Performance of Random Sampling for Computing Low-rank Approximations of a Dense matrix on GPUs

Theo Mary ¹ Ichitaro Yamazaki ² Jakub Kurzak ² Piotr Luszczek ² Stanimire Tomov ² Jack Dongarra ^{2,3,4} ¹Université de Toulouse, UPS-IRIT, France. ²University of Tennessee, Knoxville, Tennessee, U.S.A. Department of Computer Science ³Oak Ridge National Laboratory ⁴University of Manchester

SIAM CSE 15, March 14-18

Take a dense matrix A of size $m \times n$ and compute its SVD A = XSY:

Take a dense matrix A of size $m \times n$ and compute its SVD A = XSY:

 $A = X_1 S_1 Y_1 + X_2 S_2 Y_2 \quad \text{with} \quad S_1(k,k) = \sigma_k > \varepsilon, \ S_2(1,1) = \sigma_{k+1} \le \varepsilon$

Take a dense matrix A of size $m \times n$ and compute its SVD A = XSY:

 $\begin{aligned} A &= X_1 S_1 Y_1 + X_2 S_2 Y_2 \quad \text{with} \quad S_1(k,k) = \sigma_k > \varepsilon, \ S_2(1,1) = \sigma_{k+1} \le \varepsilon \\ \text{If } \tilde{A} &= X_1 S_1 Y_1 \quad \text{then} \quad \|A - \tilde{A}\|_2 = \|X_2 S_2 Y_2\|_2 = \sigma_{k+1} \le \varepsilon \end{aligned}$

Take a dense matrix A of size $m \times n$ and compute its SVD A = XSY:

 $\begin{aligned} A &= X_1 S_1 Y_1 + X_2 S_2 Y_2 \quad \text{with} \quad S_1(k,k) = \sigma_k > \varepsilon, \ S_2(1,1) = \sigma_{k+1} \le \varepsilon \\ \text{If } \tilde{A} &= X_1 S_1 Y_1 \quad \text{then} \quad \|A - \tilde{A}\|_2 = \|X_2 S_2 Y_2\|_2 = \sigma_{k+1} \le \varepsilon \end{aligned}$

If the singular values of A decay very fast (e.g. exponentially) then $k \ll \min(m, n)$ even for very small ε (e.g. 10^{-14}) \Rightarrow memory and CPU consumption can be reduced considerably with a controlled loss of accuracy ($\leq \varepsilon$) if \tilde{A} is used instead of A

QRCP Decomposition

• QR decomposition with Column Pivoting

$$AP = \begin{pmatrix} Q_1 & Q_2 \end{pmatrix} \begin{pmatrix} R_{11} & R_{12} \\ & R_{22} \end{pmatrix}$$

with

•
$$Q = \begin{pmatrix} Q_1 & Q_2 \end{pmatrix}$$
 a $m \times n$ matrix with orthogonal colums;
• $R = \begin{pmatrix} R_{11} & R_{12} \\ R_{22} \end{pmatrix}$ a $n \times n$ upper triangular matrix;
• P a $n \times n$ pivot matrix.

Truncated QRCP

$$\begin{array}{rcl} AP &\approx & Q_1 & \left(R_{11} & R_{12}\right) \\ m \times n & m \times k & k \times n \end{array}$$

- QP3 computes a QR with column pivoting factorization using BLAS-3 kernels.
- We modified the code to get the truncated version.
- Limitations:
 - Not only BLAS-3: also BLAS-2;
 - Synchronization at every step to pick pivot;
 - Limited parallelism and data locality;
 - Communications.
 - $\circ~$ Column norms may diverge \rightarrow need to recompute and update.

• **Stage A**: generate *Q*, orthogonal subspace spanning the range of *A*, i.e.:

$$A \approx AQ^T Q$$

• **Stage B**: use *Q* to compute low-rank approximations of *A* (QR, SVD, ...) with standard deterministic methods.

$$B = \Omega \qquad A$$
$$\ell \times n \qquad \ell \times m \qquad m \times n$$

• $\ell = k + p$, where p is a small parameter called oversampling.

$B = \Omega \qquad A$ $\ell \times n \qquad \ell \times m \qquad m \times n$

- $\ell = k + p$, where p is a small parameter called oversampling.
- How do we generate Ω?
 - Gaussian
 - \circ FFT

$B = \Omega \qquad A$ $\ell \times n \qquad \ell \times m \qquad m \times n$

- $\ell = k + p$, where p is a small parameter called oversampling.
- How do we generate Ω?
 - Gaussian
 - FFT
- We get Q by orthogonalizing B. However, if $\{\sigma_i\}_{i=1,n}$ decay slowly, $||A AQ^TQ||$ can be big.

$$B = \Omega \qquad A$$
$$\ell \times n \qquad \ell \times m \qquad m \times n$$

- $\ell = k + p$, where p is a small parameter called oversampling.
- How do we generate Ω?
 - Gaussian
 - FFT
- We get Q by orthogonalizing B. However, if $\{\sigma_i\}_{i=1,n}$ decay slowly, $||A AQ^TQ||$ can be big.
- We can overcome this issue with a few power iterations:

$$B = \Omega A (A^T A)^q$$

$$B = \Omega \qquad A$$
$$\ell \times n \qquad \ell \times m \qquad m \times n$$

- $\ell = k + p$, where p is a small parameter called oversampling.
- How do we generate Ω?
 - Gaussian
 - FFT
- We get Q by orthogonalizing B. However, if $\{\sigma_i\}_{i=1,n}$ decay slowly, $||A AQ^TQ||$ can be big.
- We can overcome this issue with a few power iterations:

$$B = \Omega A (A^T A)^q$$

• To avoid round-off errors, we need to reorthogonalize B between each application of A and A^{T} .

Communications

 Two memory levels hierarchy: fast/slow (M = size of fast memory).

5,7	#flops	#words
Random sampling		
Sampling (Gaussian)	$\mathcal{O}(mn\ell)$	$\mathcal{O}(mn\ell/M^{1/2})$
Sampling (FFT)	$\mathcal{O}(mn\log(m))$	$\mathcal{O}(mn\log(m)/\log(M))$
Iter. (mult.)	$\mathcal{O}(mn\ell q)$	$\mathcal{O}(mn\ell q/M^{1/2})$
Iter. (orth.)	$\mathcal{O}((m+n)\ell^2 q)$	$\mathcal{O}((m+n)\ell^2q/M^{1/2})$
QRCP	$\mathcal{O}(n\ell^2)$	$\mathcal{O}(n\ell^2)$
QR	$\mathcal{O}(m\ell^2)$	$\mathcal{O}(m\ell^2/M^{1/2})$
Total	$\mathcal{O}(mn\ell(1+2q))$	$\mathcal{O}(\mathit{mn\ell}(1+2q)/M^{1/2})$
QP3	O(mnk)	O(mnk)
CAQP3	$\mathcal{O}(mn(m+n))$	$\mathcal{O}(mn^2/M^{1/2})$

Figure : Computation and communication costs on one GPU.

- Random sampling has a flop overhead (oversampling + power iterations), but...
- _{7/16} ... much better communications efficiency

SIAM CSE 15, March 14-18

Experimental Setups

- Compiled with gcc 4.4.7 and nvcc (CUDA 6.0.1), with -O3 flag, linked to threaded MKL (version 10.3).
- Machine: two eight-core Genuine Intel(R) 2.60GHz CPUs and three NVIDIA Tesla K40c GPUs.

	Matrix Name				
	POWER	EXPONENT	HAPMAP		
σ_i	$(i+1)^{-3}$	$10^{-i/10}$			
σ_0	1	1	9.9e+03		
σ_{k+1}	8e-06	1.3e-05	5e+02		
$\kappa(A)$	1.3e+05	7.9e+04	2e+01		
m	500,000	500,000	503,783		
п	500	500	506		
k	50	50	50		
р	10	10	10		
ℓ	60	60	60		

Table : Test matrices.

	QP3	Random Sampling		
		q=0	q=1	q = 2
POWER	4.47e-05	9.08e-05	4.59e-05	4.45e-05
EXPONENT	2.69e-05	5.18e-05	2.69e-05	2.69e-05
HAPMAP	5.99e-01	9.86e-01	8.74e-01	8.18e-01

Figure : Approximation error norm ||AP - QR|| / ||A||.

The same order of accuracy is already reached with q = 0.

10/16

SIAM CSE 15, March 14-18

Time with different numbers of rows (m)

SIAM CSE 15, March 14-18

Time with different numbers of columns (n)

12/16

SIAM CSE 15, March 14-18

Time with different numbers of iterations (q)

13/16

Time on 1, 2 and 3 GPUs

Summary: Random Sampling vs. QP3

- Comparable accuracy on the test matrices used.
- Small flop overhead but substantial communication improvement ⇒ performance speedups above 13.
- Scaling on multiple GPUs.

Reference

- MS 266 & 291: Randomized Algorithms in Numerical Linear Algebra
 - Performance of Computing Low-Rank Approximation on Hybrid CPU/GPU Architectures

Thanks! Questions?