Performance of computing low-rank matrix approximatoin on a hybrid CPU/GPU architecture

Ichitaro Yamazaki ${ }^{1}$, Theo Mary ${ }^{2}$, Jakub Kurzak ${ }^{1}$, Stanimire Tomov ${ }^{1}$, Jack Dongrra ${ }^{1}$
${ }^{1}$ University of Tennessee, Knoxville, USA
${ }^{2}$ Universite de Toulouse, UPS-IRIT, France

SIAM Conference on Computational Science and Engineering Salt Lake City, Utah, USA, 03-18-2015

Innovative Computing Lab. at EECS of University of Tennessee, Knoxville HP Linear Algebra (LA) Packages on emerging computers:

- Linear Algebra:
- LAPACK/ScaLAPACK: dense LA on shared/distributed system
- PLASMA/MAGMA: dense LA on manycore/hybrid node (NVIDIA/Intel/AMD) \rightarrow sparse LA on distributed system
- Sparse LA
- Distributed-memory sparse linear/eigen solvers: (SuperLU_DIST/TRLan/PDSLin)
- Collaboration to accelerate sparse/application codes (PaStiX, DOD, SciDB, etc.)
- Runtime Systems: QUARK/PULSAR
- Distributed Computing: OpenMPI, ParSEC, DPLASMA, etc.
- Performance Profiling/Modeling: PAPI, etc.
- Bench-marking: HPL, HPCG, etc.
- Auto-tuning: BEAST, etc.

Can we learn from or contribute to randomized algorithms?

truncated singular value decompositions (SVD)

Compute k-rank approximation of m-by- n sparse matrix A,

$$
A \approx U_{k} \Sigma_{k} V_{k}^{T} \text { to minimize }\left\|A-U_{k} \Sigma_{k} V_{k}^{T}\right\|_{2},
$$

where

- U_{k} and V_{k} are k left $/$ right singular vectors (i.e., $U^{T} U=I$ and $V^{\top} V=I$)
- Σ is diagonal with k largest singular values
- it is used for PCA, clustering, ranking, etc.
- many variants with different constraints (i.e., matrix completition)

Outline: Computing truncated SVDs with GPUs

- Performance of random and Lanczos (block, thick-restart, CA)
- Performance of updating SVD
for Latent Semantic Inedexing and population clustering
- Final Remarks

Subspace projection framework

1. Generate $k+\ell$ orthonormal P and Q approximating ranges of A and A^{T},

$$
A \approx P Q^{T}
$$

where ℓ is "oversampling" to improve performance/robustness.
2. Compute SVD of the projected matrix B,

$$
B=X \widehat{\Sigma} Y^{T}
$$

where $B=P^{T} A Q$.
3. Compute approximation,

$$
A \approx \widehat{U}_{k} \widehat{\Sigma}_{k} \widehat{V}_{k}^{T},
$$

where $\widehat{U}_{k}=P X_{k}$ and $\widehat{V}_{k}=Q Y_{k}$.
"Randomization" framework: normalized block power iteration

```
Input \(Q\) : "random" sampling/projection
do
    2. \(\mathrm{SpMM}+\) Ortho
        \(\widehat{P}=A Q\), and
\(P R_{p}=\operatorname{TSQR}(\widehat{P})\)
    3. Restart (if not done)
        \(\widehat{Q}=A^{T} P\), and
        \(Q R_{q}=\operatorname{TSQR}(\widehat{Q})\)
while
```

- iteration to improve approximation when singular values decay slowly.
- "normalized" to maintain stability.
- "randomization" only in starting vectors (e.g., Gaussian random vectors).
"Traditional" algorithm: block Lanczos method

```
1. Initial + Ortho
    \(\widehat{q}_{1}=\operatorname{randn}(n, b)\), and \(q_{1} b_{0,1}=\operatorname{orth}(\widehat{q})\)
do
    2. SpMM + Ortho to generate \(Q=\mathcal{K}\left(A A^{T}, q_{1}\right)\) and \(P=\mathcal{K}\left(A A^{T}, A q_{1}\right)\)
    for \(j=1,2, \ldots, s\) do
    \(\widehat{p}_{j}=A q_{j}\), and
    \(p_{j} b_{j, j}=\operatorname{orth}\left(\left[p_{j-1}, \widehat{p}_{j}\right]\right)\)
    \(\widehat{q}_{j+1}=A^{T} p_{j}\), and
        \(q_{j+1} b_{j, j+1}=\operatorname{orth}\left(\left[q_{j}, \widehat{q}_{j+1}\right]\right)\)
        end for
        3. Restart (if not done)
        "recycle" a few current approximation
while
```

- we use "thick" restart to "recyle" current approximation to improve convergence and reduce cost of generating P and Q
- Krylov often converges faster, but with more passes over A splitting big SpMM into smaller blocks

s-step Block Lanczos Method

```
1. Initial + Ortho
    \(\widehat{q}_{1}=\operatorname{random}(n, b)\) and \(q_{1} b_{0,1}=\operatorname{orth}(\widehat{q})\)
do
    2. MPK
    for \(j=1,2, \ldots, s\) do
        \(\widehat{p}_{j}=A \widehat{q}_{j}\) then
        \(\widehat{q}_{j+1}=A^{T} \widehat{p}_{j}\)
    end for
    3. Ortho
        \(Q R_{q}=\operatorname{TSQR}(\widehat{Q})\) and
        \(P R_{p}=\operatorname{TSQR}(\widehat{P})\)
    4. Restart (if not done)
        \(q_{1}=q_{c+1}\) (explicit restart)
while
```

- groups s SpMM/Orthos into one
- "Communication-avoiding" implementation:
- s block basis vectors with comm cost of one
- potentially same/less comm than power method
- overhead to perform comm/comp/store boundary elements

Experimental Setups

Name	Source	m	n	$\frac{n n z}{m}$	σ_{1}
BerkStan	snap.stanford.edu	685,230	685,230	11.1	6.7×10^{2}
Netflix	netflixprize.com	$2,649,429$	17,770	37.9	1.9×10^{4}

- One node (two 6-core Intel Xeon) with multiple GPUs (three NDIVIA M2090)
- Compute 50 and 30 largest singular values/vectors for BerkStan and Netflix (i.e., $n_{d}=50$ and 30)
- Projection subspace dimension is $2 \times n_{d}$
- Power and explicit-restart Lanczos have same computational cost
- Block size is 10 (i.e., $b=10$)
- Thick-restart Lanczos recycles $n_{d}+2 b$ Ritz vectors
- Lanczos has less computation per restart
- $s=2$ for s-step Lanczos
- Orthogonalization schemes: CGS and ChoIQR with reorthogonalization
- Max. residual norm $\left\|A \mathbf{u}_{i}-\sigma_{i} \mathbf{v}_{i}\right\|_{2}$ for stopping criteria

Computed/true residual norms vs. restart

- Lanczos converges faster than Power method (in term of restart count)
- CA-Lanczos' convergence matches with Lanczos (in term of computed residual norm)
- true residual norm diverges from computed one (working to fix this)

Iteration time breakdown

- SpMM time per Lanczos cycle was shorter due to thick-restarting
- Ortho time per Lanczos cycle was longer due to lower-perf. of dense kernels
- SpMM time increase in s-step Lanczos due to overhead of MPK
- each restart cycle (i.e., $O(100) \mathrm{SpMMs+Orths}$) requires <2 seconds on GPUs

Computed/true residual norms vs. time

- CA-Lanczos and Lanczos were fastest to converge for BerkStan and Netflix, respectively (in term of time, if solution requires a few iterations)
- For Netflix, Lanczos was competitve even after 1st restart
- a few smaller SpMMs were as fast as a big SpMM
- CA-Lanczos was slower than Lanczos for Netflix due to irregular sparsity

Several un-answered question

- how does it perform at larger-scale?
- how do I measure quality of approximation?
- is there any case where the matrix can be partitioned well?

Outline: Computing truncated SVDs with GPUs

- Performance of randomized with Lanczos (block, thick-restart, CA)
- Performance of sampling to update SVD on a GPU cluster for LSI and populartion clustering
- Final Remarks

Adding "document" problem

Given a rank- k approximation of $A \approx U_{k} \Sigma_{k} V_{k}^{\top}$, we compute

$$
[A, D] \approx \widehat{U}_{k} \widehat{\Sigma}_{k} \widehat{V}_{k}^{T}
$$

where D is m-by- d.

- D may be big (e.g., $d=O\left(10^{3}\right)$), but
- is still much smaller than A (i.e., $d \ll m$)
- two other updating problems exist (term-update and weight-correction)
"Fold-in" algorithm by Zha and Simon, 99

1. Orthogonalize D against U_{k},

$$
\widehat{D}:=D-U_{k}\left(U_{k}^{T} D\right) \text { and } \widehat{P} R=\operatorname{TSQR}(\widehat{D})
$$

2. Compute SVD of the projected matrix $B=P^{T} A Q$, where

$$
P=\left[U_{k}, \widehat{P}\right] \text { and } Q=\left(\begin{array}{cc}
V_{k} & 0 \\
0 & l
\end{array}\right)
$$

Hence,

$$
B=\left(\begin{array}{cc}
\Sigma_{k} & U_{k}^{T} D \\
R
\end{array}\right) .
$$

3. Compute approximation,

$$
A \approx \widehat{U}_{k} \widehat{\Sigma}_{k} \widehat{V}_{k}^{T},
$$

where $\widehat{U}_{k}=P X_{k}$ and $\widehat{V}_{k}=Q Y_{k}$.

- if d is large, infeasibly large memory to store \widehat{P}.
- incremental update reduces cost, but still ortho (D) and $\operatorname{SVD}(B)$ could be expensive (may lower accuracy, and may be slower).
"Lanczos" algorithm by Vecharynski and Saad, 14

1. Run column-wise Lanczos on $\left(I-U_{k} U_{k}^{T}\right) D$ to generate ℓ basis vectors \widehat{P}_{ℓ} and \widehat{Q}_{ℓ}
2. Compute SVD of the projected matrix $B=P^{T} A Q$, where

$$
P_{k+\ell}=\left[U_{k}, \widehat{P}_{\ell}\right] \text { and } Q_{k+d}=\left(\begin{array}{cc}
V_{k} & 0 \\
0 & I_{d}
\end{array}\right)
$$

Hence,

$$
B=\left(\begin{array}{cc}
\Sigma_{k} & U_{k}^{T} D \\
& \widehat{P}_{\ell}^{T} D
\end{array}\right)
$$

3. Compute approximation,

$$
A \approx \widehat{U}_{k} \widehat{\Sigma}_{k} \widehat{V}_{k}^{T}
$$

where $\widehat{U}_{k}=P_{k+\ell} X_{k}$ and $\widehat{V}_{k}=Q_{k+\ell} Y_{k}$.

Our "Sampling" algorithms for updating SVD
To reduce cost of generating P and Q, run block power iteration,

1. on $\left[U_{k} \Sigma_{k} V_{k}^{T}, D\right]$ which generates $P_{k+\ell}$ and $Q_{k+\ell}$
2. on $\left(I-U U^{T}\right) D$ which generates \widehat{P}_{ℓ} and \widehat{Q}_{ℓ},
and then let $P_{k+\ell}=\left[U_{k}, \widehat{P}_{\ell}\right]$ and
$2.1 Q_{k+d}=\left(\begin{array}{cc}V_{k} & 0 \\ 0 & I_{d}\end{array}\right) \quad$ [Vecharynski and Saad, 14],
or
$2.2 Q_{k+\ell}=\left(\begin{array}{cc}V_{k} & 0 \\ 0 & \widehat{Q}_{\ell}\end{array}\right)$.

Precision for 5735-by-1033 MEDLINE matrix with 30 queries $(s=50)$

- Sampling performs two iterations (three SpMMs)
- All obtained similar precision.
- CholQR/SVQR for sampling/updating with reorthogonalization

Updating to cluster population by SNP

	JPT+MEX	+ ASW	+ GIH	+ CHU
recompute	1.00	1.00	1.00	0.97
no update	1.00	0.81	0.84	0.67
update	1.00	1.00	0.89	0.70
sample	1.00	0.95	0.92	0.86

- average crrelation coefficient of clusters -
- compute rank-5 approximation of JPT and MEX with 116,565 SNP (86 Japanese in Tokyo and 77 Mexican ancestry in LA)
- add ASW, GIH, and CHU (83 African ancestry in SW USA, 88 Gujarati Indian in Houston, and European ancestry in Utah)
- sample with two iterations (three SpMMs).

Netflix matrix for performance study

	Incremental update	Sampling
1	The World Is Not Enough	Mission to Mars
2	Mrs. Doubtfire	The World Is Not Enough
3	Mission: Impossible	Armageddon
4	Die Another Day	Crimson Tide
5	The 6th Day	Mission: Impossible
6	Mission to Mars	Die Another Day
7	The Mummy	Entrapment
8	Die Hard 2: Die Harder	Patriot Games
9	Charlie's Angels	Die Hard 2: Die Harder
10	The Santa Clause	Men of Honor
- Query results for "Tomorrow Never Dies" -		

- given rank-30 approximation of 5, 000 movies, add 5, 000 more.

Time-breakdown and Parallel scaling

- Sampling is fast (3MPIs, 1GPU/MPI), but
- spends more time in SpMM (i.e., accesses D twice per iteration).

Final Remarks

- Starting effort on linear algebra + randomization package
- combining linear algebra, randomization, and HPC efforts
- RBT is integrated in our package for solving dense linear systems

Curent work

- HPC implementation (e.g., matrix partitioning, simple/special of MPK by Knight, Carson, Demmel)
- Other randomization/sampling techniques (e.g., compare/combine with PCA-correlated SNP)
- Larger "sparse" data sets with suggestions on parameter selection (still losts of parameters to tune)

Thank You!!

