
Performance of Random Sampling for
Computing Low-rank Approximations of
a Dense matrix on GPUs

Theo Mary 1 Ichitaro Yamazaki 2 Jakub Kurzak 2

Piotr Luszczek 2 Stanimire Tomov 2 Jack Dongarra 2,3,4
1Université de Toulouse, UPS-IRIT, France.
2University of Tennessee, Knoxville, Tennessee, U.S.A. Department of Computer Science
3Oak Ridge National Laboratory 4University of Manchester

SIAM CSE 15, March 14-18
1/16 SIAM CSE 15, March 14-18



Low-rank matrices

Take a dense matrix A of size m× n and compute its SVD A = XSY :

A

2/16 SIAM CSE 15, March 14-18



Low-rank matrices

Take a dense matrix A of size m× n and compute its SVD A = XSY :

A

A = X1S1Y1 + X2S2Y2 with S1(k, k) = σk > ε, S2(1, 1) = σk+1 ≤ ε

2/16 SIAM CSE 15, March 14-18



Low-rank matrices

Take a dense matrix A of size m× n and compute its SVD A = XSY :

A

A = X1S1Y1 + X2S2Y2 with S1(k, k) = σk > ε, S2(1, 1) = σk+1 ≤ ε

If Ã = X1S1Y1 then ‖A− Ã‖2 = ‖X2S2Y2‖2 = σk+1 ≤ ε

2/16 SIAM CSE 15, March 14-18



Low-rank matrices

Take a dense matrix A of size m× n and compute its SVD A = XSY :

Ã

A = X1S1Y1 + X2S2Y2 with S1(k, k) = σk > ε, S2(1, 1) = σk+1 ≤ ε

If Ã = X1S1Y1 then ‖A− Ã‖2 = ‖X2S2Y2‖2 = σk+1 ≤ ε

If the singular values of A decay very fast (e.g. exponentially) then
k � min(m, n) even for very small ε (e.g. 10−14)
⇒ memory and CPU consumption can be reduced considerably with a
controlled loss of accuracy (≤ ε) if Ã is used instead of A

2/16 SIAM CSE 15, March 14-18



QRCP Decomposition

• QR decomposition with Column Pivoting

AP =
(
Q1 Q2

)(R11 R12
R22

)

with
◦ Q =

(
Q1 Q2

)
a m × n matrix with orthogonal colums;

◦ R =

(
R11 R12

R22

)
a n × n upper triangular matrix;

◦ P a n × n pivot matrix.
• Truncated QRCP

AP ≈ Q1
(
R11 R12

)
m × n m × k k × n

3/16 SIAM CSE 15, March 14-18



LAPACK’s QP3

• QP3 computes a QR with column pivoting factorization using
BLAS-3 kernels.

• We modified the code to get the truncated version.
• Limitations:
◦ Not only BLAS-3: also BLAS-2;
◦ Synchronization at every step to pick pivot;
◦ Limited parallelism and data locality;
◦ Communications.
◦ Column norms may diverge → need to recompute and update.

4/16 SIAM CSE 15, March 14-18



Random Sampling: Overview

• Stage A: generate Q, orthogonal subspace spanning the range of
A, i.e.:

A ≈ AQT Q

• Stage B: use Q to compute low-rank approximations of A (QR,
SVD, . . . ) with standard deterministic methods.

5/16 SIAM CSE 15, March 14-18



Stage A: Sampling

B = Ω A
`× n `×m m × n

• ` = k + p, where p is a small parameter called oversampling.

• How do we generate Ω?
◦ Gaussian
◦ FFT

• We get Q by orthogonalizing B. However, if {σi}i=1,n decay
slowly, ‖A− AQT Q‖ can be big.

• We can overcome this issue with a few power iterations:

B = Ω A (AT A)q

• To avoid round-off errors, we need to reorthogonalize B between
each application of A and AT .

6/16 SIAM CSE 15, March 14-18



Stage A: Sampling

B = Ω A
`× n `×m m × n

• ` = k + p, where p is a small parameter called oversampling.
• How do we generate Ω?
◦ Gaussian
◦ FFT

• We get Q by orthogonalizing B. However, if {σi}i=1,n decay
slowly, ‖A− AQT Q‖ can be big.

• We can overcome this issue with a few power iterations:

B = Ω A (AT A)q

• To avoid round-off errors, we need to reorthogonalize B between
each application of A and AT .

6/16 SIAM CSE 15, March 14-18



Stage A: Sampling

B = Ω A
`× n `×m m × n

• ` = k + p, where p is a small parameter called oversampling.
• How do we generate Ω?
◦ Gaussian
◦ FFT

• We get Q by orthogonalizing B. However, if {σi}i=1,n decay
slowly, ‖A− AQT Q‖ can be big.

• We can overcome this issue with a few power iterations:

B = Ω A (AT A)q

• To avoid round-off errors, we need to reorthogonalize B between
each application of A and AT .

6/16 SIAM CSE 15, March 14-18



Stage A: Sampling

B = Ω A
`× n `×m m × n

• ` = k + p, where p is a small parameter called oversampling.
• How do we generate Ω?
◦ Gaussian
◦ FFT

• We get Q by orthogonalizing B. However, if {σi}i=1,n decay
slowly, ‖A− AQT Q‖ can be big.

• We can overcome this issue with a few power iterations:

B = Ω A (AT A)q

• To avoid round-off errors, we need to reorthogonalize B between
each application of A and AT .

6/16 SIAM CSE 15, March 14-18



Stage A: Sampling

B = Ω A
`× n `×m m × n

• ` = k + p, where p is a small parameter called oversampling.
• How do we generate Ω?
◦ Gaussian
◦ FFT

• We get Q by orthogonalizing B. However, if {σi}i=1,n decay
slowly, ‖A− AQT Q‖ can be big.

• We can overcome this issue with a few power iterations:

B = Ω A (AT A)q

• To avoid round-off errors, we need to reorthogonalize B between
each application of A and AT .

6/16 SIAM CSE 15, March 14-18



Communications
• Two memory levels hierarchy: fast/slow (M = size of fast
memory).

#flops #words
Random sampling
Sampling (Gaussian) O(mn`) O(mn`/M1/2)
Sampling (FFT) O(mn log(m)) O(mn log(m)/ log(M))
Iter. (mult.) O(mn`q) O(mn`q/M1/2)
Iter. (orth.) O((m + n)`2q) O((m + n)`2q/M1/2)
QRCP O(n`2) O(n`2)
QR O(m`2) O(m`2/M1/2)

Total O(mn`(1 + 2q)) O(mn`(1 + 2q)/M1/2)
QP3 O(mnk) O(mnk)

CAQP3 O(mn(m + n)) O(mn2/M1/2)

Figure : Computation and communication costs on one GPU.

• Random sampling has a flop overhead (oversampling + power
iterations), but. . .

• . . . much better communications efficiency7/16 SIAM CSE 15, March 14-18



Experimental Setups

• Compiled with gcc 4.4.7 and nvcc (CUDA 6.0.1), with -O3 flag,
linked to threaded MKL (version 10.3).

• Machine: two eight-core Genuine Intel(R) 2.60GHz CPUs and
three NVIDIA Tesla K40c GPUs.

Matrix Name
power exponent hapmap

σi (i + 1)−3 10−i/10 –-
σ0 1 1 9.9e+03
σk+1 8e-06 1.3e-05 5e+02
κ(A) 1.3e+05 7.9e+04 2e+01
m 500,000 500,000 503,783
n 500 500 506
k 50 50 50
p 10 10 10
` 60 60 60

Table : Test matrices.
8/16 SIAM CSE 15, March 14-18



Numerical Results

QP3 Random Sampling
q = 0 q = 1 q = 2

power 4.47e-05 9.08e-05 4.59e-05 4.45e-05
exponent 2.69e-05 5.18e-05 2.69e-05 2.69e-05
hapmap 5.99e-01 9.86e-01 8.74e-01 8.18e-01

Figure : Approximation error norm ‖AP − QR‖/‖A‖.

The same order of accuracy is already reached with q = 0.

9/16 SIAM CSE 15, March 14-18



Time with different numbers of rows (m)

0 10000 20000 30000 40000 50000
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

Number of rows (m)

T
im

e 
(s

)

 

 

Random Sampling
QP3

10/16 SIAM CSE 15, March 14-18



Time with different numbers of rows (m)

0 10000 20000 30000 40000 50000
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

Number of rows (m)

T
im

e 
(s

)

 

 

PRNG
Sampling
GEMM (Iter)
Orth (Iter)
QRCP
QR
QP3

10/16 SIAM CSE 15, March 14-18



Time with different numbers of columns (n)

0 1000 2000 3000 4000 5000
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

Number of columns (n)

T
im

e 
(s

)

 

 

PRNG
Sampling
GEMM (Iter)
Orth (Iter)
QRCP
QR
QP3

11/16 SIAM CSE 15, March 14-18



Time with different subspace sizes (`)

0 128 256 384 512
0

0.5

1

1.5

2

2.5

3

3.5

4

Subspace size (l)

T
im

e 
(s

)

 

 

PRNG
Sampling
GEMM (Iter)
Orth (Iter)
QRCP
QR
QP3

12/16 SIAM CSE 15, March 14-18



Time with different numbers of iterations (q)

0 10000 20000 30000 40000 50000
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

Number of rows (m)

T
im

e 
(s

)

 

 

q=0
q=2
q=4
q=6
q=8
q=10
q=12
QP3

13/16 SIAM CSE 15, March 14-18



Time on 1, 2 and 3 GPUs

1 GPU 2 GPU 3 GPU
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

Number of GPUs (n
g
)

T
im

e 
(s

)

 

 

PRNG
Sampling
GEMM (Iter)
Orth (Iter)
QRCP
QR
Comms

14/16 SIAM CSE 15, March 14-18



Conclusion

Summary: Random Sampling vs. QP3

• Comparable accuracy on the test matrices used.
• Small flop overhead but substantial communication improvement
⇒ performance speedups above 13.

• Scaling on multiple GPUs.

Reference

• MS 266 & 291: Randomized Algorithms in Numerical Linear Algebra
◦ Performance of Computing Low-Rank Approximation on Hybrid CPU/GPU

Architectures

15/16 SIAM CSE 15, March 14-18



? Thanks!
Questions?


