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Floating-point landscape

Signif. Exp. Range (fimax/fmin)  Unit roundoff u
bits bits

fp128 113 15 232766 1% 271 ~ 1 x 1073
fp64 52 11 22046 10010 273 ~1x107%
fp32 23 8 2®4x~ 10 27 ~6x107°
tfloat32 10 8 2% ~10™ 271 ~5x107*
fpl6 10 5 22°x10° 27l x5 x107*
bfloat16 7 8 2% x~10™ 28%~4x10"3
fp8 (E4M3) 3 4  2¥~3x10* 27"~ 6 x 1072
fp8 (E5M2) 2 5 2%¥~10° 23~1x107!
fp6 (E2M3) 3 2 2°x~38 27~ 6 x 1072
fp6 (E3M2) 2 3 27~128 273 0.125
fp4 (E2M1) 1 2 2)~38 272 0.25

Lower precisions:

Faster, consume less memory and energy

Standard model of FPA:

For any x such that |x| € [fuin, fmax],

® Lower accuracy and narrower range fi(x) = x(1+6), |6 <u

= Mixed precision algorithms
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https://bit.ly/mixed-survey

Mixed precision strategies

o

2]

Iterative refinement
Run baseline algorithm in low precision, refine result to high accuracy

Multiword arithmetic
Emulate high precision with low precision

Memory accessors
Decouple the storage (low) precision and the compute (high) precision

Adaptive precision
Adapt the precision of each instruction to the problem /input at hand

Discussion
Comparison of strengths and weaknesses
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0 Iterative refinement
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Iterative refinement: main principle

Iterative refinement for Ax = b
1: Compute an initial approximation x
2: repeat
3 r=>b— Ax
4. Solve Acx~r
5
6

X=x+¢c
. until convergence

o If Ac ~ r is solved with precision ¢:

e Attainable accuracy independent of
e Convergence rate x k(A)e

@ Can use direct, iterative, or any kind

of approximate solvers

[B E. Carson and N. J. Higham. Accelerating the
solution of linear systems by iterative refinement
in three precisions. SISC 2018.
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Iterative refinement: main principle

General technique also applicable to

Iterative refinement for Ax = b @ Nonlinear solvers (Newton's method)
1: Compute an initial approximation x [ F. Tisseur. Newton's method in floating point
arithmetic and iterative refinement of generalized

repeat eigenvalue problems. SIMAX 2001.

2

3 r=b—Ax @ Least-squares

4: Solve Ac =~ r [ E. Carson, N. J. Higham, and S. Pranesh.

5 X=x4+c Three-Precision GMRES-Based lIterative Refinement for
. Least Squares Problems. SISC 2020.

6: until convergence

@ Eigenvalue decomposition
o If Ac ~ r is solved with precision &: 3 J. J.. Dongarra, C. B. Moler, and J'.H' Wilkinson.
Improving the accuracy of computed eigenvalues and

e Attainable accuracy independent of eigenvectors. SINUM 1983.

o Convergence rate o< (A)e @ Singular value decomposition

@ Can use direct, iterative, or any kind [ J. J. Dongarra. Improving the accuracy of computed
. singular values. SISSC 1983.
of approximate solvers

B E. Carson and N. J. Higham. Accelerating the @ Low-rank approximations
solution of linear systems by iterative refinement [ M. Baboulin, O. Kaya, T. M., and M. Robeyns.
in three precisions. SISC 2018. Mixed precision iterative refinement for low-rank matrix

and tensor approximations. SISC 2025.
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Iterative refinement: success stories

LU-based IR

LA~ LUlm |1°W_prec'5'°” N B P. R Amestoy, A. Buttari, N. J. Higham, J.-Y.
x = U"*L7"b in low precision L'Excellent, T. M., and B. Vieublé. Combining
repeat sparse approximate factorizations with
P . . L. mixed-precision iterative refinement. TOMS 2023.
r = b — Ax in high precision

c=U"1L"1r in low precision

AN

x = x + c in high precision
7: until convergence

Results with fp32 BLR(g)-MUMPS solver + fp64 refinement

Matrix n k(A) € Its Time Memory
ElectroPhys 10M 10!  107° 3 5.2 3.7x
tminlet 3M 10"  107° 7 4.2x 2.9%
CarBody 25M 1013 F F F F
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Iterative refinement: success stories

GMRES-based IR

LA~ LUlm |1°W_prec'5'°” N B P. R Amestoy, A. Buttari, N. J. Higham, J.-Y.
2. x=U7"L7"b in low precision L'Excellent, T. M., and B. Vieublé. Combining

- repeat sparse approximate factorizations with
3 P . . L. mixed-precision iterative refinement. TOMS 2023.
4 r = b — Ax in high precision
5 Solve Ac & r with LU-preconditioned [2 P. R. Amestoy, A. Buttari, N. J. Higham, J.-Y.

i i L. L'Excellent, T. M., and B. Vieublé. Five-precision
GMRES in mixed precision GMRES-based iterative refinement. SIMAX 2024.

x = x + c in high precision
7: until convergence

o

Results with fp32 BLR(£)-MUMPS solver + fp64 refinement

Matrix n k(A) € Its Time Memory
ElectroPhys 10M 10! 107® — same 3 — same 5.2x — same 3.7x — same
tminlet 3M 10" 107% - 107* 7 — 69 42x —33x  2.9x — 3.4x
CarBody 25M 10 F — 1078 F— 23 F—0.7x F— 1.9x

7/22



© Multiword arithmetic
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Multiword arithmetic: main principle

Goal: compute C = AB to high accuracy
o Step 1: Compute the multiword decompositions
w
A~ ajAi  and  Bm> BB
j=1
where the words A; and B; are stored in low precision = decomposition error
@ Step 2: compute

C= Z Oé,',BJ'A,'BJ'

i+j<k

for some k (e.g., k = 2w or k = w) = accumulation error
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Multiword arithmetic: success stories

fp32 emulation
@ NVIDIA Tensor Cores fpl6 matrix multiplication with fp32 accumulation
Volta Ampere Hopper Blackwell
8% 16 % 15x 56 x
o Compute A Ai+Arand B~ B + B
= decomposition error = 2722
@ Compute C ~ A1B; + A1By + A> By with fp32 accumulation
= accumulation error o< 2724

e fpl6-TC/fp32 speed ratio:

@ Three products = large speedups

@ bfloat16x6 or bfloat16x9 also possible. See
[B M. Fasi, N. J. Higham, F. Lopez, T. M. and M. Mikaitis. Matrix Multiplication in Multiword
Arithmetic: Error Analysis and Application to GPU Tensor Cores. SISC 2023.

and references therein
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Multiword arithmetic: success stories

fp64 emulation

@ Ozaki scheme: decompose A and B such that A;B; can be computed exactly
[ K. Ozaki, T. Ogita, S. Oishi, and S. M. Rump. Error-free transformations of matrix multiplication by
using fast routines of matrix multiplication and its applications. Numer. Algorithms 2012.

e fpl6 and int8 words both possible, int8 usually more efficient
[2) H. Ootomo, K. Ozaki, and R. Yokota. DGEMM on integer matrix multiplication unit. [JHPCA 2024.

@ Number of products quite large (~35), but int8/fp64 speed ratio is 112

@ Ozaki scheme Il uses multimodular arithmetic to reduce number of products (~16)
[B K. Ozaki, Y. Uchino, and T. Imamura. Ozaki Scheme Il: A GEMM-oriented emulation of floating-point
matrix multiplication using an integer modular technique. Preprint 2025.

@ Number of products must depend on dynamical range of values; otherwise

componentwise error can be large for badly scaled matrices.
3 A. Abdelfattah, J. Dongarra, M. Fasi, M. Mikaitis, and F. Tisseur. Analysis of floating-point matrix
multiplication computed via integer arithmetic. Preprint 2025.
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© Memory accessors
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Memory accessors: main principle

@ Decouple storage and compute precisions: data is stored (compressed) in low
precision and accessed (decompressed) back to high precision to be computed
on/with
B H. Anzt, G. Flegar, T. Griitzmacher, and E. S. Quintana-Orti. Toward a modular precision ecosystem
for high-performance computing. IJHPCA 2019.

@ Lowering storage precision reduces memory consumption and volume of data

transfers = faster memory-bound computations
[@ T. Griitzmacher, H. Anzt, and E. S. Quintana-Orti. Using Ginkgo’s memory accessor for improving the
accuracy of memory-bound low precision BLAS. Software: Practice and Experience 2023.

@ Compression may use custom formats without hardware support, e.g.,

floating-point numbers with truncated mantissa
B D. Mukunoki, M. Kawai, and T. Imamura. Sparse Matrix-Vector Multiplication with
Reduced-Precision Memory Accessor MCSoC 2023.
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Memory accessors: success stories

@ Tensor Cores implement mixed precision matrix multiply—accumulate
C <+ C+ AB, where A and B are stored in, and C is accumulated in, fp32 or fpl6

@ Accumulating the update operations A;; <— Aj; — L Uy; of LU factorization in

fp32 reduces the error bound from nuig to 2uig + nusp
[2 P. Blanchard, N. J. Higham, F. Lopez, T. M., and S. Pranesh. Mixed Precision Block Fused
Multiply-Add: Error Analysis and Application to GPU Tensor Cores. SISC 2020.

e Significant accuracy boost, but performance limited by storage/data transfers
= store matrix in fp16, and preserve accuracy by accumulating in fp32 buffers

B,'J' = ZL,‘k Ukj7 A,’j — A,’j — B,'J'
k

[B F. Lopez and T. M.. Mixed Precision LU Factorization on GPU Tensor Cores: Reducing Data
Movement and Memory Footprint. IJHPCA 2023.

fpl6 fp16/fp32 Tensor Cores
fp32 storage fpl6 storage
Accuracy 1x1073  1x10°3 3x107°
Speed (TFLOPS) — 50 140
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Memory accessors: success stories

At what data granularity should we use memory accessors?
e Too small (e.g., variable-wise) = need to rewrite all the code ®

@ Too large (e.g., matrix-wise) = accessed data does not fit into fast memory,
inefficient ©®

@ Just right (e.g., block-wise) = blocks fit into fast memory and computations can

use BLAS !

B PR Amestoy, A. Jego, J.-Y. L'Excellent, T. M., and G. Pichon. BLAS-based Block Memory Accessor
with Applications to Mixed Precision Sparse Direct Solvers. Preprint 2025.

150

storage precision
+ compute precision

N
o
S

— 64

—-— | —— fp32+fp64

, p32
50 - == fp64 (MKL)
p32 (MKL)

Performance (Gflop/s)
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@ Adaptive precision
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Adaptive precision: main principle

e Not all variables/operations need the same precision!

Example:
64 bits
a [T
+b (T

Unimportant bits

= Here, b can be stored and computed in low precision

@ Adaptive precision algorithms exploit this observation by dynamically selecting the
minimal precision for each variable/operation, depending on the data and on the
prescribed accuracy €
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Adaptive precision: success stories

@ Goal: compute y = Ax, where A is a sparse matrix, with a prescribed accuracy e

@ Given p available precisions u; < e < up < ... < up, define partition

ACS AR 0 {ﬂk(a,.j) f as] € (AN /e, <l Al /]

i 0 otherwise

P
k=1
= the precision of each element is chosen inversely proportional to its magnitude

[ S. Graillat, F. Jézéquel, T. M., and R. Molina. Adaptive precision sparse matrix-vector product and its
application to Krylov solvers. SISC 2024.

@ Example on Long_Coup_dt6 matrix with ¢ = 2753 and 7 precisions:

fp64  fpb6 fpd8 fpd0 fp32 fp24 fplo drop
0.05% 2% 25% 25% 4% 20% 14% 10%

Performance impact: 1.5x storage reduction = 1.4x time reduction
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Adaptive precision: success stories

€/up

€/u3

@ P. R. Amestoy, O. Boiteau, A. Buttari, M. Gerest,
F. Jézéquel, J.-Y. L'Excellent, and T. M.. Mixed
Precision Low Rank Approximations and their
Application to Block Low Rank LU Factorization.
IMAJNA 2022

@ A. Buttari, T. M., and A. Pacteau. Truncated QR

precision u;
precision up

precision us3

= the precision of each singular
vector is chosen inversely
proportional to its singular value

factorization with pivoting in mixed precision. SISC
2025.

@ Image of size 1057 x 1600
and of rank 191 (with
e =0.04)

@ In fp32/bf16, only 13
columns in fp32
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Adaptive precision: success stories

@ Adastra MUMPS4FWI project led by WIND team

@ Application: Gorgon Model, reservoir 23km x 11km x 6.5km,
grid size 15m, Helmholtz equation, 25-Hz

@ Complex matrix, 531 Million dofs, storage(A)=220 GBytes;
@ FR cost: flops for one LU factorization= 2.6 x 10'%;

Estimated storage for LU factors= 73 TBytes (25-Hz Gorgon FWI velocity model)
FR (Full-Rank); BLR with ¢ = 107%; 48 000 cores (500 MPI x 96 threads/MPI)
FR: fp32; Adaptive precision BLR: 3 precisions (32bits, 24bits, 16bits) for storage
LU size (TBytes) Flops Time BLR + Mixed (sec) | Scaled Resid.
FR BLR +adapt. FR BLR-+adapt. | Analysis Facto  Solve BLR-+adapt.
73 34 26 | 2.6 x 10™ 0.5 x 10" 446 5500 27 7x10"
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https://www.geoazur.fr/WIND/bin/view

© Discussion
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Discussion

@ Accuracy: how far is the computed result from the exact one?

@ Performance: how much does it cost to reach this result?

@ Robustness: for what range of inputs is the method guaranteed to work?

Iterative Multiword Memory Adaptive
Refinement Arithmetic Accessor Precision
Rigorously Rigorously Rigorously Rigorously
Accuracy controlled controlled controlled controlled
Performance High if it . .ngh e CPLl e | i U Data-dependent
converges quickly if compute-bound memory-bound
Application:
Robustness | k(A) not too large | Black box pp_lc.at|on Black box
specific
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Discussion

@ Accuracy: how far is the computed result from the exact one?

@ Performance: how much does it cost to reach this result?

@ Robustness: for what range of inputs is the method guaranteed to work?

Iterative Multiword Memory Adaptive
Refinement Arithmetic Accessor Precision
Rigorously Rigorously Rigorously Rigorously
Accuracy controlled controlled controlled controlled
Performance High if it . .ngh e CPLl e | i U Data-dependent
converges quickly if compute-bound memory-bound
Application:
Robustness | k(A) not too large | Black box pp_lc.at|on Black box
specific

Thanks! Questions?

22/22



	Iterative refinement
	Multiword arithmetic
	Memory accessors
	Adaptive precision
	Discussion

