Performance of computing low-rank matrix approximatoin on a hybrid CPU/GPU architecture

Ichitaro Yamazaki¹, Theo Mary², Jakub Kurzak¹, Stanimire Tomov¹, Jack Dongrra¹

¹University of Tennessee, Knoxville, USA ²Universite de Toulouse, UPS-IRIT, France

SIAM Conference on Computational Science and Engineering Salt Lake City, Utah, USA, 03-18-2015

Innovative Computing Lab. at EECS of University of Tennessee, Knoxville

HP Linear Algebra (LA) Packages on emerging computers:

- Linear Algebra:
 - LAPACK/ScaLAPACK: dense LA on shared/distributed system

 - Sparse LA
 - Distributed-memory sparse linear/eigen solvers: (SuperLU_DIST/TRLan/PDSLin)
 - Collaboration to accelerate sparse/application codes (PaStiX, DOD, SciDB, etc.)
- Runtime Systems: QUARK/PULSAR
- Distributed Computing: OpenMPI, ParSEC, DPLASMA, etc.
- Performance Profiling/Modeling: PAPI, etc.
- Bench-marking: HPL, HPCG, etc.
- Auto-tuning: BEAST, etc. (more

(more info at www.icl.utk.edu)

(日) (同) (E) (E) (E)

Can we learn from or contribute to randomized algorithms?

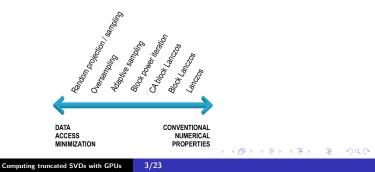
truncated singular value decompositions (SVD)

Compute k-rank approximation of m-by-n sparse matrix A,

$$A \approx U_k \Sigma_k V_k^T$$
 to minimize $||A - U_k \Sigma_k V_k^T||_2$,

where

- U_k and V_k are k left/right singular vectors (i.e., $U^T U = I$ and $V^T V = I$)
- Σ is diagonal with k largest singular values
- it is used for PCA, clustering, ranking, etc.
- many variants with different constraints (i.e., matrix completition)



Outline: Computing truncated SVDs with GPUs

- Performance of random and Lanczos (block, thick-restart, CA)
- Performance of updating SVD for Latent Semantic Inedexing and population clustering
- Final Remarks

- ∢ ≣ ▶

Subspace projection framework

1. Generate $k + \ell$ orthonormal P and Q approximating ranges of A and A^{T} , $A \approx PQ^{T}$.

where ℓ is "oversampling" to improve performance/robustness.

2. Compute SVD of the projected matrix B,

$$B = X\widehat{\Sigma}Y^{T},$$

イロト イヨト イヨト イヨト

where $B = P^T A Q$.

3. Compute approximation,

 $A pprox \widehat{U}_k \widehat{\Sigma}_k \widehat{V}_k^{ op},$ where $\widehat{U}_k = P X_k$ and $\widehat{V}_k = Q Y_k.$

"Randomization" framework: normalized block power iteration

Input *Q*: "random" sampling/projection do 2. SpMM + Ortho $\hat{P} = AQ$, and $PR_{\rho} = \text{TSQR}(\hat{P})$ 3. Restart (if not done) $\hat{Q} = A^T P$, and $QR_q = \text{TSQR}(\hat{Q})$ while

- iteration to improve approximation when singular values decay slowly.
- "normalized" to maintain stability.
- "randomization" only in starting vectors (e.g., Gaussian random vectors).

イロン イヨン イヨン イヨン

2

"Traditional" algorithm: block Lanczos method

1. Initial + Ortho $\widehat{q}_1 = \operatorname{randn}(n, b)$, and $q_1 b_{0,1} = \operatorname{orth}(\widehat{q})$ do 2. SpMM + Ortho to generate $Q = \mathcal{K}(AA^T, q_1)$ and $P = \mathcal{K}(AA^T, Aq_1)$ for i = 1, 2, ..., s do $\hat{p}_i = A a_i$, and $p_i b_{i,i} = \operatorname{orth}([p_{i-1}, \hat{p}_i])$ $\widehat{q}_{i+1} = A^T p_i$, and $q_{i+1}b_{i,i+1} = \operatorname{orth}([q_i, \hat{q}_{i+1}])$ end for 3. Restart (if not done) "recycle" a few current approximation while

イロト イヨト イヨト イヨト

3

we use "thick" restart to "recyle" current approximation to improve convergence and reduce cost of generating P and Q

 Krylov often converges faster, but with more passes over A splitting big SpMM into smaller blocks

s-step Block Lanczos Method

```
1. Initial + Ortho
  \widehat{q}_1 = \text{random}(n, b) \text{ and } q_1 b_{0,1} = \text{orth}(\widehat{q})
do
  2 MPK
  for i = 1, 2, ..., s do
    \hat{p}_i = A\hat{q}_i then
    \widehat{q}_{i+1} = A^T \widehat{p}_i
  end for
  3. Ortho
  QR_q = TSQR(\hat{Q}) and
  PR_{p} = TSQR(\hat{P})
  4. Restart (if not done)
        q_1 = q_{c+1} (explicit restart)
while
```

- groups s SpMM/Orthos into one
- "Communication-avoiding" implementation:
 - s block basis vectors with comm cost of one
 - potentially same/less comm than power method

Experimental Setups

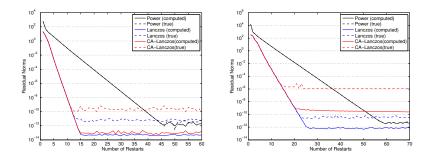
Name	Source	m	п	nnz m	σ_1
BerkStan	snap.stanford.edu	685, 230	685,230	11.1	$6.7 imes10^2$
Netflix	netflixprize.com	2,649,429	17,770	37.9	$1.9 imes10^4$

- One node (two 6-core Intel Xeon) with multiple GPUs (three NDIVIA M2090)
- Compute 50 and 30 largest singular values/vectors for BerkStan and Netflix (i.e., n_d = 50 and 30)
- Projection subspace dimension is 2 × n_d
 Power and explicit-restart Lanczos have same computational cost
- Block size is 10 (i.e., b = 10)
- Thick-restart Lanczos recycles $n_d + 2b$ Ritz vectors
 - Lanczos has less computation per restart
 - s = 2 for s-step Lanczos
- Orthogonalization schemes: CGS and CholQR with reorthogonalization

イロト イヨト イヨト イヨト

Max. residual norm $||A\mathbf{u}_i - \sigma_i \mathbf{v}_i||_2$ for stopping criteria

Computed/true residual norms vs. restart



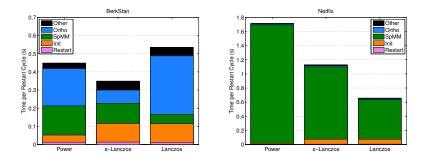
- Lanczos converges faster than Power method (in term of restart count)
- CA-Lanczos' convergence matches with Lanczos (in term of computed residual norm)

- ∢ ≣ ▶

Э

true residual norm diverges from computed one (working to fix this)

Iteration time breakdown

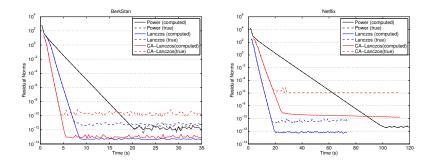


- SpMM time per Lanczos cycle was shorter due to thick-restarting
- Ortho time per Lanczos cycle was longer due to lower-perf. of dense kernels
- SpMM time increase in s-step Lanczos due to overhead of MPK
- each restart cycle (i.e., O(100) SpMMs+Orths) requires < 2 seconds on GPUs</p>

< ≣⇒

Image: A math a math

Computed/true residual norms vs. time

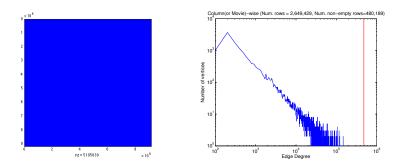


- CA-Lanczos and Lanczos were fastest to converge for BerkStan and Netflix, respectively (in term of time, if solution requires a few iterations)
- For Netflix, Lanczos was competitve even after 1st restart
 - a few smaller SpMMs were as fast as a big SpMM
- CA-Lanczos was slower than Lanczos for Netflix due to irregular sparsity

・ロン ・回と ・ヨン ・ヨン

Several un-answered question

- how does it perform at larger-scale?
- how do I measure quality of approximation?
- is there any case where the matrix can be partitioned well?



Outline: Computing truncated SVDs with GPUs

- ► Performance of randomized with Lanczos (block, thick-restart, CA)
- Performance of sampling to update SVD on a GPU cluster for LSI and populartion clustering
- Final Remarks

글 🕨 🔸 글 🕨

Adding "document" problem

Given a rank-k approximation of $A \approx U_k \Sigma_k V_k^T$, we compute

$$[A,D] \approx \widehat{U}_k \widehat{\Sigma}_k \widehat{V}_k^T,$$

where *D* is *m*-by-*d*.

- D may be big (e.g., $d = O(10^3)$), but
- ▶ is still much smaller than A (i.e., $d \ll m$)
- two other updating problems exist (term-update and weight-correction)

▲圖▶ ▲屋▶ ▲屋▶

"Fold-in" algorithm by Zha and Simon, 99

1. Orthogonalize D against U_k ,

$$\widehat{D} := D - U_k(U_k^T D)$$
 and $\widehat{P}R = \mathsf{TSQR}(\widehat{D})$.

2. Compute SVD of the projected matrix $B = P^T A Q$, where

$$P = [U_k, \widehat{P}] \text{ and } Q = \left(egin{array}{cc} V_k & 0 \\ 0 & I \end{array}
ight)$$

Hence,

$$B = \left(\begin{array}{cc} \Sigma_k & U_k^\mathsf{T} D \\ & R \end{array}\right).$$

3. Compute approximation,

$$A \approx \widehat{U}_k \widehat{\Sigma}_k \widehat{V}_k^T,$$

・ロン ・回と ・ヨン・

æ

where $\widehat{U}_k = PX_k$ and $\widehat{V}_k = QY_k$.

- if d is large, infeasibly large memory to store \widehat{P} .
- incremental update reduces cost, but still ortho(D) and SVD(B) could be expensive (may lower accuracy, and may be slower).

"Lanczos" algorithm by Vecharynski and Saad, 14

- 1. Run column-wise Lanczos on $(I U_k U_k^T)D$ to generate ℓ basis vectors \widehat{P}_{ℓ} and \widehat{Q}_{ℓ}
- 2. Compute SVD of the projected matrix $B = P^T A Q$, where

$$P_{k+\ell} = [U_k, \widehat{P}_\ell]$$
 and $Q_{k+d} = \left(egin{array}{cc} V_k & 0 \\ 0 & I_d \end{array}
ight)$

Hence,

$$B = \left(\begin{array}{cc} \Sigma_k & U_k^T D \\ & \widehat{P}_\ell^T D \end{array}\right).$$

3. Compute approximation,

$$A pprox \widehat{U}_k \widehat{\Sigma}_k \widehat{V}_k^T$$

where $\widehat{U}_k = P_{k+\ell} X_k$ and $\widehat{V}_k = Q_{k+\ell} Y_k$.

Our "Sampling" algorithms for updating SVD

To reduce cost of generating P and Q, run block power iteration,

1. on $[U_k \Sigma_k V_k^T, D]$ which generates $P_{k+\ell}$ and $Q_{k+\ell}$

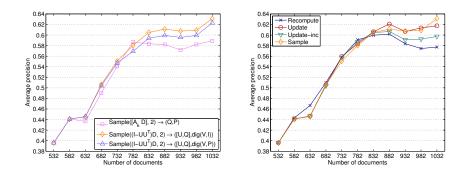
2. on $(I - UU^{T})D$ which generates \widehat{P}_{ℓ} and \widehat{Q}_{ℓ} , and then let $P_{k+\ell} = [U_k, \widehat{P}_{\ell}]$ and

2.1
$$Q_{k+d} = \begin{pmatrix} V_k & 0 \\ 0 & I_d \end{pmatrix}$$
 [Vecharynski and Saad, 14],
or
2.2 $Q_{k+\ell} = \begin{pmatrix} V_k & 0 \\ 0 & \widehat{Q}_\ell \end{pmatrix}$.

▲圖▶ ▲屋▶ ▲屋▶

2

Precision for 5735-by-1033 MEDLINE matrix with 30 queries (s = 50)



- Sampling performs two iterations (three SpMMs)
- All obtained similar precision.
- CholQR/SVQR for sampling/updating with reorthogonalization

→ 三→

Updating to cluster population by SNP

	JPT+MEX	+ ASW	+ GIH	+CHU
recompute	1.00	1.00	1.00	0.97
no update	1.00	0.81	0.84	0.67
update	1.00	1.00	0.89	0.70
sample	1.00	0.95	0.92	0.86

- average crrelation coefficient of clusters -

- compute rank-5 approximation of JPT and MEX with 116,565 SNP (86 Japanese in Tokyo and 77 Mexican ancestry in LA)
- add ASW, GIH, and CHU (83 African ancestry in SW USA, 88 Gujarati Indian in Houston, and European ancestry in Utah)

æ

sample with two iterations (three SpMMs).

Netflix matrix for performance study

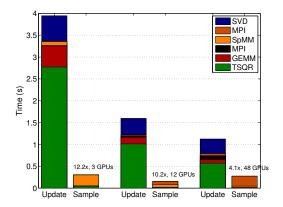
	Incremental update	Sampling		
1	The World Is Not Enough	Mission to Mars		
2	Mrs. Doubtfire	The World Is Not Enough		
3	Mission: Impossible	Armageddon		
4	Die Another Day	Crimson Tide		
5	The 6th Day	Mission: Impossible		
6	Mission to Mars	Die Another Day		
7	The Mummy	Entrapment		
8	Die Hard 2: Die Harder	Patriot Games		
9	Charlie's Angels	Die Hard 2: Die Harder		
10	The Santa Clause	Men of Honor		
	– Query results for "Tomorrow Never Dies" –			

▶ given rank-30 approximation of 5,000 movies, add 5,000 more.

・ロト ・回ト ・ヨト ・ヨト

2

Time-breakdown and Parallel scaling



イロン イヨン イヨン イヨン

- Sampling is fast (3MPIs, 1GPU/MPI), but
- spends more time in SpMM (i.e., accesses D twice per iteration).

Final Remarks

- Starting effort on linear algebra + randomization package
 - combining linear algebra, randomization, and HPC efforts
 - RBT is integrated in our package for solving dense linear systems

Curent work

- ► HPC implementation (e.g., matrix partitioning, simple/special of MPK by Knight, Carson, Demmel)
- Other randomization/sampling techniques (e.g., compare/combine with PCA-correlated SNP)
- Larger "sparse" data sets with suggestions on parameter selection (still losts of parameters to tune)

Thank You!!