization
 - \Rightarrow STRUMPACK is fully-structured while MUMPS is not
- Compression:
 - Kernel: both use truncated QR with column pivoting, with in addition random sampling in STRUMPACK
 - Threshold: absolute in MUMPS, relative in STRUMPACK

- MUMPS uses BLR, STRUMPACK uses HSS
- Factorization algorithm:
 - MUMPS interleaves compressions and factorizations of panels
 - STRUMPACK first compresses the entire matrix, then performs a ULV factorization
 - \Rightarrow STRUMPACK is fully-structured while MUMPS is not
- Compression:
 - Kernel: both use truncated QR with column pivoting, with in addition random sampling in STRUMPACK
 - Threshold: absolute in MUMPS, relative in STRUMPACK
- Assembly (extend-add):
 - $\circ~$ contribution block not compressed in MUMPS \Rightarrow FR assembly
 - $\circ~$ contribution block compressed in STRUMPACK \Rightarrow LR assembly

- MUMPS uses BLR, STRUMPACK uses HSS
- Factorization algorithm:
 - MUMPS interleaves compressions and factorizations of panels
 - STRUMPACK first compresses the entire matrix, then performs a ULV factorization
 - \Rightarrow STRUMPACK is fully-structured while MUMPS is not
- Compression:
 - Kernel: both use truncated QR with column pivoting, with in addition random sampling in STRUMPACK
 - Threshold: absolute in MUMPS, relative in STRUMPACK
- Assembly (extend-add):
 - contribution block not compressed in MUMPS \Rightarrow FR assembly
 - $\circ~$ contribution block compressed in STRUMPACK $\Rightarrow~$ LR assembly
- Both only compress fronts of size ≥ 1000

- MUMPS uses BLR, STRUMPACK uses HSS
- Factorization algorithm:
 - MUMPS interleaves compressions and factorizations of panels
 - STRUMPACK first compresses the entire matrix, then performs a ULV factorization
 - \Rightarrow STRUMPACK is fully-structured while MUMPS is not
- Compression:
 - Kernel: both use truncated QR with column pivoting, with in addition random sampling in STRUMPACK
 - Threshold: absolute in MUMPS, relative in STRUMPACK
- Assembly (extend-add):
 - $\circ~$ contribution block not compressed in MUMPS \Rightarrow FR assembly
 - $\circ~$ contribution block compressed in STRUMPACK $\Rightarrow~$ LR assembly
- Both only compress fronts of size ≥ 1000
- Solution phase:
 - $\circ~$ BLR solve not yet available in MUMPS \Rightarrow performed in FR
 - HSS solve available in STRUMPACK

Complexity of the factorization

$\mathcal H$ -admissibility and sparsity constant

• \mathcal{H} -admissibility condition: A partition $P \in \mathcal{P}(\mathcal{I} \times \mathcal{I})$ is admissible iff

 $\forall \sigma \times \tau \in P, \ \sigma \times \tau \text{ is admissible } \text{or } \min(\#\sigma, \#\tau) \leq c_{\min}$

$\mathcal H$ -admissibility and sparsity constant

(here, $c_{sp} = 6$)

• \mathcal{H} -admissibility condition: A partition $P \in \mathcal{P}(\mathcal{I} \times \mathcal{I})$ is admissible iff

 $\forall \sigma \times \tau \in P, \ \sigma \times \tau \text{ is admissible } \text{or } \min(\#\sigma, \#\tau) \leq c_{\min}$

- The sparsity constant c_{sp} is defined as the maximal number of blocks of the same size on a given row or column. It measures the sparsity of the blocking imposed by the partition *P*.
 - In BLR, fully refined blocking $\Rightarrow c_{sp}$ = number of blocks per row
 - Can construct an admissible \mathcal{H} -partitioning such that $c_{sp} = O(1)$

Dense factorization complexity

Complexity: $C_{facto} = O(mc_{sp}^2 r_{max}^2 \log^2 m)$ for \mathcal{H} and $O(mc_{sp}^2 r_{max}^2)$ for HSS

m matrix size

c_{sp} sparsity constant

r_{max} bound on the maximal rank of all blocks

Dense factorization complexity

Complexity: $C_{facto} = O(mc_{sp}^2 r_{max}^2 \log^2 m)$ for \mathcal{H} and $O(mc_{sp}^2 r_{max}^2)$ for HSS

m matrix size

c_{sp} sparsity constant

r_{max} bound on the maximal rank of all blocks

H	HSS	BLR
C _{sp}		
r_{max} \mathcal{C}_{facto}		

$|\mathcal{H}$ vs. BLR complexity

Dense factorization complexity

Complexity: $C_{facto} = O(mc_{sp}^2 r_{max}^2 \log^2 m)$ for \mathcal{H} and $O(mc_{sp}^2 r_{max}^2)$ for HSS

m matrix size

c_{sp} sparsity constant

r_{max} bound on the maximal rank of all blocks

	${\cal H}$	HSS	BLR
${c_{sp}} \ r_{max} \ {{\cal C}_{facto}}$	<i>O</i> (1)*	<i>O</i> (1)*	

*Grasedyck & Hackbusch, 2003

Dense factorization complexity

Complexity: $C_{facto} = O(mc_{sp}^2 r_{max}^2 \log^2 m)$ for \mathcal{H} and $O(mc_{sp}^2 r_{max}^2)$ for HSS

m matrix size

c_{sp} sparsity constant

r_{max} bound on the maximal rank of all blocks

	H	HSS	BLR
${\mathcal C}_{sp}$ r $_{max}$ ${\mathcal C}_{facto}$	$O(1)^*$ small [†]	$O(1)^*$ small [‡]	

*Grasedyck & Hackbusch, 2003

[†]Bebendorf & Hackbusch, 2003

Dense factorization complexity

Complexity: $C_{facto} = O(mc_{sp}^2 r_{max}^2 \log^2 m)$ for \mathcal{H} and $O(mc_{sp}^2 r_{max}^2)$ for HSS

m matrix size

c_{sp} sparsity constant

r_{max} bound on the maximal rank of all blocks

	\mathcal{H}	HSS	BLR
${\mathcal C}_{sp}$ r_{max} ${\mathcal C}_{facto}$	$O(1)^*$ small [†] $O(r_{max}^2 m \log^2 m)$	$O(1)^*$ small [‡] $O(r_{max}^2m)$	

*Grasedyck & Hackbusch, 2003

[†]Bebendorf & Hackbusch, 2003

Dense factorization complexity

Complexity: $C_{facto} = O(mc_{sp}^2 r_{max}^2 \log^2 m)$ for \mathcal{H} and $O(mc_{sp}^2 r_{max}^2)$ for HSS

m matrix size

c_{sp} sparsity constant

r_{max} bound on the maximal rank of all blocks

	H	HSS	BLR
c_{sp}	$O(1)^*$	$O(1)^*$	m/b
r_{max}	small [†]	small [‡]	
\mathcal{C}_{facto}	$O(r_{max}^2 m \log^2 m)$	$O(r_{max}^2m)$	

*Grasedyck & Hackbusch, 2003

[†]Bebendorf & Hackbusch, 2003

Dense factorization complexity

Complexity: $C_{facto} = O(mc_{sp}^2 r_{max}^2 \log^2 m)$ for \mathcal{H} and $O(mc_{sp}^2 r_{max}^2)$ for HSS

m matrix size

c_{sp} sparsity constant

r_{max} bound on the maximal rank of all blocks

	H	HSS	BLR
c_{sp} r_{max} \mathcal{C}_{facto}	$O(1)^*$ small [†] $O(r_{max}^2 m \log^2 m)$	$O(1)^*$ small [‡] $O(r^2_{max}m)$	m/b b

*Grasedyck & Hackbusch, 2003

[†]Bebendorf & Hackbusch, 2003

Dense factorization complexity

Complexity: $C_{facto} = O(mc_{sp}^2 r_{max}^2 \log^2 m)$ for \mathcal{H} and $O(mc_{sp}^2 r_{max}^2)$ for HSS

m matrix size

c_{sp} sparsity constant

r_{max} bound on the maximal rank of all blocks

	H	HSS	BLR
\mathcal{C}_{sp}	$O(1)^*$	$O(1)^*$	m/b
r_{max}	small [†]	small [‡]	b
\mathcal{C}_{facto}	$O(r_{max}^2 m \log^2 m)$	$O(r_{max}^2m)$	O(m ³)

*Grasedyck & Hackbusch, 2003

[†]Bebendorf & Hackbusch, 2003

Dense factorization complexity

Complexity: $C_{facto} = O(mc_{sp}^2 r_{max}^2 \log^2 m)$ for \mathcal{H} and $O(mc_{sp}^2 r_{max}^2)$ for HSS

m matrix size

c_{sp} sparsity constant

r_{max} bound on the maximal rank of all blocks

	${\cal H}$	HSS	BLR
c_{sp} r_{max} \mathcal{C}_{facto}	$O(1)^*$ small [†] $O(r_{max}^2 m \log^2 m)$	$O(1)^*$ small [‡] $O(r_{max}^2m)$	m/b b O(m ³)
* ~			

*Grasedyck & Hackbusch, 2003

[†]Bebendorf & Hackbusch, 2003

 ‡ Chandrasekaran et al, 2010; Engquist & Ying, 2011

BLR: a particular case of \mathcal{H} ?

Problem: in \mathcal{H} formalism, the maxrank of the blocks of a BLR matrix is $r_{max} = b$ (due to the non-admissible blocks) **Solution:** bound the rank of the admissible blocks only, and make sure the non-admissible blocks are in small number

BLR-admissibility condition of a partition ${\cal P}$

 \mathcal{P} is admissible $\Leftrightarrow N_{na} = \#\{\sigma \times \tau \in \mathcal{P}, \sigma \times \tau \text{ is not admissible}\} \le q$

Non-Admissible

Admissible

BLR-admissibility condition of a partition ${\cal P}$

 \mathcal{P} is admissible $\Leftrightarrow N_{na} = \#\{\sigma \times \tau \in \mathcal{P}, \sigma \times \tau \text{ is not admissible}\} \le q$

Non-Admissible

Admissible

Main result from Amestoy et al, 2016

There exists an admissible \mathcal{P} for q = O(1), s.t. the maxrank of the admissible blocks of A is $r = O(r_{max}^{\mathcal{H}})$ The dense factorization complexity thus becomes $C_{facto} = O(r^2m^3/b^2 + mb^2q^2) = O(r^2m^3/b^2 + mb^2) = O(rm^2)$ (for $b = O(\sqrt{rm})$) Under a nested dissection assumption, the sparse (multifrontal) complexity is directly obtained from the dense complexity

	operations (OPC)		factor size (NNZ)	
	r = O(1)	r = O(N)	r = O(1)	r = O(N)
FR	$O(n^2)$	$O(n^2)$	$O(n^{\frac{4}{3}})$	$O(n^{\frac{4}{3}})$
BLR	$O(n^{\frac{4}{3}})$	$O(n^{\frac{5}{3}})$	$O(n \log n)$	$O(n^{\frac{7}{6}}\log n)$
HSS	0(n)	$O(n^{\frac{4}{3}})$	0(n)	$O(n^{\frac{7}{6}})$

in the 3D case (similar analysis possible for 2D)

Experimental complexity: test problems

1. Poisson: N^3 grid with a 7-point stencil with u=1 on the boundary $\partial\Omega$

 $\Delta u = f$

Rank bound is $r_{max} = O(1)$ for BLR (and \mathcal{H}), and $r_{max} = O(N)$ for HSS.

2. Helmholtz: N^3 grid with a 27-point stencil, ω is the angular frequency, v(x) is the seismic velocity field, and $u(x, \omega)$ is the time-harmonic wavefield solution to the forcing term $s(x, \omega)$.

$$\left(-\Delta - \frac{\omega^2}{v(x)^2}\right) u(x,\omega) = s(x,\omega)$$

 ω is fixed and equal to 4Hz. Rank bound is $r_{max} = O(N)$ for both BLR and HSS.

Experimental flop complexity: Poisson

- good agreement with the theory ($O(n^{4/3})$ for both BLR and HSS)
- higher threshold leads to lower exponent:
 - relaxed rank pattern in HSS
- 5/26 zero-rank blocks in BLR

Experimental flop complexity: Helmholtz

- good agreement with the theory ($O(n^{5/3})$ for BLR, $O(n^{4/3})$ for HSS)
- threshold has almost no influence on the exponent

Experimental factor size complexity

Helmholtz Poisson 10 O FR O FR -fit: 6 n ^{1.41} -fit: 15 n ^{1.37} BLR(10⁻¹⁰) **V** BLR(10⁻³) fit: 42 n ^{1.02} log n fit: 6 n^{1.19} log n Pactors size 10 ¹⁰ HSS(10⁻¹) V HSS(10⁻¹) Factors size 1.05 1.06 fit: 380 n fit: 544 n 10⁹ 10⁹ 64 96 192 224 256 96 128 192 224 256 128 160 64 160 Mesh size N Mesh size N

• good agreement with the theory

- Poisson: $O(n \log n)$ for BLR, $O(n^{7/6})$ for HSS
- Helmholtz: $O(n^{7/6} \log n)$ for BLR, $O(n^{7/6})$ for HSS

Preliminary performance results

Experimental Setting

- Experiments are done on the cori supercomputer of NERSC
 - Two Intel(r) 16-cores Haswell @ 2.3 GHz per node
 - Peak per core is 36.8 GF/s
 - Total memory per node is 128 GB
- Test problems come from several real-life applications: Seismic (5Hz), Electromagnetism (S3), Structural (perf008d, Geo_1438, Serena, Transport), CFD (atmosmodd), MHD (A16, A22, A30), Optimization (nlpkkt80), and Graph (cage13)

(Only partial results shown in next slides)

- We test 7 tolerance values (from 9e-1 to 1e-6) and FR, and compare the time for factorization + solve with:
 - 1 step of iterative refinement in FR
 - $\circ\,$ GMRES iterative solver in LR with required accuracy of 10^{-6} and restart of 30

Optimal tolerance choice

	BLR	HSS
atmosmodd	1e-4	9e-1
cage13	9e-1	9e-1
Geo_1438	1e-4	FR
ML_Geer	1e-6	1e-4
nlpkkt80	1e-5	9e-1
Serena	1e-4	9e-1
spe10-aniso	1e-5	FR
Transport	1e-5	FR

When preconditioning works well...

cage13 matrix

- Fast convergence even for high tolerance ⇒ preconditioner mode is better suited
- As the size grows, HSS will gain the upper hand

When high accuracy is needed...

spe10-aniso matrix

- No convergence except for low tolerances ⇒ direct solver mode is needed
- BLR is better suited as HSS rank is too high

The middle ground

atmosmodd matrix

- Find compromise between accuracy and compression
- In general, BLR favors direct solver while HSS favors preconditioner mode
- Performance comparison will depend on numerical difficulty
 and size of the problem
 CSE'17, Atlanta, Feb. 27 Mar. 3

Optimal tolerance choice			
	BLR	HSS	
atmosmodd	1e-4	9e-1	
cage13	9e-1	9e-1	
Geo_1438	1e-4	FR	
ML_Geer	1e-6	1e-4	
nlpkkt80	1e-5	9e-1	
Serena	1e-4	9e-1	
spe10-aniso	1e-5	FR	
Transport	1e-5	FR	

These preliminary results seem to suggest the following trend: difficulty

Optimal tolerance choice			
	BLR	HSS	
atmosmodd	1e-4	9e-1	
cage13	9e-1	9e-1	
Geo_1438	1e-4	FR	
ML_Geer	1e-6	1e-4	
nlpkkt80	1e-5	9e-1	
Serena	1e-4	9e-1	
spe10-aniso	1e-5	FR	
Transport	1e-5	FR	

These preliminary results seem to suggest the following trend: difficulty

⇒ much further work needed to confirm this trend and to fully understand the differences between low-rank formats

References and acknowledgements

Software packages

- MUMPS 5.1.0 (including BLR factorization for the first time)
- STRUMPACK-dense-1.1.1 and STRUMPACK-sparse 1.1.0

References

- Amestoy, Ashcraft, Boiteau, Buttari, L'Excellent, and Weisbecker. Improving Multifrontal Methods by means of Block Low-Rank Representations, SIAM SISC, 2015.
- Amestoy, Buttari, L'Excellent, and Mary. On the Complexity of the Block Low-Rank Multifrontal Factorization, under review, SIAM SISC, 2016.
- Ghysels, Li, Rouet, Williams, Napov. An efficient multi-core implementation of a novel HSS-structured multifrontal solver using randomized sampling, SIAM SISC, 2015.
- Rouet, Li, Ghysels, Napov. A distributed-memory package for dense hierarchically semi-separable matrix computations using randomization, ACM TOMS, 2016.

Acknowledgements

- NERSC for providing access to the machine
- EMGS, SEISCOPE, EDF, and LBNL for providing the matrices

Thanks! Questions?