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Low-rank matrices

Take a dense matrix A of size m× n and compute its SVD A = XSY :

A
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A

A = X1S1Y1 + X2S2Y2 with S1(k, k) = σk > ε, S2(1, 1) = σk+1 ≤ ε
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Low-rank matrices

Take a dense matrix A of size m× n and compute its SVD A = XSY :

Ã

A = X1S1Y1 + X2S2Y2 with S1(k, k) = σk > ε, S2(1, 1) = σk+1 ≤ ε

If Ã = X1S1Y1 then ‖A− Ã‖2 = ‖X2S2Y2‖2 = σk+1 ≤ ε

If the singular values of A decay very fast (e.g. exponentially) then
k � min(m, n) even for very small ε (e.g. 10−14)
⇒ memory and CPU consumption can be reduced considerably with a
controlled loss of accuracy (≤ ε) if Ã is used instead of A
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QRCP Decomposition

• QR decomposition with Column Pivoting

AP =
(
Q1 Q2

)(R11 R12
R22

)

with
◦ Q =

(
Q1 Q2

)
a m × n matrix with orthogonal colums;

◦ R =

(
R11 R12

R22

)
a n × n upper triangular matrix;

◦ P a n × n pivot matrix.
• Truncated QRCP

AP ≈ Q1
(
R11 R12

)
m × n m × k k × n
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LAPACK’s QP3

• QP3 computes a QR with column pivoting factorization using
BLAS-3 kernels.

• We modified the code to get the truncated version.
• Limitations:
◦ Not only BLAS-3: also BLAS-2;
◦ Synchronization at every step to pick pivot;
◦ Limited parallelism and data locality;
◦ Communications.
◦ Column norms may diverge → need to recompute and update.
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Random Sampling: Overview

• Stage A: generate Q, orthogonal subspace spanning the range of
A, i.e.:

A ≈ AQT Q

• Stage B: use Q to compute low-rank approximations of A (QR,
SVD, . . . ) with standard deterministic methods.
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Stage A: Sampling

B = Ω A
`× n `×m m × n

• ` = k + p, where p is a small parameter called oversampling.

• How do we generate Ω?
◦ Gaussian
◦ FFT

• We get Q by orthogonalizing B. However, if {σi}i=1,n decay
slowly, ‖A− AQT Q‖ can be big.

• We can overcome this issue with a few power iterations:

B = Ω A (AT A)q

• To avoid round-off errors, we need to reorthogonalize B between
each application of A and AT .
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Communications
• Two memory levels hierarchy: fast/slow (M = size of fast
memory).

#flops #words
Random sampling
Sampling (Gaussian) O(mn`) O(mn`/M1/2)
Sampling (FFT) O(mn log(m)) O(mn log(m)/ log(M))
Iter. (mult.) O(mn`q) O(mn`q/M1/2)
Iter. (orth.) O((m + n)`2q) O((m + n)`2q/M1/2)
QRCP O(n`2) O(n`2)
QR O(m`2) O(m`2/M1/2)

Total O(mn`(1 + 2q)) O(mn`(1 + 2q)/M1/2)
QP3 O(mnk) O(mnk)

CAQP3 O(mn(m + n)) O(mn2/M1/2)

Figure : Computation and communication costs on one GPU.

• Random sampling has a flop overhead (oversampling + power
iterations), but. . .

• . . . much better communications efficiency7/16 SIAM CSE 15, March 14-18



Experimental Setups

• Compiled with gcc 4.4.7 and nvcc (CUDA 6.0.1), with -O3 flag,
linked to threaded MKL (version 10.3).

• Machine: two eight-core Genuine Intel(R) 2.60GHz CPUs and
three NVIDIA Tesla K40c GPUs.

Matrix Name
power exponent hapmap

σi (i + 1)−3 10−i/10 –-
σ0 1 1 9.9e+03
σk+1 8e-06 1.3e-05 5e+02
κ(A) 1.3e+05 7.9e+04 2e+01
m 500,000 500,000 503,783
n 500 500 506
k 50 50 50
p 10 10 10
` 60 60 60

Table : Test matrices.
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Numerical Results

QP3 Random Sampling
q = 0 q = 1 q = 2

power 4.47e-05 9.08e-05 4.59e-05 4.45e-05
exponent 2.69e-05 5.18e-05 2.69e-05 2.69e-05
hapmap 5.99e-01 9.86e-01 8.74e-01 8.18e-01

Figure : Approximation error norm ‖AP − QR‖/‖A‖.

The same order of accuracy is already reached with q = 0.
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Time with different numbers of columns (n)
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Time with different subspace sizes (`)
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Time with different numbers of iterations (q)
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Time on 1, 2 and 3 GPUs
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Conclusion

Summary: Random Sampling vs. QP3

• Comparable accuracy on the test matrices used.
• Small flop overhead but substantial communication improvement
⇒ performance speedups above 13.

• Scaling on multiple GPUs.

Reference

• MS 266 & 291: Randomized Algorithms in Numerical Linear Algebra
◦ Performance of Computing Low-Rank Approximation on Hybrid CPU/GPU

Architectures
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? Thanks!
Questions?


